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ABSTRACT. — Some lower semicontinuity results are established for nonautonomous surface inte-
grals depending in a discontinuous way on the spatial variable. The proof of the semicontinuity
results is based on some suitable approximations from below with appropriate functionals.
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1. INTRODUCTION

In this paper new lower semicontinuity results are obtained for nonautonomous
surface integrals whose dependence on the spatial variable is discontinuous.
Surface energies of this type occur in free discontinuity problems, as in fracture
mechanics when one considers quasistatic evolution of stratified, heterogeneous
materials (see for instance [17], [18], [20] and [21]).

The surface energy usually admits the form

(1.1) @(u) = - Gu (x),ut (x), vy (x)dA N, ue SBV(Q;R™),

where Q is an open bounded subset of RY, SBV(Q;R™) is the space of the
vector valued special function of bounded variation, #V~! denotes the (N — 1)-
dimensional Hausdorff measure and ¢ is a jointly convex function, depending
on the traces of u on the jump set J, and its orientation v, (see [10] and [11]).
The proof of the lower semicontinuity of the surface integral @ is obtained by
considering some approximating functionals constructed by using the definition
of jointly convex function (see Def. 2.8) and by using for the approximating func-
tionals the chain rule formula for vector valued functions in BV (see Theorem
5.22in [13]).

However, in some context the energy can admit an explicit dependence on the
spatial variable x and the following form

(1.2) O(u) == - P(x,u(x),u’(x), v, (x)) da N1,

When this dependence is discontinuous, these functionals permit to describe the
case of heterogeneous and anisotropic materials (see [30]).
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In the paper [5] it is considered a nonautonomous surface energy of the type

O(u) = /Q ol (9. (9. v ) d A

where ¢ is jointly convex and a is a W ! function. Moreover, in the same paper it
is considered a surface energy of the type

D) = /Q () = (Ol ) d

where |[u™ — u~| is the difference of the trace of u on both sides of J,, v, is the
normal to the jump set J, and the function y depends on the material. The inte-
grand ¢(x,r, 1, &) = y(|r — t])p(x, &) is an example of jointly convex integrand in
(r,t,¢) (see Remark 3.3 for the assumptions on y and ¢). For ¢(x,&) =1 the
energy was proposed by Barenblatt in [14], while in [18], [20] and [30] the authors
consider the case where y(s) = 1 for every s > 0 and »(0) = 0. For the function
¢(-, &) it is required a BV dependence on x.

The purpose of this paper is to study the lower semicontinuity of (1.2) for gen-
eral nonautonomous jointly convex integrands. We will prove a lower semiconti-
nuity theorem for the functional (1.2), along sequences {u,} in SBV/(Q;R")
(p > 1) such that u,(x) — u(x) for almost every x € Q and |[Vu,||,, #N1(T,)
are uniformly bounded with respect to n € N.

The interest of the results presented here is that the function ¢ may possibly be
discontinuous with respect to x and it admits a general structure with respect to
the jointly convex integrands considered in [5]. The structural assumptions on
d(x,r,t,&) are a W1 or BV dependence on x and the joint convexity in the last
three variables; moreover some additional uniformity assumptions are required.

In order to prove the lower semicontinuity of the surface integral some
methods introduced previously in [5] are used here (see also [1], [2], [3], [4], [22],
[23] and [24]).

In Section 3 and 4 we present two independent approaches, by giving different
definitions of non autonomous jointly convex integrand and by using several
approximation techniques from below.

In Section 3 the lower semicontinuity result is obtained via the nonauto-
nomous chain rule formula (for vector valued BV functions, recently proven in
[12], or for scalar BV function, proven in [22]). An explicit approximation of
convex functions due to De Giorgi (see [25]), here adapted to jointly convex
functions, allows to verify the regularity assumptions and the uniformity condi-
tions of the approximating integrand and hence to apply the chain rule (see
Prop. 3.3 below).

In Section 4, we study a very general case of BV or W!! dependence on x.
Here the lower semicontinuity is obtained by approximating the integrand from
below by jointly convex functions lower semicontinuous in x uniformly with
respect to the other variables. In this context we need to require a strict positivity
assumption of the integrand.
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2. NOTATION AND PRELIMINARIES

2.1. Notation. Throughout the paper N > 1, m > 1 are fixed integers. Let Q be
a bounded open subset of R" with Lipschitz boundary. We denote by S¥~! the
unit sphere in RY. Let #" denote the Lebesgue measure on RY and # V! the
Hausdorff measure of dimension N —1 on RY.

Ifue Ll .(Q;R™) and x € Q, the precise representative of u at x is defined as
the unique value #(x) € R” such that

1
lim—/ u(y) —ua(x)|dy =0.
i [ ) iy

In this case u is said approximate continuous at x and #(x) is the so-called approx-
imate limit of u at x. The set of points in Q where the precise representative of x is
not defined is called the approximate singular set of u and denoted by S,.

Let u e Ll (Q;R™) and x € Q. We say that x is an approximate jump point

1
of u if there e(;icist a,b e R" and v e SV~!, such that a # b and

lim lu(y) —aldy =0 and lim |u(y) —bldy =0

P=0" S B (xw) P=0" JB, (x,v)

where B (x,v):={y € B)(x): {y — x,v) 2 0}. The triplet (a,b,v) is uniquely
determined by the previous formulas, up to a permutation of a, b and a change
of sign of v, and it is denoted by (u"(x),u (x),v,(x)). The Borel functions u™"
and u~ are called the upper and lower approximate limit of u at the point x € Q.
The set of approximate jump points of u is defined by

Jo={xeQ:ut(x) #u (x)}.

We recall that the space BV(Q; R™) of functions of bounded variation is defined as
the set of all u € L'(Q; R™) whose distributional gradient Du is a bounded Radon
measure on Q with values in the space M"Y of m x N matrices.

We recall the usual decomposition

Du=vVu?" + Du+ " —u ) @v, "L J,

where Vu is the Radon-Nikodym derivative of Du with respect to the Lebesgue
measure and D€u is the Cantor part of Du. For the sake of simplicity, we denote
by D'u= DU+ (u" —u") @ v, AN J,.

We recall that the space SBV(Q; R™) of special functions of bounded variation
is defined as the set of all u € BV(Q; R™) such that D*u is concentrated on S,;
i.e., [Dul(Q\S,) = 0.

Let p > 1. The space SBV?(Q;R"™) is the set of functions u € SBV(Q; R"™)
with Vu e LP(Q; M™V) and #V~1(S,) < 0. A sequence {u,} converges to u
weakly in SBV?7(Q;R") n L*(Q; R™) if u,(x) — u(x) almost everywhere in Q,
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Vu, — Vu weakly in L?(Q; M™N) and ||u,|, and #V~(S,,) are bounded uni-
formly with respect to n.

For a general survey on the spaces of BV, SBV and SBV” functions we refer
o [13].

2.2. Approximation results. Now we recall some approximation results that will
be used in the sequel. In the next lemma it is obtained the lower semicontinuity
for a functional whose integrand is the supremum of convex functions (see [29]).

LEMMA 2.1. Let hhj: Qx R™ x R" x RY — [0, +c0), j € N, be Borel func-
tions, convex and positively 1-homogeneous in the last variable and such that

h(x,r,t,&) = sup hj(x,r, t,&)

jeN
Sor all (x,r,t,&) € (Q\Ny) x R™ x R™ x RY, where Ny = Q is a Borel set with
ANV (Ng) = 0. If the functionals Fy; defined by

%j(u):—/gjh(xu utv,)daN!

are weakly lower semicontinuous in SBV?(Q; R™), then 7, defined similarly, is
weakly lower semicontinuous in SBV?(Q; R™) too.

The following lemma is a classical approximation result due to De Giorgi (see
[25] and also Thm. 4.79 in [27]).

LEMMA 2.2, There exists a sequence {ox} = C*(RM), with o >0 and
/ (&) dé =1 such that, if :Q x RY — [0,+00) is a function convex in the
RN

last variable and we consider

@) e / O Q)N + Dax(€) + V(). £)
(2.2) a; r(x /fxéqfl (&)dE, i=1,....,N
and ax = (a1 k, - .., an.x), then for all (x,r,t,&) € Q x R we have

J(x,€) = sup fag i (x) + <ar(x), O]

keN

If f is also positively 1-homogeneous, then

(2.3) f(x,€) = sup ax(x),&>"

keN
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2.3. Capacity. Given an open set A = RY, the l-capacity of A is defined by
setting

Ci(A4) = inf{/ |Dp|dx :p e WH(RN),p =1 #N-ae. on A}.
RN

Then, the 1-capacity of an arbitrary set B = R" is given by
Ci(B) :=inf{C(A4) : 4 =2 B, A open}.
It is well known that for every Borel set B = RY
Ci(B)=0 < #"1(B)=0.

DEFINITION 2.3. Let B = R" be a Borel set with C;(B) < +o0. Given ¢ > 0,
we call capacitary e-quasi-potential (or simply capacitary quasi-potential) of B a
function ¢, € WH(RY), such that 0 < ¢, <1 #" ae. in RY, g, =1 # "V '-
a.e. in B and

/ Dp,| dx < C\(B) + .
RV

We recall that a function g : RY — R is said Cj-quasi continuous if for every
& > 0 there exists an open set 4, with C;(4) < ¢, such that g| ,. is continuous on
A¢; Ci-quasi lower semicontinuous and Cj-quasi upper semicontinuous functions
are defined similarly.

It is well known that if g is a W! function, then its precise representative § is
Ci-quasi continuous (see [26, Sections 9 and 10]). Moreover, to every BV func-
tion g, it is possible to associate a Cj-quasi lower semicontinuous and a Cj-quasi
upper semicontinuous representative, as stated by the following theorem (see [15],
Theorem 2.5).

THEOREM 2.4. For every function g € BV(Q), the approximate upper limit g*
and the approximate lower limit g~ are Ci-quasi upper semicontinuous and Ci-
quasi lower semicontinuous, respectively.

Moreover we recall the following lemma which is an approximation result due to
Dal Maso (see [16], Lemma 1.5 and §6).

LEMMA 2.5. Letg: RY — [0, +00) be a Ci-quasi lower semicontinuous function.
Then there exists an increasing sequence of nonnegative functions {g,y < Wh(R")
such that, for every h € N, gy, is approximately continuous # N ~'-almost everywhere
in RN and g;,(x) — g(x), when h — +o0, for #N-almost every x € R".

2.4. Chain rules.

2.4.1. Vectorial case. We recall a chain rule formula in SBV which is a particu-
lar case of a chain rule in BV recently obtained in [12] under more general as-
sumptions on the dependence in x.
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Let g : RY x R™ — R be satisfying:

(a) x+— g(x,r) belongs to Wll HRY; [R{N) for all r € R™;
(b) there exist a positive function h € L} .(R") and a modulus of continuity @
such that

|ng(xa r) - ng(xa r/)| < w(|r - rll)h<x)

for all r,r’ € R™ and for #"-a.e. x € RY;

(c) there exists a Lebesgue negligible set N = R" such that r — g(x, r) is contin-
uously differentiable in R™ for all x € RV\N;

(d) for some constant M, |V,g(x,r)| < M for all x e RY\N and r € R";

(e) for any compact set H = R” there exists a modulus of continuity @y inde-
pendent of x such that

IVeg(x,7) = Veg(x, )| < @ (Jr = r'])
for all 7' € H and x € RV\N.

THEOREM 2.6. Let g be satisfying (a), (b), (c), (d) and (e) above. Then there
exists a set N < RN with #N"YN)=0, such that, for any functton ue
SBViee(RY;R™), the function v(x) := g(x,u(x)) belongs to SBVie.(RY; RY) and
the following chain rule holds:

(i) for every r e R™ the function g(-,r) is approximately continuous in RN\.A"
and §(x,r) denotes the precise representative of g(-,r) on RN\,

(ii) (Lebesgue part) for $N-ae. x the map y— g(y,u(x)) is approximately
differentiable at x and

(2.4)  Vo(x) = (Vag)(x,u) + (V,g)(x,u) - Vu(x)  LVN-ae. in RY;
(iii) (jump part) J, = J, and it holds
(2.5) D'v = (G(x,u") — glx,u”) @, AN L J,

in the sense of measures, where u*(x) are the upper and lower approximate
limits of u at x.

Moreover

(2.6) div o(x) = [(div, g)(x, u) + tr((V,q) (x, u)Vu)| LV
+ <g(x,u ) —g(x,u”), Vu>%N 'L Ju

in the sense of measures.

2.4.2. Scalar case. We recall a chain rule formula for scalar functions proven
in [22].
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. N N oo
Letg: RY x R — R" be satisfying:

(A) the function x — g(x,r) belongs to WL 1(RY;RY) for all r € R and there
exists a positive constant M such that for all r € R

/ Vg, )| dx < M;
RN

(B) there exists a Lebesgue negligible set N = R such that r— g(x,r) is
Lipschitz continuous in R for all x € R¥\N;
(C) for some constant M, |V,g(x,r)| < M for all x e RY\N and r € R.

THEOREM 2.7. Let g be satisfying (A), (B) and (C) above. Then there exists a
set N < RN with N1 (N) =0, such that, for any function u € SBVi(RY),
the function v(x) := g(x, u(x)) belongs to SBVioc(RY; RY) and the following chain
rule holds:

(I) for every r € R the function g(-,r) is approximately continuous in R¥N\.A" and
g(x,r) denotes the precise representative of g(-,r) on RN\,

(I1) (Lebesgue part) for ¥ -a.e. x the map yv— g(y,u(x)) is approximately
differentiable at x and

(2.7) Vo(x) = (Vag)(x,u) + (Veg) (x,u) - Vu  LN-ae. in RY;
(II1) (jump part) J, = J,, and it holds
(2.8) Div = (gx,u™) —g(x,u”) - v, NI,

in the sense of measures, where u™ are the upper and lower approximate limits
of u at x.

Moreover

(2.9) divo(x) = [(div, g)(x,u) + (V,g)(x,u)Vu] £~
LGl ut) = gl u) vy VL,

in the sense of measures.

2.5. Jointly convex functions.

DEFINITION 2.8. Let K = R”™ be a compact set and ¢: K x K x RY —
[0,4+00). We say that ¢ is jointly convex if there exists a sequence of functions
g; € €(K; RY) such that

¢(r,1,&) = sup {g;(r) — g;(1),&) forall (r,1,&) e K x K x RY.
jeN
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We remark that if ¢ is jointly convex, then

¢(r,r, &) = 0;

(subadditivity) ¢(r, 1, &) < @(r,s,E) + ¢(s,¢,&) for all ,5,¢ € K and & € RY;
(simmetry) ¢(r, 1, &) = ¢(t,r,—&) forall r,t € K and ¢ € RY;

¢ is convex, positively 1-homogeneous in £.

(/1
(/2
(/3
(4

—_— — —

REMARK 2.9. As in Example 5.23 in [13] some classes of jointly convex func-
tions ¢ can be obtained in the following way:

(E1) Let ¢ : K x K x RY — [0, 400)

¢(I", £ é) = y(|}" - t|)(ﬂ(é),

where y is a lower semicontinuous, increasing and subadditive function with
7(0) = 0 and ¢ is lower semicontinuous, convex, positively 1-homogeneous
and even.

(E2) Let ¢ : K x K x RY — [0,400)

P(r,1,¢) = 8(r, 0)p(S),

where 3: K x K — [0,+00) is a continuous function and it is a pseudo-
distance in K (i.e. a positive, symmetric function satisfying the triangle in-
equality) and ¢ : RY — [0, 4+00] is lower semicontinuous, convex, positively
1-homogeneous and even.

3. NONAUTONOMOUS JOINTLY CONVEX FUNCTIONS

We give a definition of nonautonomous (NA) jointly convex function with
W1 dependence of the approximating functions with respect to the spatial
variable x.

DEFINITION 3.1. Let K = R™ be a compact set and ¢: Q x K x K x RY —

[0,400). We say that ¢ is NA jointly convex if there exists a sequence of functions
g : Q@ x K — RY such that

p(x,1,1,&) = sup{g;(x,7) — g;(x,1),&) forall (x,r,4,&) e A x K x K x RY
jeN

and for every j € N the function g; satisfies conditions (a), (b), (c), (d) and (e) of
the vectorial chain rule or, if m = 1, the function g; satisfies conditions (A), (B)
and (C) of the scalar chain rule.

REMARK 3.2. We give some example of NA jointly convex functions. The
model case is

p(x,r,1,8) = Lg(x,r) — g(x,1), 57,
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where ¢ satisfies conditions (a), (b), (c), (d) and (e) of the vectorial chain rule
(or (A), (B) and (C) of the scalar chain rule). A further example is

Plx,r,1,8) = a(x)p(r, 1, <),

where « is a nonnegative bounded W!-! function,
(p(}", L é) = Surl\jj <h1(r) - hj(l)v é>+
J€

and h; are C' functions with bounded derivatives.

Another example of a NA jointly convex function is given in the following
proposition.

PROPOSITION 3.3. Let ¢:Q x K x K x RY — [0,400) be a locally bounded
Sfunction such that

d(x,r, t,8) == 9(r, )p(x, &),
where
(i1) $ is a continuous function and it is a pseudo-distance in K (i.e. a positive,
symmetric function satisfying the triangle inequality);

(i) @ is convex, positively 1-homogeneous and even in & and there exists a constant
L > 0 such that

p(x, &) — (x,&) S LIE =<' VxeQVEE e RY;
(i3) for every & € RY the map x — ¢(x, &) belongs to W1(Q) and there exists a
Borel set N < Q with #V~Y(N) = 0 such that ¢(-,&) is approximately con-

tinuous in Q\N for all & € RV,
(iy) there exists a positive constant M such that for all ¢ € RY

/Q V(e &) dx < M

(is) for every t € K the map r — 9(r, ) belongs to C'(Q), there exists a positive
constant C such that |V, 3(r,t)| < C for every t,r € K and there exists a mod-
ulus of continuity & such that

[V.9(r, ) — V,.9(r', )| < o(|r —r'])
forall t,r,1’ € K.

Then ¢ is a NA jointly convex function.
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PROOF. By Proposition 2.2 there exists a sequence {0} = C*(RY), with o > 0
and/ o (&) d& = 1 such that,
RY

(31> §0<X, é) = :ug <ak (X), é>a
where foreveryi=1,...,N
0 0
62 aw=- [ o a@d= [ olu@
RY 0¢; rY 0C;
and ax = (a1 k,...,an k). By (i») the functions a; are bounded and by (i3) and

(ig) the functions a; belong to W!!1(Q;RY) and so there exists a Borel set
N < Q with #"¥~!(N) = 0 such that ¢; are approximately continuous in Q\N.
As in Example 5.23 (a) of [13], we can choose a countable dense sequence c¢;, in
K such that

d(x,r, t,E) = 9(r, )p(x, &) = sup [Hr,cn) — e, ep)]<ar(x), E.

h,keN
Then the functions
Gni(x, 1) = 9(r, cp)ar(x)

satisfy the conditions (a), (b), (c), (d) and (e) (or (A), (B) and (C) in the scalar
case). O

A first lower semicontinuity result can be obtained for NA jointly convex inte-
grands in the vectorial case.

THEOREM 3.4. Let K = R™ be a compact set and let ¢ : Q x K x K x RN —
[0,400) be a locally bounded NA jointly convex function. Then, for every {u,} <
SBV?(Q;R™) and u € SBV?(Q; R™) such that u,(x) — u(x) for £"-a.e. xeQ,
uy(x),u(x) € K for £N-a.e. x € Q and

sup[nunnm + [ 1Vl + %N*(Ju”)} < too,
neN Q
we have

(3.3) G, uut v, da N < liminf/ d(x,uy ul v, ) da Nt
QnJ,,

Y%n "m0
QnJ, n—-+aoo

Proor. We follow the outlines of the proof of Theorem 5.22 in [13].
Let

Ci— sup [nunn@ + [ vl v+ %“(m]
Q

neN
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Since ¢ is nonnegative, we have

¢(X, Tt é) = Sug <gj(x7 V) - gj(x7 t)a é>+
JE

for all (x,r,1,&) € Q x K x K x RY. By Lemma 2.1, it is enough to prove the
lower semicontinuity for functionals of the type

(3.4) Fy(u) :—/J Lg(x,ut) —g(x,u™), vy daaN L

Let us now fix ¥ € C}(Q), 0 <y < 1. The lower semicontinuity of the functional
in (3.4) will follow if we prove the continuity of

(33 Ry = [ Cosut) = glva) nowx) do
Using the chain rule formula (2.6) we have
/ Cox,u™) — g, u™), v dAe Y]
Ju
= [ W), g(x.u()) d

—/lp(x) ding(x,u(x))dx—/lp(x) tr[V,g(x, u(x)) - Vu(x)] dx.
Q Q

Notice that

(3.6) / (Vh(x), g, u(x))> dx = lim / V() g, un()) > d;

(3.7) /pr(x) div, g(x,u(x))dx = lim /t//(x) div, g(x, u,(x)) dx;

n—+w Jo

(3.8) /Q (0 te]V,g (x, u(x)) - Vu(x)] dc

(3.9) = lir+n / W (x) tr[V,g(x, uy(x)) - Vuy(x)] dx
n— 00 Q
In fact, by using (d), the sequence {g(x,u,) — g(x,u)} converges almost every-
where to 0 and is equibounded in L*(Q). Similarly, by using (b), {div, g(x,u,)}
converges almost everywhere to div,g(x,u) and is equibounded by an L'-
function. Thus (3.6) and (3.7) hold. In order to prove equality (3.8), we observe
that, by using (e), ¥ € L*(Q), V,g(x, u,) — V,g(x, u) strongly in L?"(€; MY*™)
and Vu, — Vu weakly in L?(Q; M™ ). By (3.6), (3.7) and (3.8) we have the
continuity of the functional F g‘/’ and so the lower semicontinuity of F,. |
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The same lower semicontinuity result holds for NA jointly convex integrands in
the scalar case (m = 1), by repeating the proof and by using the scalar chain rule
(2.9) (Theorem 2.7) instead of the vectorial chain rule (2.6) (Theorem 2.6).

4. NONAUTONOMOUS BV orR W1 JOINTLY CONVEX FUNCTIONS

In this section we give a different definition of nonautonomous jointly convex
function with BV (or W) dependence with respect to the spatial variable x.

Let K = R™ be a compact set and let ¢ : Q x K x K x RY — [0, +0) be a
locally bounded function.

DEFINITION 4.1. The function ¢ is BV jointly convex (respectively W1 jointly
convex) if the following conditions hold

(') for every (r,t,&) € K x K x RY the function ¢(-,r,t,¢) belongs to BV and
there exists a Borel set N = Q with #"V~!(N) =0 such that ¢(-,r,¢,&) =

¢_<'a ., é) (respectively ¢(7 ., é) = ¢(7 ., é)) in Q\N for all (I", I8 é) €
K x K x RN,

(B') for every x € Q\N the function ¢(x, -, -, -) is jointly convex;

(y") there exists a positive constant L such that

(e, 7, 8,8) — px, 1", 1, E)| < Lir — 1|
for all x e Q\N, for all r,7',¢ € K and ¢ € RY.

REMARK 4.2. We will prove (see Theorem 4.8 below) that for integrand BV
jointly convex the lower semicontinuity holds by requiring the further condition
that ¢ is strictly positive for # ! almost everywhere x € Q.

REMARK 4.3. We give some examples of BV jointly convex functions.
The model case is

(40) Plx,r,1,8) = {g(x,r) — g(x,1), &7,
with ¢ satisfying the following conditions

(o) for every r € K the function g(-,r) is a locally bounded BV and there exists a
Borel set N = Q with # ¥~ (N) = 0 such that g(-,r) = g~ (-,7) in Q\N for
all r e K;

(y”) there exists a positive constant L such that

|g(x,r)—g(x,r')| §L|}’—I’/|
for all x e Q\N, for all r,+’ € K.

Another example is

(41) P, 1,8) = a(x)o(r; 1, <),
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where « is a nonnegative bounded BV function coinciding with its lower ap-
proximate limit ¢~ and ¢ is a jointly convex function satisfying the following
condition:

there exists a positive constant L such that

“ﬂ(’”, [76) - W(”l,ﬁf” < L|I"— V/|

forall »,#/,¢ € K and ¢ € RY.
Moreover let

(A2) ¢(X, It é) = y(|l" - ZDw(xa f)v

where y : [0, +00[ — [0, 400 is a continuous, increasing and subadditive function
with »(0) = 0 and y(s) < C|s| for all s € R, and ¢ is a bounded function, which
is convex, positively 1-homogeneous and even in ¢ and it satisfies conditions (i3)
below.

Functions of the type (A2) are already considered in [5].

Another type of BV jointly convex function, which generalizes example (A2),
can be obtained as in the following way.

Let g : Qx K x K x RY — [0,400)

(A3> ¢(X, r, ta é) = 19(1", t)go(x, é)a
where

(i1) 9 is a Lipschitz continuous function and it is a pseudo-distance in K (i.e. a
positive, symmetric function satisfying the triangle inequality);

(i) ¢ is a bounded function and it is convex, positively 1-homogeneous and even
in &;

(i3) forevery & € RY the map x — ¢(x, &) belongs to BV and there exists a Borel
set N = Q with #V~1(N) =0 such that ¢(-,&) coincides with its lower
approximate limit ¢~ (-, &) in Q\N for all & € RY.

In order to study the lower semicontinuity, firstly we consider the model case

(4.1) P(x,r,1,8) := a(x)p(r,1,),
where ¢ is a jointly convex function and « is a locally bounded BV function.

PROPOSITION 4.4. Let a: Q — [0,+00) be a locally bounded BV function coin-
ciding with its lower approximate limit a~ and let ¢ : K x K x RY — [0, +0) be
a locally bounded jointly convex function. Then, for every {u,} = SBV/(Q;R™)
and u € SBV?(Q; R™) such that u,(x) — u(x) for N-a.e. x € Q, u,(x),u(x) € K
for #N-a.e. x € Q and

sup[|un||% + [ Wl st AV )| < or,
Q

neN
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we have

(4.2) / a(x)p(u",u™,v,)d#"N 1 < liminf/ a(x)p(u, ,ut v, )d# V",
.Q.ﬁ.],, Qm‘]un

n—-+0o0

Proor. It suffices to note that by Theorem 2.4 the function « is lower semicon-
tinuous with respect to the 1-capacity. Therefore the conclusion of the proof is
obtained by using Lemma 2.5, Proposition 3.1 in [5] and Lemma 2.1. |

In order to treat the general case of BV jointly convex function firstly we study
integrands which are lower semicontinuous in x uniformly with respect to the
other variables. For these integrands the following approximation from below
holds with functions of the type (4.1).

PROPOSITION 4.5. Let ¢:Q x K x K x RY — [0,4+m0) be a locally bounded
Borel function such that

() given xo € Q, for all ¢ > 0 there exists 0 > 0 such that

(4.3) P(x0,7:1,) < (1 +&)d(x,7,1,€)

Sorall (x,r,1,&) € Q x K x K x RY such that |x — xo| < 9;
(B) for every x € Q the function ¢(x,-,-,) is jointly convex.

Then there exists a; € Cy*(Q), 0 < a; <1, aj(x;) =1 for some x; € Q, and there
exists g; € €(K; RY) such that

¢(X, L, é) = Ssup a/(x)<g/(r) - gj(l‘)7é>+

JjeN
Sorall (x,r,t,&) e Q x K x K x RY.

ProoOF. We adapt the proof of Proposition 6.40 of [27] (proven in [19]). Let 4
be the class of all functions G : Q x K x K x RY — [0, +c0) of the form

G(X,}", va) = @(X)<g(}’) _g(l)7€>+ V(X,V, [75) €Q XK XK X RN?
with g € 4(K;RY), p e CF(Q), 0 < ¢ <1, p(x) = 1 for some x € Q, and
G(x,r,1,8) < gp(x,r,1,E) V(x,r,1,E) e Q x K x K x RV,

We remark that 4 # @, since, for g = 0, we have G =0 € 4.
We will prove that

(4.4)  ¢(x,r,t,E) = sup G(x,r,t,&) forall (x,r,t,&) e Qx K x K x RY.
GeY
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The inequality

Sup G(XJ r’ [7 é) S ¢('x7 r) t? é)
Ge¥

is due to the definition of 4. Now, given xy € Q, we will prove the opposite
inequality

¢(X0,}’, Z é) < sup G(Xo,}", Z, f)

Ge¥Y

By using (/), for all ¢> 0 there exists 0 >0 such that (4.3) holds. Let
peCl(Q), 0<p<1, p=1 on B(xp,0/2) and ¢ =0 outside B(xo,0). Since
the function ¢(xo,,-,-) is jointly convex, there exists a sequence of functions
gk € €(K;RY) such that

P(xo,7,1,E) = sup {gx(r) — gi(2),E>" forall (r,¢,&) € K x K x RV,
keN

For every € > 0, if we define

G (x,1,1,€) = p(x){(1 = €)(gi(r) — g (1)), &7
for every (x,r,1,¢) € Q x K x K x RY then G, < ¢, G, € 9 and

(1 - 6)¢(X0,r, Z, é) = sup G;(X(],r, I é) < sup G(X(),r, Z, é)a
keN GeY

hence, by letting e — 0", (4.4) is obtained. By Lemma 3.2 of [4] there exists a
sequence Gj in % such that

G/(xa i, é) = aj<x><gj(r> - gj(t>) é>+
(4.5) ¢(x,r,1,&) = sup Gj(x,r,1,¢),
JjeN

for every (x,r,4,&) € Q x K x K x RV, ]

PROPOSITION 4.6. Let ¢:Q x K x K x RN — [0, +00) be a locally bounded
Borel function such that condition (/) and (f) hold. Then, for every {u,} <
SBV?(Q;R™) and u € SBV?(Q; R™) such that u,(x) — u(x) for £"-a.e. x € Q,
u,(x),u(x) € K for £¥-a.e. x € Q and

sup [|u,1||Oc +/ |Vun|de+%Nl(Ju”)} < +o0,

neN Q

we have

(4.6) d(x,u,utv,)daN ! < liminf/ P,y ul v, ) dAaAN 1
QnJ,

s Yo
Qﬁju n—+00 un
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PrOOF. By Proposition 4.5, we have that there exist {¢;} = C;°(Q),0<a; <1,
and g; € 4(K; R") such that

(47) ¢(X, ., é) = sup aj(x)<gj(r) - gj(l)> é>+

JjeN
for all (x,7,1,&) €e Q x K x K x RY. For j e N, the function
¢j:QxKxKx[RRN—>[O,+oo)

defined by ¢;(x,r,1,¢) = a;(x)<{g;(r) —g;(1),&>" satisfies the assumptions of
Proposition 3.1 in [5]). Therefore, the corresponding functionals are all lower
semicontinuous and the thesis follows by Lemma 2.1. |

As in Theorem 3.4 of [2], it is possible to obtain the lower semicontinuity by
assuming, instead of hypothesis (.«7), some conditions which are easier to verify.

PROPOSITION 4.7. Let ¢:Q x K x K x RY — [0,4+00) be a locally bounded
Borel function such that

(et1) ¢(-,-,-, &) is lower semicontinuous on Q x K x K for every ¢ € RN,

(t2) $(x,1,1,E) > 0V(x,r,1,E) € (Q\No) x K x K x (RM\{0}) with # "~ (Ny)
= O"

(B)  for every x € Q the function ¢(x,-,-,) is jointly convex;

(y")  there exists a positive constant L such that

|¢(X, It é) - ¢(X, I"/, 2 é)| < L|F - V/|
forall x e Q, for all r,v',t € K and & € RY.
Then condition (=/) holds.

PrOOF. Notice that, since ¢ is locally bounded and positively 1-homogeneous
with respect to &, for any open set Q' —c Q, there exists a constant A’ such that

(48)  0<¢(x,r,t,E) <A|¢| forall (x,r,t,E) e Q x K x K xRV,

Hence the convexity of ¢ with respect to ¢ immediately yields that, for all
(x7r>laél>7<xyr,[,62) e x K x K x RN,

(49) |¢(x,r, tvé’l)_¢(x7r7 t7€2)| S/\/|£1 _§2|

Then ¢ is lower semicontinuous in Q" x K x K x RY and ¢(x, -, -, -) is continuous
in K x K x R for every x € Q'.

We claim that, given xy € Q"\ Ny, for all ¢ > 0, condition (.«/) holds, i.e. there
exists 0 > 0 such that

(4.10) d(x0,r,1,E) < (1 4+ &)p(x,r,1,8)

for all (x,r,1,&) € Q' x K x K x R such that |x — xo| < J.
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To prove this, we argue by contradiction, assuming that there exist xy € Q"\ N
and & > 0 such that for any k € N, there exist sequences {x;} < Q' with
|xx — xo| < 1/k, and {(ri, 1, &)} < K x K x RY such that

(4.11) ¢()C0,}’k, lk,fk) > (1 +80)¢(xk,}’k,l‘k,fk).

Clearly, by the positive 1-homogeneity of ¢(x, r, ¢, ), we may assume that |&,| = 1,
for every k € N; hence, up to a subsequence, there exists & € SV~! such that
& — &o. Moreover, since {sx},{tx} = K, we may assume that also s — o,
ty — ty, with s, 7p € K. Then, passing to the limit when k& — +oc0 in (4.11) and
using the lower semicontinuity of ¢ and the continuity of ¢(xo, -, -, ), we get that

P(xo, 10, 10, &o) = kkffao A(x0, i, iy Ek)
> (1 +e&) lllclllilolcf Xk, iy e, i) = (1 + &0) (X0, 70, 20, Eo)-

Hence, ¢(xo, ro, %, &) = 0, which is a contradiction, since xo € Q'\ Ny; therefore
(4.10) holds.
The conclusion follows by letting Q" Q. O

THEOREM 4.8. Let ¢ be a BV jointly convex function satisfying (.</»). Then the
lower semicontinuity (4.6) holds.

PrOOF. Firstly, we claim that for every open set Q' =< Q, for every i € N there
exists an open set 4, = Q' with Ny n Q' = A4, Ci(A4;,) < 1/h, such that the func-
tion ¢ is lower semicontinuous in (Q"\4;) x K x K x R" and, given x; € Q"\ Ny,
for all &€ > 0 there exists 6 > 0 such that

(4.12) d(xo,7,1,8) < (1 +&)p(x,r,1,E)

for all (x,r,1,&) € (Q\4;) x K x K x RY such that |x — xo| < 6.

As in the proof of Theorem 4.7, conditions (4.8) and (4.9) hold in
(Q'\No) x K x K x R". Let us now fix 4, a sequence {¢;} dense in R" and two
sequences {r]} and {z]} dense in K. By Theorem 2.4 for every j € N the function
$(-,15,4,¢5) is C I_quasi lower semicontinuous; then for all j there exists an open
set Ajp = Q', Ny = A/ n, With C1(4; ) < 1/(h2/) such that ¢(-,r;,1;,¢&;) is lower
semlcontlnuous in Q"\4; ;. Setting 4;, = U, Aj p, Ay is open, Cy(A4,) < 1/h, and
making use of (4.9) and ()’), one easily gets that ¢(-,r, ,) is lower semicontinu-
ous in Q"\ 4, for every (r,£,&) € K x K x R and ¢(-, -, -, &) is lower semicontin-
uous in (Q'\A4;,) x K x K for every ¢ € RY (we can assume that 4, is a decreas-
ing sequence of open sets). Hence, as in the proof of Theorem 4.7, the claim
holds.

Therefore by Proposition 4.5 there exist {ah} c CrQ), 0< a]h <1, and

e ¢(K;R") such that

#lx,1,1,¢) = sup g;(x )<} (r) = g7 (0,7

jG



18 V. DE CICCO

for all (x,r,t,&) € (Q\4,) x K x K x RY. Moreover for every j € N there exists
x]' € Q"\ 4y such that a/'(x") = 1. If we set

Ul(r 1,8) = <gl(r) — g} (1), &,

we have that l,bjh >0, lp].” is a locally bounded jointly convex function and

P, 1, 1,€) = sup @ (W (1, 1,€)

jeN

for all (x,r,1,¢&) € (Q'\4;) x K x K x RV,
We will prove that there exists a constant C > 0 (independent of /) such that

(4.13) sup Y/ (r,1,v) < C ¥(r,1,v) e K x K x SV,
JjeN

Since ¢ is locally bounded, there exists a constant C > 0 such that ¢(x,r, ¢,v) < C
for every (x,r,t,v) € Q' x K x K x SV . Then for every (r,t,v) e K x K x SV
and for every ],h e N we have

lph(r t,v) = ah(xh)tp (r,t,v) < ¢(x rtv) < C.

Then (4.13) holds.

Let g, € WLI(RY) be a capacitary quasi-potential of 4;. More precisely, let
us assume that there exists a Borel set N, = RY, with C;(N,) = #V~1(N,) =0,
such that 0 < @, (x) < 1 for every x € RY\ Ny, @, = 1 on 4,\N,

- 1 2
/ |V(,0h|dx§ C](Ah)+—<—
RY h h

and by Lemma 1.2 in [16], ¢, (x) tends to 0, as 1 — +co, for V=1 almost every
x € Q. Moreover, settlng N =, Ny, Ci(N)=#""1(N)=0, for every j e N
and for every x € Q'\N we set

(4.14) 5/ (x) := max{0, a (x) — @,(x)}.

Since 0 < ¢,,(x) < 1, we have

(4.15) 0< o?jh(x) <1, dl(x)=al(x)>al(x)—@,(x) forallxeQ
and

(4.16) Hoxr 08) 2 W 1,0)

for all (x,r,1,¢) € Q' x K x K x RY. Finally, we set for all 4, j € N

g) (.1, 1,8) = & (W) (r,1,8),  ¢"(x,7,1,E) = sup ] (x,r, 1, ),

jeN
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for all (x,r,t,&) € Q' x K x K x RY. We notice that ¢jh satisfies all the assump-
tions of Proposition 4.4. Hence the corresponding functional

Fgwy= [ e ) da
/ Q'nJ,
is lower semicontinuous; by Lemma 2.1 the same holds for the functional
Fyi(u) := / ¢ e u ut vy, doaN L
Q'nJ,

Moreover, since

(4.17) 87 (x,r, 1,8) = [al(x) = @, ()] (r, 1,€)
for all (x,r,1,¢) € Q' x K x K x RY, we have that
(4.18) ", r 1,8) = d(x,r,1,E) — @, (W (r,1,E)

for all (x,r,1,&) € Q' x K x K x RY, where y" := SUp; ey zpjh; by (4.13) there ex-
ists a constant C > 0 such that

(4.19) 0<y"(re,v)<C

for all (r,t,v) € K x K x R with |v| = 1.
From the lower semicontinuity of 7 (u), from (4.18) and (4.19), we then get
that

n—-—+oo

liminf/ G u, wt v, ) da N
Q'nJ,

un

> liminf/ ¢ e, u vy, ) dA N > / ¢"(x,u ut vy, doaN !
n—+o0 Q' Q'nJ,

> / (/ﬁ(x,u’,u*,vu) d%Nil _/ @h(x)¢11(u77u+7vu) d%Nil
(Q\Ap)NJ, Q'nJ,

> / P, uut, v, da N — C/ @ (x)dAa N1
@\ A)) A,

Q'nJ,

Since @, — 0 strongly in W11(RY) as & — oo, we have that, up to a subse-
quence, @,(x) — 0 for # "V~ !-almost every x € R" (see Proposition 1.2 in [16]).
Therefore, by letting # — +oo and recalling that 4;,; < Ay, for all & and that
AN, 41) = 0, from the Dominated Convergence Theorem we get (4.6) in
Q'. Hence, by letting Q' 7~ Q, the thesis is achieved. O
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