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Abstract. — This paper has the aim to provide a general view of the so called Jesuit Edition

(hereafter JE) of Newton’s Philosophiae Naturalis Principia Mathematica (1739–1742). This edition
was conceived to explain all Newton’s methods through an apparatus of notes and commentaries.

Every Newton’s proposition is annotated. Because of this, the text—in four volumes—is one of
the most important document to understand Newton’s way of reasoning. This edition is well known,

but systematic works on it are still missing. We are going to fill this gap by means of a project
exposed in the final remarks of this paper. In this paper we will: A) expound the way in which the

notes and the additions to the JE were conceived by the commentators; B) provide some pieces of
information about the commentators; C) summarize the most important of their notes; D) examine

closely their notes as to a particularly important question: the so called ‘‘inverse problem of the
central forces’’.
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history of mathematics and physics.
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1. Aims of the paper

The purpose of this article is twofold:

a) To highlight the features of the so called Jesuit Edition of Newton’s Principia,
published in the period 1739–1742 as a reprint of the third edition (1726) of
Newton’s masterpiece (Newton [1726, 1739–42, 1760], 1822) calling attention
to:

1) The general structure of the edition;

2) The personalities of the editors;
3) The role of the JE among Principia’s editions and commentaries published from 1687—first

original edition of Newton’s work—to 1833.

For, in 1833, the mathematician John Martin Frederick Wright wrote A commen-
tary on Newton’s Principia (Wright, 1833), which is particularly significant in this
context. The tradition of the commentaries to Newton’s Principia is still living
nowadays. The text of Subrahmanyan Chandrasekhar (1910–1995) Newton’s



Figure 1. Frontispiece of the Glasgow Jesuit edition (Newton [1726] [1739–1742], 1822)
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Principia for the common reader (Chandrasekhar, 1995) is the last example of
such a tradition1.

4) The historical and conceptual meaning of the JE. The third edition of the Principia had been
published only 13 years before the first volume of the JE. An English version of the second

edition of the Principia (1713), translated by Motte, appeared in 1729 (Newton 1713, 1729).
Why was a further edition published then? An answer to this question depends on the profound

changes occurred in mathematics, in physics and in the application of mathematics to physics
between the end of the 17th century and the beginning of the 18th century. The question is

also connected with Newton’s personal and di‰cult geometrical methods, their reception and
their replacement with more analytical methods.

b) An editorial project in five volumes concerning the JE is in start-up phase. We
aim at providing a critical translation into English of the four Latin volumes
(1822), and an added introductory volume.

Since several but not structured works on the JE are present in the literature, we
feel the need to deeply explain the importance of such a crucial commentary, as
the JE. An extensive rework of this edition JE is necessary to clarify the context
in which Newtonian science was developed. This can be a useful means for
historians, philosophers and scientist busy with Newton’s and Newtonian studies.
Under this perspective, this article and a previous one (Bussotti and Pisano, 2014)
aim at familiarizing and introducing to the tenor of a huge work.

1.1. The Structure of the Paper

This paper is composed of the following paragraphs: 2) A brief history of
Principia’s editions until Wright’s commentary; 3) The JE and its main features;
4) An Example of how the editors of the JE explain Newton’s procedures and
results; 5) Conclusion.

2. A brief history of Principia’s editions till Wright’s commentary

The first book of the Philosophiae Naturalis Principia Matematica was presented
to the Royal Society in April 1686. At the end of June, the Royal Society decided
the publication. Because of this positive decision, Newton sent Edmond Halley
(1656–1687) the second and the third books of the Principia respectively in
March and in April 1687. On 5th July 1687, the Principia were published. The
run was limited because only between 200 and 400 copies of Newton’s work
were probably published. Four years after the publication, it was almost im-
possible to find a copy of the book (Munby, 1952). The work is divided into
four main parts:

1 In Bussotti-Pisano 2014, we have dedicated the note 4, p. 35 to the most significant commenta-
ries to Newton’s Principia. See also the note 13 in this paper. Here we wish to remind the reader two

important commented edition of Newton’s text: Newton 1972, edited by Koyré-Cohen-Whitman;
Newton 1999, translated into German and edited by Volkmar Schüller.
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1) An introductory part in which Newton expounds the definitions and the
axioms;

2) The Book I, that begins with the famous first section De metodo rationum
primarum et ultimatum, cujus ope sequentia demonstrantur in which the elements
of infinitesimal calculus used in the course of the book are introduced, concerns
rational mechanics. It is impressive. It is divided into 14 sections and contains 98
propositions (distinguished in problems and theorems), 29 lemmas and 18 scholia.
The propositions and the lemmas are numbered, the scholia are not. Many prop-
ositions have corollaries. Here Newton develops many parts of modern rational
mechanics. As a matter of fact, he invents the very concept of rational mechanics.
As, in the first book no phenomenon is described, rather, the general relations
between physical quantities, treated from a mathematical point of view, are faced.
Newton was aware of the distinction between rational mechanics and physics, for
we read in the Definitions:

I likewise call Attractions and Impulses, in the same sense, Accelerative, and Motive; and use

the words Attraction, Impulse or Propensity of any sort towards a centre, promiscuously, and
indi¤erently, one for another; considering those forces not Physically but Mathematically:

Wherefore, the reader is not to immagine, that by those words, I any where take upon me define
the kind, or the manner of any Action, the causes or the physical reason thereof, or that I

attribute forces, in a true and Physical sense, to certain centres (which are only Mathematical
points); when at any time I happen to speak of centres as attracting or as endued with attractive

powers.2

In the Scholium which concludes the 11th section—where Newton dealt with
some questions regarding the three-body problem—, he wrote:

In the same general sense I use the word impulse, not defining in this treatise the species of

physical qualities of forces, but investigating the quantities and mathematical proportions of

them; as I observed before in the definitions. In mathematics we are to investigate the quantity
of forces with their proportions consequent upon any conditions supposed; then when we enter

upon physics, we compare those proportions with the phaenomena of Nature; that we may
know what conditions of those forces answer to the several kinds of attractive bodies. And this

preparation being made, we argue more safely concerning the physical species, causes, and
proportions of forces.3

This is one of the most innovative aspects of the Principia. As well known, the
concept whose characteristics are analysed is that of (dynamic) force, the very
foundation of Newtonian rational mechanics and physics.

3) The second book, which contains 53 propositions (13 problems and 40
theorems), 4 lemmas and 11 scholia. In the second and third edition, the prop-
ositions are 53, too, even if there is not a perfect correspondence among the
propositions in the various editions. The lemmas are 7 and there are also some
di¤erences as to the scholia. The book deals with fluid mechanics.

2Newton [1726] [1739–1742], 1822, I, p. 8. Translation drawn from Newton 1729, I, pp. 8–9.

This passage is unmodified in the three editions of Newton’s work.
3 Ivi, p. 356. Translation drawn from Newton 1729, p. 262. This passage is unmodified in the

three editions of Newton’s work.
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4) The third book. This is Newton’s famous system of the world, where the
general propositions of the first book and—even if in a minor manner—some of
the second book are applied to celestial mechanics. The book contains 9 hypoth-
eses, 42 propositions (21 theorems and 21 problems) and 11 lemmas. This book
got important changes in the following two editions because the part of the hy-
potheses was enlarged and divided into two parts: 1) Regulae philosophandi; 2)
Phaenomena. The propositions are still 42, but with partially relevant di¤eren-
ces, for example the problems are 22. This means that the first book did not
get important modifications in the two following Principia’s editions (1713 and
1726), while the second, and above all, the third ones, did.

Before the publication of the Principia, the only concrete results in physics
were due, excluding Galileo Galilei (1564–1642), to Christiaan Huygens (1629–
1695), who is in fact, together with Galileo, the only physicist quoted by Newton.
The results obtained before Newton were not comparable with those achieved
in the Principia. Newton’s book inspired a series of researches between the end
of the 17th century and the beginning of the 18th century. In this sense, too, the
Principia represented the birth of modern physics. Scientists as Pierre Varignon
(1654–1722), David Gregory (1659–1708), Guillaume François Antoine de Sainte
Mesme marquis de l’Hôpital4 (1661–1704), Johann Bernoulli (1667–1748),
Abraham de Moivre (1667–1754), John Keill (1671–1721), Jacob Hermann
(1678–1733), William Jacob ‘s Gravesande (1688–1742) were probably the most
famous ones who gave fundamental contributions to physics, in great part by
developing results expounded in the Principia. This happened shortly after the
publication of Newton’s masterpiece. This means that the scientific environment
was ready to receive Newton’s doctrines. It is known that many criticisms were
raised at Newton. In particular, someone rejected the idea that the forces had an
immediate action at a distance (for example Huygens himself and de l’Hôpital):
this kind of action was deemed not realistic and it was considered as a residue
of vitalistic and prescientific conceptions. For example, Leibniz moved severe,
and in many aspects perspicuous, critics to the concepts of absolute space and
absolute time5, explained by Newton in the long and very important Scholium

4Sometime spelled as ‘‘l’Hospital’’, and sometimes—because of French spelling—the silent ‘‘s’’ is

removed and replaced with a circumflex. Even if the former spelling is still used in English where
there is no circumflex, due historical methodological reasons, we prefer let his original name.

5For the concept of absolute space and absolute time Newton (1666?) is fundamental. Almost
every general publication on Newton has a section concerning the concepts of absolute space and

absolute time: Arthur 1995, Carriero 1990, Di Salle 2006, Bussotti and Pisano 2014, in particular

see pp. 107–108, p. 122. With regard to Huygens’ conception of gravity see, for example, Huygens
[1690] 1944, in particular the Addition are fundamental because of the comparison, made by

Huygens himself, between his own conception of gravity and Newton’s. See also the letter to de
l’Hôpital 1692 (Huygens, 1905, p. 354). Huygens greatly appreciated Newton’s results, but not

his methodology. See Bertoloni Meli, 2006; Harper 2011, pp. 206–207. A partially out-of-chorus
publication, which is in favour of the action at a distance is in Assis 1999.
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to the Definitions. Many scientists continued to believe in Cartesian physics, even
if it was clear, from Newton’s results, that the vortices could not be stable6.
Leibniz, who was so acute with regard to the concept of absolute space and
absolute time, thought that the area law and the elliptical orbits, in which the
centre of the forces is in one of the two foci, could be obtained developing
vortices theory through harmonic circulation (circulatio harmonica)7. Criticism
connected to those exposed, but slightly di¤erent, were addressed to Newton’s
use of gravity: he was accused—for example by Leibniz himself—to speak of a
force whose causes were unknown. A similar polemic had been carried out by
Robert Hooke (1635–1703) and Robert Boyle (1627–1691) against Newton’s
conception of light and colours (Guicciardini 2011, chapter 4, pp. 65–90, chapter
8, pp. 218–219). These criticisms notwithstanding, Newton’s work and results
became an unavoidable basis for advanced physics.

The second edition of the Principia was published in 1713 (Newton 1713). It
contains the remarkable foreword of the editor, Roger Cotes (1682–1716), who
explains the characteristics of Newton’s philosophy in a perspicuous manner.
In this edition, Newton provided a more accurate examination of the theory of
the fluids resistance (second book), a more complete theory of the moon, of the
equinoxes and of the comets (third book). The general Scholium appeared at the
end of the work. The second edition was reprinted in Amsterdam one year later
(Newton 1714) with the correction of some mistakes occurred in the 1713 edition.
In 1723, in Amsterdam, the second edition was printed once again with the
addition of the mathematical paper Enumeratio linearum tertii ordinis (Newton,
1723).

In 1726, the third edition was published (Newton, 1726). Newton added (sec-
ond book) some experiments concerning the resistance met by the heavy bodies
when they fall in the air. Further specifications on the moon theory and on the

6The explicit proof of the vortices instability is given by Newton at the beginning of the general

Scholium, that appears for the first time in the second edition of the Principia (1713). However, this
brief proof is entirely based on properties already demonstrated in the first edition. As to this

problem, Newton is also clear in the proposition LIII of the second book and in the subsequent
Scholium. This proposition and the Scholium are present in the first edition, too.

7This aspect of Leibniz’s production is interesting from a historical point of view. With regard to
this conception by Leibniz, after his reading of the Principia, the most important works are Leibniz

([1689] [1860] 1962, pp. 144–161) and Leibniz (Ms. [1860] 1962), pp. 161–187 almost surely written
immediately afterwards. Leibniz expressed the same concepts in several letters, for example: 1) to

Henry Justel, 10/20 October 1690 (Leibniz LSB, I, 6, p. 265); 2) to Erhard Weigl, September 1690,

(Leibniz LSB, II, 2 p. 347; 3) to Huygens, 1/11 April 1692, (Leibniz LSB, II, 5, p. 288; 4) to
Huygens, 10/20 March 1693 (Ivi, p. 517). Because of Newton’s, Gregory’s and Keill’s critics, Leibniz

specified some aspects of his planetary theory in two manuscripts written around 1706, see Leibniz
(Ms. [1880] 1971, pp. 254–276). The most profound studies on Leibniz’s planetary theory are those

by Aiton; see Aiton 1960; Aiton 1962; Aiton 1964; Aiton 1965; Aiton 1972. A Fundamental text is
also Bertoloni Meli 1993.
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comets were added in the third book, in particular a clearer explanation that
gravity is responsible for the moon to gravitate around the earth. If the results
by Newton were generally accepted and physics was developing on a Newtonian
basis starting from the beginning of the 18th century, there was an aspect of his
work that was refused and modified by the physicists of the generation immedi-
ately after Newton: his mathematical methods8. Which were the characteristics
of these methods that made them obsolete only few years after the publication
of the Principia? The thing is that all Newton’s argumentations expounded in
the Principia are based on geometrical reasoning. He develops his argumenta-
tions according to synthetic geometry, he resorts to di‰cult arguments in order
to obtain geometrical properties of the figures, and finally he transforms them
into relations between the physical quantities with which he is dealing9. These
figures are not certainly only lines and circles: in most cases they are conic sec-
tions, but in many cases they are also curves of higher degree or transcendental
curves10, therefore the procedures are fascinating and complicated at the same
time. There are various hypotheses as to why Newton adopted this technique11,
but in our context what is important is that he adopted it. Hence no proposition
is transcribed into analytical terms. The infinitesimal concepts are used because
Newton needs instantaneous quantities and hence the limit of the ratio of two
quantities when both of them tend to 0 is essential in almost all reasoning, but
these di¤erential relations are not transcribed into explicitly written di¤erential
equations, rather—when they do not represent the final step of a reasoning—
they are used to obtain further properties of the figures, so the argumentation
goes on. It is only natural that the physicists, immediately after the publica-
tions of the Principia, began to use analytical methods, by resorting explicitly
to the di¤erential concepts and the di¤erential equations and limiting the geo-
metrical methods as much as possible. Their interest consisted in obtaining
a general mathematical means that allowed them to treat the largest possible
number of physical problems through uniform methods. Newton’s geometrical
approach was not suitable for this. An extensive use of the calculus was.

8We do not have rooms to deal with the relationships between physical and mathematical

methods before Newton. I.e. one could see Leonardo da Vinci, Tartaglia, Galilei, Kepler, Descartes
(Pisano, 2007; Pisano, 2011; Pisano and Bussotti, 2012, 2013, Pisano, 2013, Bussotti and Pisano,

2013, Pisano and Capecchi, 2014).
9 In order to clarify the situation with an example, see the fourth section of this paper.

10See, for example, Book I, section VI, Proposition XXXI, where he uses the trochoid; or
Book I, section X, where, dealing with the motion of the pendulum, the cycloid plays a funda-

mental role.

11With regard to the reasons why Newton adopted this technique and their connections with the
di¤erence between the development of calculus in England and on the continent we refer to (without

any pretension to be exhaustive): De Gandt 1995; Fellmann 1988; Force 1983; Force, Hutton 2004;
Guerlac 1981; Guicciardini 1989, Guicciardini 1998, Guicciardini 1999, Guicciardini 2002; King-

Hele and Rupert Hall A, 1988; Pulte and Mandelbrot 2011; Purrington and Durham 1990; Rupert
Hall 1999; Westfall, 1971.
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Hence, Newtonian physics was developed without Newtonian methods. The
di‰culties of Newtonian methods induced a series of commentaries or partial
explanations of Newton’s procedures starting from the beginning of the 18th
century12. The situation in 1739—this means only 13 years after the publication
of the third edition of Newton’s work—was such that a group of scholars13 felt
the necessity to publish an edition of the Principia in which all the methods and
the reasoning used by Newton were explicitly and clearly explained. This is the
origin of that huge enterprise, the JE, and no sentence can be more explicit than
the following ones written by the editors of the JE in the incipit of the Monitum.
For, we read:

All who had heard even only the name of the very famous author knew how secret and at the
same time useful the doctrines exposed in the Philosophiae Naturalis Principia Mathematica are.

The dignity and the sharpness of the subject, the more than geometric brevity of the reasoning
are so conspicuous that the magnificent work seems to be written only for a very limited number

of expert geometers14.

Therefore, the first aim of the editors is to explain Newtonian methods whose
mysteries are open only to the most expert geometers. However, the editors
make far more than this:

a) They inform the reader of all the most recent discoveries in physics;

b) They often translate Newton’s results into analytical terms, also mentioning the physicists
who dealt with this operation;

c) They add entire treatises, of which they themselves are the authors, which can be useful to
understand Newton’s presuppositions and methods;

d) They insert treatises of other physicists who developed some particularly important aspects
of Newton’s physics.

The result of this work are four huge books where: in the first one, the first
book of the third edition of the Principia is referred and commented; in the
second one, the second book of the third edition; in the third one the initial 24
propositions of the third book; in the fourth one, the other propositions of the
third book.

The edition was published in Geneva between 1739 and 1742 (1739 first
volume; 1740 second volume; 1742 third and fourth volumes).

12With regard to commentaries to Newton’s text, or to commentated translations (we men-
tion only that by Madame du Chatelet because of its known importance), or to text strictly

connected to Newton’s, not limiting to the beginning of the 18th century, but, once again with-
out any pretence to be exhaustive, we mention: Chandrasekhar, 1995; Châtelet, 1759; Clarke

[1730], 1972; Desaguilers, 1717; Gregory, 1702; Keill, 1701; McLaurin [1748], 1971; Pemberton,

1728; Rouse Ball [1893], 1972; Whiston, 1707; Wright 1833. In the context of the first commen-
taries on the Principia, the role of David Gregory was very important. With regard to this, we

refer to the pioneering, but still important: Hiscock 1937; Wightman 1957. We also mention Eagles
1977.

13For the details concerning the editors and the edition, see the next paragraph.
14Newton [1726] [1739–1742], 1822, I, p. VII, lines 1–6. (The translation is ours).
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A second edition of the JE was printed in Colonia Allobrogum (Geneva) in
1760. This edition corrects some typos of the previous one and is in three volumes.

Finally in 1822 the third edition of the JE was published in Glasgow by Dun-
can and Duncan (Newton [1726] [1739–1742], 1822). This edition is in four vol-
umes, as the first one. Several mistakes of the previous editions are corrected. The
mathematician John Martin Frederick Wright accomplished this hard work, pro-
viding us with precious and error-free source for the researches on Newton and
on history of physics and mathematics.

Our story has A commentary on Newton’s Principia (Wright, 1833), written by
Wright himself as the final step. Here Wright provided a systematic transcription
into modern analytical terms of Newton’s most important results and added
many explanations to clarify Newton’s work. He also added some results con-
nected to the Principia, but obtained after Newton. Finally, Wright remarked
some cases—they are not many—in which the editors of the JE did not under-
stand completely Newton’s reasoning.

3. The Jesuit Edition and its main features

This section is divided into two parts: in the former, we are going to present the
commentators of the JE and in the latter, we are going to provide the reader a
general view on the nature of the notes and interventions they carried out.

3.1. The commentators

The notes in the JE are due to three scholars: two French mathematicians,
Thomas Le Seur (1703–1770) and François Jacquier (1711–1788) and Swiss
scientist, Jean Louis Calandrini (1703–1758).15 Actually, in the title-page of the
edition only the names of the two French scholars appear. Nevertheless, at
the end of the Monitum to the first book written by Le Seur and Jacquier we
read:

We do not want to omit to express publicly our gratitude to J. L. Calandrini, Professor at the
Geneva Academy and a very expert in mathematics, who took the care to adorn this edition

of ours of Newton’s Principia according to that very elegant edition, that, enriched by many
additions, appeared in London in 1726. For, that extremely learned man not only assumed

carefully on himself the duty to control that the figures were engraved, posed in the appropriate
place and that the typographical mistakes were corrected, but he also wrote those elements

of conic sections that we have already praised. Sometimes he illustrated those parts of our expla-
nation, which did not seem perspicuous, with his own annotations.16

Calandrini is also mentioned in the Monitum to the second volume for the care
with which he followed the publication (Newton [1726] [1739–1742], 1822, II,

15Recently, an interesting work was published on the personalities of the three commentators

and, above all of Calandrini (Guicciardini, 2014).
16Newton [1726] [1739–1742], 1822, I, p. VIII. (The translation is ours).
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Monitum, page without number, lines 16–20) as well as in the Monitum to the
third volume (Ivi, III, page without number, lines 9–13) for his precious contri-
butions to the edition. This indicates that the work was carried out by the three
scholars. Indeed, the number of notes and interventions by Calandrini is huge.
They can be recognized because they are indicated by an asterisk. Although
Calandrini wrote, in the Editoris Monitum at the beginning of the third volume
(Ivi, Editoris Monitum, page without number, lines 11–15), that the use of the
asterisk would have been avoided in the fourth volume, this was not the case
because this mark continues to be present and allows us to recognize Calandrini’s
interventions.

As we read in the title-page of the JE, Thomas Le Seur (1703–1770) and
François Jacquier (1711–1788) were not Jesuits, but belonged to the ‘‘Gallicana
minimorum familia’’, this means they were Minim Frias, because of this the
name ‘‘Jesuit Edition’’ is not correct. Probably this erroneous denomination de-
rives from what the typographers of the Glasgow edition wrote. For we read in
the initial page of this 1822 third JE edition:

Our intention was to publish the edition of Le Seur and Jacquier, belonging to the Jesuit Society,

in an integral form, with their commentaries, correcting the mistakes that here and there could
have occurred.17

Le Seur and Jacquier are basically known because of the JE, but they also
wrote other essays, e.g., Elémens du calcul integral (Le Seur and Jacquier 1768),
Riflessioni de’ Padri Tommaso Le Seur, Francesco Jacquier de el’ Ordine de’
Minimi, e Ruggiero Giuseppe Boscovich della Compagnia di Gesù sopra alcune
di‰coltà spettanti i danni, e risarcimenti della cupola di S. Pietro (Le Seur,
Jacquier and Boscovich 1743) and the Elementi di perspettiva, secondo i principii
di Brook Taylor con varie aggiunte spettanti all’ottica e alla geometria (Jacquier
1755).

Calandrini was a Newtonian since his youth, for in 1722 he presented a
thesis on the colours to the Academy of Geneva in which he developed his
argumentations following Newton’s ideas and methods (see Calandrini 1722).
As a mathematician, he was interested in plane and spherical trigonometry, the
theory of di¤erentials, the problems of quadrature and the infinite series. He
also dealt with botanic, meteorology and with the problem of the aurora borealis
(see Calandrini-Serres 1727). A work of his on trigonometry was not published.
Calandrini was named Professor for mathematics at the Academy of Geneva
in 1724, but for three years he preferred to take a cultural journey to the Low
Countries, England and France. From 1734 to 1750 he was Professor of Philoso-
phy. He had important political roles, too.

The three editors can therefore be considered good scientists and mathemati-
cians, learned in this subject, but not prominent or particularly original scholars.
This was maybe a luck for the edition because probably, since they did not have

17 Ivi, I, first page. This page is not numbered. (The translation is ours).
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to follow a conspicuous train of thought of their own, they were completely
involved in the edition and they made really a good job.

3.2. Notes and other Interventions

From a typographical point of view, there are four kinds of interventions:

1) The notes which are directly referred to passages by Newton are indicated in
Newton’s running text by a letter with a parenthesis, like this (a). In the notes,
there is the same letter. It is followed by a number if the subject of the note
is remarkably di¤erent from that of the previous note, otherwise the series of
letters continues and it can also happen that more letters are included inside
the same number. Therefore, the letters represent a subdivision of a greater
note indicated by a number. The letters always follow an alphabetic order
and, in general, go from (a) to (z), after that they begin once again with (a).
However, if two consecutive references in the running text are far one from
the other this last rule is not necessarily respected and some series of letters
can end with a letter di¤erent from (z). It can of course happen that a number
begins with a letter di¤erent from (a). Only as an example, the note 121 (p. 53)
of the first volume begins with (z). Sometimes Calandrini adds this symbol
(*) in Newton’s running text. It has the same function as a letter, but the
content and the style of the note is something he judges di¤erent from the
normal content and style of the notes indicated by letters. Furthermore under
the (*) several numbered notes can be included, while this is not the case with
letters.

2) The notes which are not interpreted by the commentators as direct explana-
tions of Newton’s text, but which represent either clarifications, or additions
of the commentators are not indicated by a letter, but only by a number. The
series of numbers of the notes of kind 1) and of kind 2) is continuous, that is
the distinction among them depends only on the presence of the letter, rather
than on two di¤erent numerations.

3) Treatises inserted by the commentators to introduce the general problems
dealt with in Newton’s text. For example: a) at the beginning of the third
volume, the commentators add a treatise on the essential elements of posi-
tional astronomy (Newton [1726] [1739–1742], 1822, III, pp. IX–XXXVI); b)
at the beginning of the fourth volume a brief treatise (Ivi, pp. III–VI) is added
as an introduction to Newton’s lunar theory.

4) Treatises of other authors who developed and made more perfect theories
whose first detailed explanation was due to Newton. These treatises are
three and concern the tides theory. They are inserted in the final part
of the fourth volume. They are: a) Daniel Bernoulli: Sur le Flux et Reflux
de la Mer, 1740 (Bernoulli, 1740, IV, pp. 101–207); b) Colin McLaurin:
De causa physica fluxus et refluxus maris, 1740 (Ivi, pp. 209–245); c) Leon-
hard Euler: Inquisitio physica in causam fluxus ac refluxus maris, 1740 (Ivi,
pp. 247–341). These works had won the praise of the Académie Royale des
Sciences.
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Figure 2. Examples of notes (Newton, [1726] [1739–1742], 1822), I, p. 18).
These notes concern the corollary I of the motion laws regarding the decompositions of
forces. See the indications (b) and (c) in Newton’s text, to which the notes (b) 33 and (c)
34 correspond. The notes 35, 36, 37, 38, 39 are not preceded by a letter because they are
not directly referred to Newton’s text. We have chosen this page because it also gets an
interesting particular: the note 36 is not indicated. The numeration passes from 35 to 37,
but it is clear that such a note should begin at the first paragraph of the second column.
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The numbered notes are 561 in the first volume; 333 in the second volume; 109
in the third volume; in the fourth volume, the numeration continues—as the
two volumes present the third book of the Principia—and reaches the number
174. Therefore, the notes, which belong exclusively to the fourth volume,
should be 65. However, because of a print mistake, from the note 117 we
reach the note 122, thence the four notes 118–121 are missing. This reduces
the number of notes to 61. This is the impressive typographical structure of
the JE.

From a conceptual point of view, apart from the treatises in 3) and 4)
which can be logically classified, the description and classification of the notes
is still more di‰cult than from a typographical standpoint (Bussotti and Pisano,
2014).

In principle, the notes can be conceptually divided into three categories:

1) Notes that represent a direct explanation of Newton’s text. These notes can
have di¤erent length and importance for the understanding of Newton’s
work. There are some brief notes, which are not very useful because the com-
mentators, in their desire to clarify every single step of Newton’s reasoning,
comment on passages, which are clear in Newton’s version, too. Nevertheless,
in general these notes are extremely useful because often they complete the
di‰cult geometrical demonstrations of which Newton had not given every
detail and, as a second step, often propose a version of the proofs transformed
into analytical terms. Often works by other physicists are used in this second
phase;

2) Notes, which expound mathematical or physical results, which the commen-
tators judge necessary in order to understand the development of Newton’s
argumentations. In some cases these notes, which are always useful, have the
size of treatises;

3) Notes where results deriving from Newton’s work, but not existing in the
Principia, are deduced. In these cases, too, there are some brief notes, which
are simple corollaries to Newton’s propositions, whereas others contain
results, which are profound development of the physics expounded in the
Principia. In many cases these results are not due to the commentators but to
the most important physicists who continued and developed Newton’s work.
The commentators mention them. In the following, we report some main
examples drawn from the four volumes.

4. Example of a significant intervention of the commentators

The detailed presentation of the most significant interventions by the com-
mentators is the main reason that induced us to carry out the research whose
bases will be explained in the conclusion of this paper. Because of the ingent
number of notes in the JE, it is impossible to give a precise idea in a paper.
We have previously expounded (Bussotti and Pisano, 2014) and commented three
cases—belonging to di¤erent categories of notes—of particularly remarkable
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Table 1. Volume I containing the first book of the Principia. Six example are given.

1) Notes to the Scholion of the Axiomata sive leges motus (Newton [1726]
[1739–1742], 1822, I, pp. 33–35). The notes 83, 84 and 85 are extremely
significant because the commentators develop concepts and ways of reasoning,
which are fundamental in the Principia and apply them to results that are direct
consequences of Newton’s work. The remarkable aspect is that the commentators
show in a clear manner which is the conceptual basis of Newton’s infinitesimal
geometry. In particular, they highlight how it is possible to reach the concept of
(potential) infinitesimals of di¤erent orders in a geometrical manner. This is clear
in the note 83 where it is proved that: ‘‘If a body moves in an immobile curve, the
force with which the body presses the curve, compared with the finite force that
causes the movement of the body on the curve, is not bigger than an infinitesimal
quantity of the first order; the force or the velocity that the body misses in every
single point of the curve is not greater than an infinitesimal quantity of the second
order [. . .]’’ [out italics].

2) Notes 213–216, pp. 81–82. These notes, which are proposed as a Scholium to
the initial six propositions of the second section of the first book, are important
for one of the subject we have deal with in the paper: the transcription into
analytical terms of Newton’s geometrical procedures. For, the commentators
write: ‘‘Through the previous propositions, Newton opened the road towards
the theory of central forces and provided elegant formulas in the propositions
and in the corollaries. Afterwards, by means of the analysis and of the method
of fluxions, many of the most illustrious geometers [at that time this word meant
mathematicians], obtained a plurality of results’’. [p. 81, beginning of note 213].
The analytical transcriptions of Newton’s results and new results by Varignon,
Johannes Bernoulli, Hermann and Keill are expounded.

3) Note 224, pp. 86–103. This is one of the most important and surprising notes of
the whole edition because it is a real treatise on the properties of the conic sections
used by Newton. This long insertion is fundamental to catch every detail of many
Newton’s demonstrations because Newton often used formulas as ‘‘this follows
from Conics’’. For an expert reader, too, the comprehension of the property to
which Newton is referring is often di‰cult as well as the discovery of Newton’s
specific source (in general propositions by Apollonius (ca. 262 BC–ca. 190 BC),
sometimes Philippe de la Hire (1640–1718)). The methodological aspect of
the note is as relevant as the conceptual one since the properties of the conics
are demonstrated through geometrical reasoning, but the explicit resort to
trigonometry and to the use of limits is not missing. Therefore, this is a precious
document of a manner to develop the mathematical reasoning which was typical
of the 17th and beginning of the 18th century. This treatise is accurate from the
philological point of view, too, because the commentators mention every single
proposition by Apollonius’ they are demonstrating in a manner di¤erent from
Apollonius’.

4) Note 268 to the proposition XIII, Cor. 1, pp. 123–125. It is important from a
historical point of view because the direct, but more remarkably, the famous
inverse problem of the central forces is dealt with and solved, that is: given the
inverse square law and the initial velocity, prove that the trajectory is a conic
section in which the centre of the forces is in one of the foci. Newton spoke of this
problem in the Cor. 1 to proposition XIII, but giving unsatisfactory explanations.
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interventions of the commentators19. Here we present a further one, since we are
convinced that every work concerning a general presentation of a research has to
be, at least in part, based upon concrete examples on how the authors intend to
proceed in their work.

Table 1 (Continued)

However, he solved the problem geometrically, in general terms, in the proposition
I, XLI (pp. 245–255). The historiography debates whether Newton had an
analytical demonstration of the inverse problem is still present nowadays. It is
however almost sure that he had18.

5) Notes 365–390, pp. 209–225. These notes concern the VI section, proposition
XXXI and subsequent Scholium. Here Newton deals with a problem, which is
fundamental in astronomy: given an elliptic orbit and the time, find the position
of the body which moves on such ellipsis. Newton provides two solutions: in the
proposition, he uses the trochoid and in the Scholium, given the di‰culty to trace
such a curve, he uses methods of approximations. The commentators explain these
methods more clearly than Newton did, also resorting to and expounding results
by de l’Hôpital (1661–1704), Seth Ward (1617–1689), Ismael Boulliau (1605–
1694), Giovanni Domenico Cassini (1625–1712), David Gregory (1659–1708),
John Keill (1671–1721).

6) Until now, we have expounded notes that are fundamental contributions to the
understanding of the Principia and, more in general, to physical and mathematical
methodology. Here we wish to present notes of a di¤erent kind, that in any case,
have to highlighted to understand the entire character of the JE: the notes that
are almost useless because they explain what is already clear in Newton’s text.
One of the most important and complex part of the Principia is represented by
the proposition 66 and by its 22 corollaries, pp. 324–352. Here Newton deals with
some aspects of the three bodies problem. The argumentations by Newton, almost
completely lacking of any mathematical symbols, are fascinating and extremely
di‰cult. The commentators add some quite useful notes. However, the note
511 begins with a lemma, p. 341 in which the commentators prove that in an

arithmetical progression of three quantities a, aþ b, aþ 2b it is
aþ b

a
>

aþ 2b

aþ b
.

This is obvious and no mathematician ignored this property. Nevertheless, the
commentators prove it. The notes (b) and (c), pp. 344–345, written by Calandrini
inside note 512, are referred to the corollary 15 and, for once, make more
complicated what in Newton is di‰cult but clear.

18 In a letter to David Gregory, Newton communicated the transcription of this problem into
analytical terms (Guicciardini 2011, p. 160).

19The three-example concern: 1) The proposition VI of the I book (Newton [1726] [1739–1742],
1822, I, pp. 79–82); 2) a theorem on hyperbola, inside the commentators’ treatise on conic sections

(Newton [1726] [1739–1742], 1822, I, pp. 86–102); 3) Newton’s lemma XXVIII of the I book
(Newton [1726] [1739–1742], 1822, I, pp. 203–206).

427newton’s philosophiae naturalis principia mathematica ‘‘jesuit’’ edition



Table 2. Volume II containing the second book of the Principia. Three examples are
given.

1) The book begins with Calandrini’s treatise (asterisk) concerning the general
concepts on the motion in resistant means. The treatise, pp. 1–12, is divided into
49 sections, which include lemmas, theorems and corollaries. From a conceptual
point of view, we can identify three parts: in the first one, titled generales
resistentiae notiones exponens, Calandrini expounds introductory notions useful to
understand Newton’s procedures as well as results due to Varignon, Johannes
Bernoulli, Hermann and Euler. This part forms the sections 1–31. The second
part, sections 32–46, deals with a long series of properties of the logarithmic
function, which are fundamental for the subjects dealt with in the II book of the
Principia. The final sections 47–49 consists of a series of brief considerations on
the maxima and minima.

2) In the proposition IV of section I and in the seven subsequent corollaries,
pp. 21–31, Newton analyses the motion of a projectile under the action of gravity,
in the hypothesis that the resistance of the air is proportional to the velocity.
All the passages by means of which Newton constructs the figures in the text
and develops his reasoning are punctually explained by the commentators
(notes 53–66). However, the most important contribution concerns the notes to
Newton’s Scholium (notes 67–77, pp. 31–36). Here the commentators: a) clarify
how, given the equation of a curve, it is possible to construct the curve exploiting
the logarithmic function (notes 68–71) (the technique of Varignon and Hermann is
referred as well as a letter by Newton to Oldenburg (1618–1677) in 1676, note 68);
b) deal with the problem of the angulum elevationis, that is how the trajectory of a
projectile varies in function of the angle with which the projectile is shot and of its
initial velocity (notes 72–74); c) show how a regular curve passing through a series
of given points can be described. This problem is di‰cult and, in general, if the
kind of curve is not specified, it can be solved by approximation with convergent
series. The commentators remind the reader (note 75) that Newton dealt with
this problem in his Arithmetica Universalis, providing the method, but not
the demonstrations. The long following notes (76, 77) concern this question,
also exploiting some results due to Hermann, Craig (died 1620) and Stirling
(1692–1770).

3) In the section IV, Newton deals with the circular motion in resistant means. In
this context, the fundamental curve is the logarithmic spiral. Calandrini poses two
pages where he describes all the properties of this curve necessary to understand
Newton’s reasoning. The commentator writes explicitly: ‘‘In this section, Newton
supposes some properties which are typical of the logarithmic spiral, the care
of our duty demands hence that we highlight something concerning that curve’’
(p. 110, lines 1–4. Our translation). Despite this contribution is far shorter than
that on the conic sections in the first book, the aims are the same: to introduce
the reader into the mathematical properties used, but non-explained, by Newton.
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Table 3. Volume III, containing the first 24 propositions of the third book of the Principia
and the three treatises on the tides by Daniel Bernoulli, McLaurin and Euler. Two exam-
ples are given.

1) The proposition VI of the third book is a fundamental step towards the universal
gravitation law because here Newton proves that the gravity acts as the product
of the masses. Literally the proposition sounds like this: ‘‘That all bodies gravitate
towards every planet; and that the Weights of the bodies towards any the same
Planet, at equal distances from the centre of the Planet, are proportional to the
quantity of matter which they severally contain’’. (Translation drawn from
Newton 1729, II–III, p. 220). In the fifth corollary Newton briefly clarifies the
di¤erences between gravity and magnetism. Calandrini, in the note 66, writes the
four-pages subnote (b)* (pp. 29–32) where he refers a series of experiments and
conclusions by Muschenbroek (1692–1761) and Winston (1667–1752) on the
terrestrial magnetism. With regard to Muschenbroek, Calandrini refers to the work
Dissertatio de magnete, where, after various experiments, the author concludes
that the magnetic attraction between two bodies decreases with a proportion
which is far inferior than the cube of the distance (end of p. 29—begin of p. 30).
On the other hand, Winston in De acus magneticae inclinatione deduces, from
his experiments, that the magnetic force decreases as the cube of the distance
and Muschenbroek himself finally appearently concluded that the magnetic force
decreases as the fourth power of the distance (p. 30, first column, beginning of the
second paragraph). On the basis of these experiments and calculations, Calandrini
formulated the conjecture that the magnetic force decreases almost as the cube of
the distance. He wrote: ‘‘From the previous [experiments and calculations], I think
it is proved with a su‰cient certainty that the magnetic force decreases almost as
the cube of the distance from the magnet, at least according to what can be
ascertained from those rather rough observations’’.

2) Two interesting notes are the 72 and 73 (pp. 47 and 48): Newton, in the corollary
two of proposition XIV, claimed that the parallax due to the annual motion of
the earth is insensitive. Calandrini, in these notes dealt with the parallax–problem
and expounded an attempt ideated by Huygens to calculate the ratios of the
distances between the Sun and the fixed stars based on supposed parallaxes. In
particular, Calandrini refers that Huygens considered Sirius, the brightest star
after the Sun. He hypothesized that Sirius is as big as the Sun and supposed a
given parallax. Under these conditions, Huygens calculated the distance Sun-Sirius
and Earth—Sirius as a function of the distance Earth-Sun.
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Table 4. Volume IV containing the propositions XXV–XLII of the third book of the
Principia and the General scholium. Two examples are given.

1) Newton, in the proposition XXVI, poses and solves the problem to find the hour–
increment of the area described by the moon in its revolution around the earth.
The geometrical proofs given by Newton need a series of complicated calculations
described in their general lines by Newton. Calandrini explains all calculations in
details and adds a further problem: given the hypotheses of the proposition
XXXVI, explain the reasoning according to which the momenta of the considered
area are described. The problem is hence to find the infinitesimal variation of the
areas. The methodology used by Calandrini is instructive because he develops his
reasoning in a geometrical manner, namely in Newton’s style, but at the same
time, when he has to consider the infinitesimal quantities—that he calls, with
a term which is used nowadays, too, elements (elementa)—he provides a
transcription into analytical terms. In a sense this method is between the
infinitesimal geometry by Newton and a merely analytical approach. The note
in which all these questions are dealt with is the 110 indicated as 110 (a)* (here the
number preceeds the letter and the asterisk) and it is extended from page 4 to page
10. As the note is a commentary to Newton’s text, the subnotes are indicated with
the series of letters (a)*–(x)*.

2) Maybe the most surprising insertion of the commentators is a 32 pages treatise
which begins at p. 64 and finishes at p. 95. Here the concepts and the results
known at that time with regard to the lunar theory are reported. The reader can
get a complete understanding of Newton’s methods and its transcription into
analytical terms. The first part of the treatise (pp. 64–73) is titled: De incremento
motus medii Lunae, et eius aequatione annua, ex Solis actione pendentibus, primum
hypothesi orbem Lunae esse circularem, postea in hypothesi orbem Lunae esse
ellipticum. Denique in orbe lunari ad eclipticam inclinato. (On the increment of
the average motion of the moon, and on its annual equation, depending on sun
action, at the beginning in the hypothesis that Lunar path is circular, then elliptic.
Finally in the hypothesis that lunar path is inclined on the ecliptic). This part is
composed of 2 lemmas, 7 theorems and 5 problems. The second part (pp. 73–83)
is titled De incremento motus medii Lunae, et eius aequatione ex Solis actione
pendentibus, in hypothesi eum orbem esse ellipticum, methodo diversa ad quae in
calculo precedente fuit adhibita (On the increment of the average motion of the
moon, its equation, depending on sun action, in the hypothesis that Lunar path
is elliptic, proved through a di¤erent method than that used in the previous
calculation). This part consists of 8 theorems, 2 lemmas and 6 problems. The third
part (pp. 83–85) is titled De aequatione motus lunari semestri secunda quae pendet
ex positione lineae nodorum, respectu lineae syzygiarum (On the equation of the
six-monthly lunar motion as far as it depends on the position of nods-line with
respect to the syzigies-line). It is composed of 3 problems. The fourth part
(pp. 85–89) deals with a partially di¤erent subject, for it is titled De motu
apsidum (On the motion of apses). It is composed of two problems and concerns
the recent method to determine such a motion. While the fifth part (pp. 89–91),
De motu apsidorum secundum Newtoni methodo (On the motion of the apses
according to Newton’s method), is, as the title itself confirms, an explanation
of Newton’s method. It is divided into 2 lemmas and 2 theorems. Finally the last
part (pp. 91–95), De excentricitate orbitae lunaris (On the eccentricity of lunar
orbit) is divided into one theorem and 2 problems.
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In the first book, section VIII, proposition XLI Newton solves, in general and
geometrical terms, the fundamental inverse problem of the central forces. The
proposition sounds like this:

Supposing a centripetal force of any kind, and granting the quadratures of curvilinear figures, it
is requires to find, as well the trajectories in which bodies will move, as the times of their motions

in the trajectories found.20

The method used by Newton is based on his typical resort to the infinitesimals
inside geometry. The commentators add many details, which are important to
understand Newton’s procedure, in the notes 417–419 (pp. 245–248). In the
notes 420–422 (Newton [1726] [1739–1742], 1822, I, pp. 248–249) they give a
general idea of the way how Newton’s method can be transcribed into analytical
terms and extended21. Now we will follow Newton’s demonstration and the in-
terventions of the commentators, because this is a paradigmatic case of their
approach.

Newton bases his argumentation on an analytical method. Here the word
analytical has to be interpreted in the classical geometrical sense, that is, Newton
supposes that the problem is solved, finds some relations among the figures, and
at the end, shows, that, according to the found relations, the figure that one
supposes as already constructed can be really constructed with the initial data of
the problem. We will divide our discussion into two parts: in the former one, the
analytical phase of Newton reasoning will be expounded, in the latter the conse-
quent constructive phase. In both phases, we will divide our presentation into
two subparts: NEWTON (what Newton did); COMMENTATORS (what com-
mentators added). In the section NEWTON we will indicate like this (A), (B),
(C), . . . the points in which the commentators make an intervention and we will
repeat the same symbol in the section COMMENTATORS so the reader can
easily follow. Some interventions of ours will be added if it is necessary to clarify
the concepts and the procedures.

4.1. Analytical Part of the Proof

NEWTON: Let C (see Fig. 3 and Fig. 4) be the centre of the forces and let us
suppose (analytical hypothesis) that VIKk is the trajectory. Let us describe, with
centre C and radius CV the circle VR. With the same centre and arbitrary radius,
let the two circles ID and KE be described, which cut the trajectory in I and K
and the straight line CV in D and E. Let the straight line CNIX be traced cutting

20The proposition and relative notes are in volume I (Newton [1726] [1739–1742], 1822,

pp. 245–247). Translation drawn from Newton [1713] 1729, I, p. 171. This proposition is the same

in all three editions.
21The problem is that the step from the general and correct solution provided by Newton to the

transcription of the data into analytical terms—so to get a di¤erential equation—for central forces
that act as a specified function of distance is complicated. From a geometrical point of view, to solve

the problem in a specific case means to determine the kind of utilized curves, whereas in the general
case, the kind is not specified.

431newton’s philosophiae naturalis principia mathematica ‘‘jesuit’’ edition



T
a
b
le

5
.
B
o
o
k
I,
S
ec
ti
o
n
V
II
I,
P
ro
p
o
si
ti
o
n
X
L
I.

F
ig
u
re

3
.
P
ro
p
o
si
ti
o
n
X
L
I:

b
eg
in
n
in
g
o
f
th
e
d
em

o
n
st
ra
ti
o
n

(N
ew

to
n
[1
7
2
6
]
[1
7
3
9
–
1
7
4
2
],
1
8
2
2
,
I
p
.
2
4
5
.
N
ew

to
n
’s
te
x
t
is

w
ri
tt
en

in
a
b
ig
g
er

ch
a
ra
ct
er
.

F
ig
u
re

4
.
P
ro
se
cu
ti
o
n
o
f
th
e
p
ro
o
f.

432 p. bussotti and r. pisano



T
a
b
le

5
(C

o
n
ti
n
u
ed
)

F
ig
u
re

5
.
P
ro
se
cu
ti
o
n

o
f
th
e

p
ro
o
f.

T
h
e

a
n
a
ly
ti
ca
l
p
a
rt

fi
n
is
h
es

a
t
li
n
e
7
.

F
ig
u
re

6
.
C
o
m
m
en
ta
ri
es

to
p
ro
p
o
si
ti
o
n

X
L
I.

A
lm

o
st

th
e

w
h
o
le

p
a
g
e
is
w
ri
tt
en

b
y
th
e
co
m
m
en
ta
to
rs
.
N
ew

to
n
’s
te
x
t
is

re
le
g
a
te
d
to

th
e
fi
rs
t
tw

o
li
n
es
.

433newton’s philosophiae naturalis principia mathematica ‘‘jesuit’’ edition



the circles KE and VR in N and X, while the straight line CKY cuts the circle VR
in Y. Let the points I and K be reciprocally quite near (vicinissima in Latin. This
means that the line IK has to be thought as an infinitesimal evanescent, hence
potentially infinite, length). Let A be the point from which another body has to
fall, so that in D this body acquires the same velocity as the velocity of the first
body in I. Then, according to proposition XXXIX22 the lineola IK, described in a
given time as little as possible, will be as the velocity and hence as the straight line
whose square is equal to the surface ABFD. (A) The triangle ICK, proportional
to time will be given. Thence KN will be inversely proportional to the altitude IC.
This means that, given a quantity Q and indicated the altitude IC by A, KN is

as
Q

A
. Let us pose Z ¼ Q

A
and let us suppose that, in some cases

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
: Z ¼ IK : KNð1Þ

Then this property is valid in every case (B) (we underline this is an immediate
application of the proposition XL). This means that

ABFD : Z2 ¼ IK 2 : KN 2;ð2Þ

and, splitting the second member of ðIK 2 � KN 2Þ : IK 2 and applying Pytha-
goras’s theorem, we have IK 2 � KN 2 ¼ IN 2, so that:

(C)

ðABFD� Z2Þ : Z2 ¼ IN 2 : KN 2ð3Þ

So that ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

q
: Z

�
¼Q

A

�
¼ IN : KNð4Þ

Thus

A � KN ¼ Q � INffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABDF � Z2

pð5Þ

22 In the proposition XXXIX Newton solves the following problem: ‘‘Supposing a centripetal
force of any kind, and granting the quadrature of curvilinear figures; it is required to find the velocity

of a body, ascending or descending in a right line, in the several places through which it passes; as
also the time in which it will arrive at any place; And vice versa’’. (Newton [1713] 1729, p. 163). If

(see Fig. 3 and 4) AVDEC is the trajectory and EG is a perpendicular proportional to the centripetal

force in E and BLFG the line to which G belongs, then Newton proves that the velocity of the body
in any point F, constructed as G, is proportional to the line whose square is the curvilinear area

ABFD. More simply: the speed is proportional to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
. Therefore, it is maybe useful for the

reader to add that the lines AB, VL, DF, EG are proportional to the intensity of the centripetal force

in the points A, V, D, E. Afterwards, in this same proposition XXXIX Newton proves that the line
IK, described as in the proposition XLI, is proportional to the velocity.
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(D) Since

YX � XC : A � KN ¼ CX 2 : A2ð6Þ

Finally it will be

XY � XC ¼ Q � IN � CX 2

A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABDF � Z2Þ

pð7Þ

Here the analytical phase of the reasoning, which depends of the supposition that
VIKk is the trajectory, ends and the constructive phase begins where the funda-
mental role is played by the fact that some sizes, strictly connected to the quantity

Q � IN � CX 2

A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABDF � Z2Þ

p ;

whose expression has been obtained supposing the trajectory is known, can be
constructed independently of the trajectory.

COMMENTATORS: In this first phase of Newton’s demonstration there
are five brief notes; four of them—as indicated in the previous section—are
direct annotations to Newton’s text, whereas the longest one, numbered as 418,
provides a property useful to understand more clearly a part of the whole reason-
ing. Let us analyse them.

Note 417 (p)*, p. 246, see Fig. 3. Note that we have indicated by (A). This is a
very brief annotation in which it is explained that the triangle IKC is proportional
to the time both because of the Proposition 1 and because of the fact that in this
infinitesimal triangle, KN can be considered the basis referred to the altitude IC.
Since the very brief (infinitesimal) time is given, KN � IC is constant and hence, as
Newton claims, KN is inversely proportional to IC.

Here we think a consideration—not developed by the commentators—is
necessary: based on Newton’s language, one could get the impression that he is
referring to an actual infinitesimal time because he speaks of a given time. This
is not the case: Newton imagines a finite given time so brief that—without detect-
able mistakes for the physical results he is looking for—the lines IK and KN can
be considered as straight lines and KN can be considered perpendicular to IC.
Certainly we could call this time as potential infinitesimal time, which is correct,
but this general category can perhaps hide the fact that the time is given and that,
for a given time, the quantity KN � IC is constant.

Note 417 (q)*, p. 246, see Fig. 3. Note that we have indicated by (B). This
note is brief, but significant enough because the commentators explain why, ifffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
: Z ¼ IK : KN in one case, this proportion is true in every case. This

depends on two facts: 1) as explained by Newton, the lineola IK is always
as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
; 2) KN is always inversely proportional to IC ¼ A, hence it is as

Z ¼ Q

A
. From 1) and 2) the thesis follows immediately. These kinds of notes,

although they do not add fundamental explanations, make it easier the com-
prehension of the text avoiding to interrupt the reading and to concentrate on
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not di‰cult missing passages which, however, need a brief reasoning to be
fully justified.

Note 418, pp. 246–247, see Fig. 4 and Fig. 5. This note is an integration
to Newton’s text because the commentators explain how the quantity Q can be
determined.

The reasoning runs like this: let VL (Fig. 8) and EG be perpendicular to AC,
QV be tangent to the trajectory in V and CV perpendicular to it in Q, qI be the
tangent to the trajectory in I and Cq its perpendicular, then it holds:

CQ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABLV

p
¼ Cq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
¼ Constantð8Þ

For, according to the Corollary 1, prop. I, given a central force and the trajectory
of a body, the velocity of the body in every point P is inversely proportional to
the perpendicular drawn to the tangent in P. In the point V—according to what
seen in the proposition—the velocity is equal to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABLV

p
and, for the above-

mentioned corollary, it is inversely proportional to CQ. This means exactly that
CQ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABLV

p
is constant. The reasoning is independent of the chosen point. This

proves the assertion. Once assumed Q ¼ CQ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABLV

p
, the commentators easily

prove that

IK : KN ¼ IC : Cq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABFD

p
: Zð9Þ

(see 2)).

Table 6. Book I, Section VIII, Proposition XLI. Particular useful to follow the ex-
pounded reasoning.

Figure 7. Newton’s text: particular of p. 246 Figure 8. Note 418: particular of
page 246
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The notes 418 (r) (we have referred as C)) and 418 (s)* (we have referred as D))
are very brief interventions that add nothing to Newton’s text, therefore we will
not consider them.

4.2. Constructive Part of the Proof

NEWTON: the constructive part (see Fig. 7) of the proof begins with the funda-
mental constructive step 10) because Newton claims that:

1) if the two quantities Db and Dc are constructed on the perpendicular DF so
that:

Db ¼ Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

p ;

Dc ¼ Q � CX 2

2A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

p
ð10Þ

2) If the curved lines ab, ac, to which the points b and c belong, are described;
3) If the perpendicular Va to AC is drawn from V, that cuts the curvilinear areas

Vdba and Vdca;
4) If the ordinates Ex and Ex are drawn,

one has:

I) The infinitesimal quantity Db � IN, which is equal to DbzE, is equal to
1

2
A � KN or to the

triangle ICK23.

II) The infinitesimal quantity Dc � IN, which is equal to DcxE, is equal to
1

2
YX � XC or to the

triangle XCY (same reasoning as I).

Therefore, Newton continues, this means that the nascent particles DbzE and
ICK of the areas VDba and VIC are always equal and therefore the areas them-
selves are equal. Thus, since the area VIC is proportional to time, the area VDba
is proportional, too. Analogously, one concludes that the areas VDca and VCX
are equal because of the equality of their respective nascent particles DcxE and
XCY. Therefore the area VDba is proportional to the time and represents the
time, this means that (A) for any given time, it is possible to construct the area
VDba. Therefore, the altitude of the body CI or CD is given, too, as well as the
area VDca and the sector VCX with its angle VCI; but, given the altitude and the
angle, the point I of trajectory can be drawn. This concludes the reasoning.

COMMENTATORS: The commentators make four interventions, the one we
have indicated by (A), is the note 419 and it explains in details the final part of

23We underline: 1) the quantity DB � IN is infinitesimal because of the infinitesimal lineola IN; 2)

Db � IN ¼ DbzE because the mixtilineal infinitesimal quadrilater DbzE can be considered a rectangle

with dimensions Db ¼ Ez and DE ¼ IN ¼ bz; 3) Db � IN ¼ 1

2
A � KN since Db ¼ Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

p
by construction and in consequence of relation (5).
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the proof from our (A) to the end. However, we think that the most significant
note, in this context, is the note 420 where the commentators clearly explain
that the fundamental constructive step (identity (10)) is legitimate, that is no
datum deriving from the trajectory one has to construct is exploited. The notes
421 and 422 are an extension of Newton’s result.

We will analyse in details the note 420 (p. 248) where the commentators clar-
ify that Newton’s constructive step is legitimate. They explain things resorting
to algebra, so that, if (Fig. 7) one poses IC ¼ CD ¼ x and given VC ¼ a, it will

be VD ¼ a� x and Z ¼ Q

x
. Given the quadrature of curvilinear figures, the area

ABDF can be expressed through the given quantities AV and VC and through

the variable x. This means that the two quantities Db ¼ Q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

p ;

Dc ¼ Q � CX 2

2A2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðABFD� Z2Þ

p can also be expressed as functions of the constant a

and of the variable x. Consequently, the equations of the curves ab and ac can
be obtained as functions of constant quantities and of the variables CD and
respectively Db or Dc. Therefore, the equations of the two curves can be written
and the curves traced. Furthermore, since the sector VCX is equal to the area

VDca, for the arch VX, it holds VX ¼ 2VDca

CV
, so both the angle VCX and the

point I of the trajectory can be found24.
This brief explanation is fundamental and introduces us into a series of con-

siderations concerning the links between synthetic geometry and analytical geom-
etry which is rather interesting but to which we can only outline in this context:
the reasoning by Newton is geometrical and the infinitesimal methods are used
in the way we have more than once underlined. However the transcription of
the geometrical properties into an algebraic form by posing a variable or a series
of variables can—not always, but in many cases—guide to a geometrical con-
struction far easier than a construction obtained only through synthetically
means a là Euclide or a là Apollonius. This is the more truthful the more the
curves are of high degree of irrational. On the other hand, it is implicit in the
classical Greek analytical procedures that a certain quantity has to be considered
as a variable, but treated as a known quantity. The development of analytical ge-
ometry is exactly the development of this technique, which was already present—
in nuce—in the Greek geometry, especially in Apollonius.

In note 419, posed in the place we have indicated by (A), the commentators
explain how, given the time, and knowing that the area VDba is proportional to
the time, it is possible to find the value of such an area. In substance, the proof is
based on an application of Proposition I of the Principia.

24For a very interesting transcription into complete analytical terms of Newton’s proof by
resorting to a modern use of calculus, see Wright 1833, pp. 224–226. The examples following the

theoretical treatment are as significant as the treatment itself. Here we do not have room to enter
into Wright’s works.
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Note 421 is a brief Scholium in which the commentators show how to describe
the trajectory under conditions, which are slightly weaker than those posed by
Newton.

Note 422 analyses when the trajectory is rational and when the area of the
circular sector equal to VDca can be found through finite equations. At the
end of this not long—but interesting—annotation, the commentators remind
the reader that Hermann in the Phoronomia; I, Prop. XXV solved the elegant
and di‰cult problem to find a general canon in order to determine the variable
gravity for every algebraic curve in infinitum under the condition that the canon
has to be expressed by means of finite quantities.

We have chosen this proposition by Newton and the relative notes because:

1) The importance of the proposition;
2) it is paradigmatic of Newton’s way of reasoning and proceeding, based on his

particular use of infinitesimal methods inside a geometrical argumentation;
3) The notes are paradigmatic of the commentators’ way of working. They give

explanations strictly tied to Newton’s text, but also supply more general con-
siderations connected to the development of physics;

4) The notes are significant for the history of mathematics. They are typical of a
period in which calculus was more advanced than in Newton’s time, but still
far from a modern form. A comparison with the mentioned pages of Wright’s
commentary is meaningful;

5) The note 419 induces to reflect not only on the use—or lack of use—of the
calculus in Newton, but also on the general concept of analyticity in Greek
geometry, in analytical geometry, in Newton, in the commentators and, last
but not the least, in the calculus.

6) Newton provided a general method and in the corollary 3 to this proposition,
he considered the particular case of a force acting as the inverse of the cube-
distance. However, he did not transcribe its results into analytical terms,
which is, of course, important to solve specific problems. Based on what
Newton wrote to Gregory we are convinced he knew such methods. To ask
why he did not use them in the Principia is a fundamental historical question,
but goes far beyond the purposes of this paper.

5. Final remarks

In this paper, the most important (Bussotti and Pisano 2014) characteristics of the
JE have been traced and some examples of how the commentators carried out
their huge work have been provided. We have also tried to highlight the meaning
of this edition inside physics and mathematics in the late 17th and in the 18th
centuries.

Finally we wish to propose a series of research-lines connected to the Jesuit
Edition: we have expounded a conceptual map of the notes and of the interven-
tions in the tables 1–4, revealing that many di¤erences can be detected among
these notes. A first line of research should concern the scientific personalities
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of the authors in order to understand why they decided to organize the whole
notes-apparatus in the manner we can read. A second line of research is related
to the policy of science: who conceived and who financed such a huge enterprise?
What were the reasons behind this choice? In what measure the trying to spread
Newton’s physics on the continent played a role? For, it is necessary to remember
that Cartesian physics was still alive in the 30s of the 18th century. A third
research-line concerns the way in which mathematics and physics changed in the
first 40 years of the 18th century, till the point that Newtonian physics, written in
Newtonian style, was becoming so di‰cult to be understood that a profound
commentary was needed. It is worth underlining that the Jesuit Edition did not
seem written with educative or popular aims: the notes are too specific, too
long, too detailed to embrace such hypothesis. It seems written for specialists
who wished to understand Newtonian physics by means of Newton’s geometrical
methods, which were almost disappearing. A fourth research-line is exactly con-
nected to the previous one: who should have been the readers of the JE? As told,
our hypothesis, our supposition is that they should be experts, but a research is
necessary to reach the correct answer.

As all the significant scientific works, the JE open hence a series of questions.
We are going to find—at least—some answers in our future researches on this
edition of Newton’s Principia.
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