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Abstract. — We study the Dirichlet problem for a p-Laplacian type operator in the setting

of the Orlicz–Zygmund space Lq log�a LðW;RNÞ, q > 1 and a > 0. More precisely, our aim is to
establish under which assuptions on a > 0 existence and uniqueness of the solution are assured.
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1. Introduction

Let W be a bounded Lipschitz domain of RN , Nb 2. We consider the Dirichlet
problem

divAðx;‘uÞ ¼ div f in W;

u ¼ 0 on qW;

�
ð1:1Þ

where A : W� RN ! RN is a Carathéodory vector field satisfying the following
conditions for a.e. x a W and all x; h a RN

Aðx; 0Þ ¼ 0ð1:2Þ

3Aðx; xÞ �Aðx; hÞ; x� h4b ajx� hj2ðjxj þ jhjÞ p�2ð1:3Þ

jAðx; xÞ �Aðx; hÞja bjx� hjðjxj þ jhjÞ p�2ð1:4Þ

where p > 1, 0 < aa b.
Let f ¼ ð f 1; f 2; . . . ; f NÞ be a vector field of class LsðW;RNÞ, 1a sa q

where q is the conjugate exponent to p, i.e. pq ¼ pþ q.

Definition 1.1. A function u a W
1;r
0 ðWÞ, maxf1; p� 1ga ra p, is a solution

of (1.1) if

Z
W

3Aðx;‘uÞ;‘j4 dx ¼
Z
W

3 f ;‘j4 dx;ð1:5Þ

for every j a Cl
0 ðWÞ.



By a routine argument, if sb r=ðp� 1Þ, it can be seen that the identity (1.5)
still holds for functions j a W1; r

r�pþ1ðWÞ with compact support. We shall refer to
a solution in the sense of Definition 1.1 as a distributional solution or (as some
people say) as a very weak solution [15, 17].

We point out that, if r < p, such a solution may have infinite energy, i.e.
j‘uj B L pðWÞ. The existence of a solution u a W1;1

0 ðWÞ to problem (1.1) is ob-
tained in [5] when div f belongs to L1ðWÞ. It is well known that the uniqueness
of solutions to (1.1) in the sense of Definition 1.1 generally fails [20, 1]. At the
present time the problem remains unclear, unless for p ¼ 2 [4, 11]. In this case
the range of exponents r allowing for a comprehensive theory is known, see
[2, 16]. In the general case, uniqueness is proved in the setting of the grand
Sobolev space (see [12] and also [10]). See also [8] for the case p ¼ N.

We present existence and uniqueness results for problem (1.1) assuming that
the datum f lies in the Orlicz–Zygmund space Lq log�a LðW;RNÞ, a > 0. More
precisely, we establish under which assuptions on the parameter a > 0 we can
define a continuous operator

H : Lq log�a LðW;RNÞ ! L p log�a LðW;RNÞð1:6Þ

which carries a given vector field f into the gradient field ‘u. For embedding
theorems for functions with gradient in Zygmund spaces, see [13].

In the case aa 0, in the literature there are several results on the continuity of
the operator defined in (1.6) [18, 6, 14]. Moreover, as a consequence of the results
in [11] and [4] (see also [7]) and the interpolation theorem of [3], when p ¼ 2 the
operator H is Lipschitz continuous for any �l < a < l. Actually, for p ¼ 2
and suitable a > 0, the existence for problem (1.1) is also ensured for not uni-
formly elliptic equations [19].

Here we consider the case p di¤erent from 2. Our main results are the
following.

Theorem 1.1. Let 1 < p < l, pA 2. For each f a Lq log�a LðW;RNÞ, with
pq ¼ pþ q and 0 < aa

p

jp�2j , the problem (1.1) admits a unique solution

u : W ! R, such that ‘u a L p log�a LðW;RNÞ. There exists a constant C > 0,
C ¼ CðN; p; a; a; bÞ, such that the following estimate holds true

k‘uk p

L p log�a L
aCk f kq

Lq log�a L
ð1:7Þ

Moreover the operatorH is continuous.

Theorem 1.2. Let 1 < p < l, pA 2. There exists a constant C > 0,
C ¼ CðN; p; a; a; bÞ, such that, if f and g belong to Lq log�a LðW;RNÞ, with
pq ¼ pþ q and 0 < a <

p

jp�2j , then

kHf �Hgk p

L p log�a L
aCðk f � gkg

Lq log�a L
k j f j þ jgj k1�g

Lq log�a L
Þq;ð1:8Þ

where
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g ¼ 1� a
p� 2

p
if p > 2ð1:9Þ

g ¼ p

q

�
1� a

2� p

p

�
if 1 < p < 2ð1:10Þ

We point out that Theorem 1.1 improves the result of [12] in two di¤erent

directions. First of all, when 0 < a <
p

jp�2j , it gives higher integrability of the

solutions found in [12]. On the other hand, the case a ¼ p

jp�2j is not covered by
[12].

Since for a > 0 the solutions of our problem could have infinite energy, we
cannot use in the equations test functions whose gradient is proportional to
the gradient of the solution. In order to prove our results we construct suitable
test functions and we develop fine properties related to the norm in the Orlicz–
Zygmund spaces. Tipically, these spaces are equipped with the Luxemburg
norm that is not convenient in our setting. Then we introduce the quantity

k f kL q log�a L ¼
Z e0

0

ea�1k f kq
q�e de

� �1=q

which is a norm equivalent to the Luxemburg one.
For the proofs of our results see [9].
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