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Abstract. — Some lower semicontinuity results are established for nonautonomous surface inte-

grals depending in a discontinuous way on the spatial variable. The proof of the semicontinuity
results is based on some suitable approximations from below with appropriate functionals.
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1. Introduction

In this paper new lower semicontinuity results are obtained for nonautonomous
surface integrals whose dependence on the spatial variable is discontinuous.
Surface energies of this type occur in free discontinuity problems, as in fracture
mechanics when one considers quasistatic evolution of stratified, heterogeneous
materials (see for instance [17], [18], [20] and [21]).

The surface energy usually admits the form

FðuÞ :¼
Z
WBJu

fðu�ðxÞ; uþðxÞ; nuðxÞÞ dHN�1; u a SBVðW;RmÞ;ð1:1Þ

where W is an open bounded subset of RN , SBVðW;RmÞ is the space of the
vector valued special function of bounded variation, HN�1 denotes the ðN � 1Þ-
dimensional Hausdor¤ measure and f is a jointly convex function, depending
on the traces of u on the jump set Ju and its orientation nu (see [10] and [11]).
The proof of the lower semicontinuity of the surface integral F is obtained by
considering some approximating functionals constructed by using the definition
of jointly convex function (see Def. 2.8) and by using for the approximating func-
tionals the chain rule formula for vector valued functions in BV (see Theorem
5.22 in [13]).

However, in some context the energy can admit an explicit dependence on the
spatial variable x and the following form

FðuÞ :¼
Z
WBJu

fðx; u�ðxÞ; uþðxÞ; nuðxÞÞ dHN�1:ð1:2Þ

When this dependence is discontinuous, these functionals permit to describe the
case of heterogeneous and anisotropic materials (see [30]).



In the paper [5] it is considered a nonautonomous surface energy of the type

FðuÞ :¼
Z
WBJu

aðxÞjðu�ðxÞ; uþðxÞ; nuðxÞÞ dHN�1;

where j is jointly convex and a is aW 1;1 function. Moreover, in the same paper it
is considered a surface energy of the type

FðuÞ :¼
Z
WBJu

gðjuþðxÞ � u�ðxÞjÞjðx; nuðxÞÞ dHN�1;

where juþ � u�j is the di¤erence of the trace of u on both sides of Ju, nu is the
normal to the jump set Ju and the function g depends on the material. The inte-
grand fðx; r; t; xÞ ¼ gðjr� tjÞjðx; xÞ is an example of jointly convex integrand in
ðr; t; xÞ (see Remark 3.3 for the assumptions on g and j). For jðx; xÞ ¼ 1 the
energy was proposed by Barenblatt in [14], while in [18], [20] and [30] the authors
consider the case where gðsÞ ¼ 1 for every s > 0 and gð0Þ ¼ 0. For the function
jð�; xÞ it is required a BV dependence on x.

The purpose of this paper is to study the lower semicontinuity of (1.2) for gen-
eral nonautonomous jointly convex integrands. We will prove a lower semiconti-
nuity theorem for the functional (1.2), along sequences fung in SBV pðW;RmÞ
(p > 1) such that unðxÞ ! uðxÞ for almost every x a W and k‘unkp, HN�1ðJunÞ
are uniformly bounded with respect to n a N.

The interest of the results presented here is that the function f may possibly be
discontinuous with respect to x and it admits a general structure with respect to
the jointly convex integrands considered in [5]. The structural assumptions on
fðx; r; t; xÞ are a W 1;1 or BV dependence on x and the joint convexity in the last
three variables; moreover some additional uniformity assumptions are required.

In order to prove the lower semicontinuity of the surface integral some
methods introduced previously in [5] are used here (see also [1], [2], [3], [4], [22],
[23] and [24]).

In Section 3 and 4 we present two independent approaches, by giving di¤erent
definitions of non autonomous jointly convex integrand and by using several
approximation techniques from below.

In Section 3 the lower semicontinuity result is obtained via the nonauto-
nomous chain rule formula (for vector valued BV functions, recently proven in
[12], or for scalar BV function, proven in [22]). An explicit approximation of
convex functions due to De Giorgi (see [25]), here adapted to jointly convex
functions, allows to verify the regularity assumptions and the uniformity condi-
tions of the approximating integrand and hence to apply the chain rule (see
Prop. 3.3 below).

In Section 4, we study a very general case of BV or W 1;1 dependence on x.
Here the lower semicontinuity is obtained by approximating the integrand from
below by jointly convex functions lower semicontinuous in x uniformly with
respect to the other variables. In this context we need to require a strict positivity
assumption of the integrand.
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2. Notation and preliminaries

2.1. Notation. Throughout the paper N > 1, mb 1 are fixed integers. Let W be
a bounded open subset of RN with Lipschitz boundary. We denote by SN�1 the
unit sphere in RN . Let LN denote the Lebesgue measure on RN and HN�1 the
Hausdor¤ measure of dimension N � 1 on RN .

If u a L1
locðW;RmÞ and x a W, the precise representative of u at x is defined as

the unique value ~uuðxÞ a Rm such that

lim
r!0þ

1

rN

Z
BrðxÞ

juðyÞ � ~uuðxÞj dy ¼ 0:

In this case u is said approximate continuous at x and ~uuðxÞ is the so-called approx-
imate limit of u at x. The set of points in W where the precise representative of x is
not defined is called the approximate singular set of u and denoted by Su.

Let u a L1
locðW;RmÞ and x a W. We say that x is an approximate jump point

of u if there exist a; b a Rm and n a SN�1, such that aA b and

lim
r!0þ

Z
Bþ
r ðx; nÞ

juðyÞ � aj dy ¼ 0 and lim
r!0þ

Z
B�
r ðx; nÞ

juðyÞ � bj dy ¼ 0

where Be
r ðx; nÞ :¼ fy a BrðxÞ : 3y� x; n4r 0g: The triplet ða; b; nÞ is uniquely

determined by the previous formulas, up to a permutation of a, b and a change
of sign of n, and it is denoted by ðuþðxÞ; u�ðxÞ; nuðxÞÞ. The Borel functions uþ

and u� are called the upper and lower approximate limit of u at the point x a W.
The set of approximate jump points of u is defined by

Ju ¼ fx a W : uþðxÞAu�ðxÞg:

We recall that the space BVðW;RmÞ of functions of bounded variation is defined as
the set of all u a L1ðW;RmÞ whose distributional gradient Du is a bounded Radon
measure on W with values in the space Mm�N of m�N matrices.

We recall the usual decomposition

Du ¼ ‘uLN þDcuþ ðuþ � u�Þn nuH
N�1

KJu;

where ‘u is the Radon-Nikodým derivative of Du with respect to the Lebesgue
measure and Dcu is the Cantor part of Du. For the sake of simplicity, we denote
by Dsu ¼ Dcuþ ðuþ � u�Þn nuH

N�1
KJu.

We recall that the space SBVðW;RmÞ of special functions of bounded variation
is defined as the set of all u a BVðW;RmÞ such that Dsu is concentrated on Su;
i.e., jDsujðWnSuÞ ¼ 0.

Let p > 1. The space SBV pðW;RmÞ is the set of functions u a SBVðW;RmÞ
with ‘u a LpðW;Mm�NÞ and HN�1ðSuÞ < l. A sequence fung converges to u
weakly in SBV pðW;RmÞBLlðW;RmÞ if unðxÞ ! uðxÞ almost everywhere in W,
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‘un * ‘u weakly in LpðW;Mm�NÞ, and kunkl and HN�1ðSunÞ are bounded uni-
formly with respect to n.

For a general survey on the spaces of BV, SBV and SBV p functions we refer
to [13].

2.2. Approximation results. Now we recall some approximation results that will
be used in the sequel. In the next lemma it is obtained the lower semicontinuity
for a functional whose integrand is the supremum of convex functions (see [29]).

Lemma 2.1. Let h; hj : W� Rm � Rm � RN ! ½0;þlÞ, j a N, be Borel func-
tions, convex and positively 1-homogeneous in the last variable and such that

hðx; r; t; xÞ ¼ sup
j AN

hjðx; r; t; xÞ

for all ðx; r; t; xÞ a ðWnN0Þ � Rm � Rm � RN, where N0 HW is a Borel set with
HN�1ðN0Þ ¼ 0. If the functionals Fhj defined by

Fhj ðuÞ :¼
Z
WBJu

hjðx; u�; uþ; nuÞ dHN�1

are weakly lower semicontinuous in SBV pðW;RmÞ, then Fh, defined similarly, is
weakly lower semicontinuous in SBV pðW;RmÞ too.

The following lemma is a classical approximation result due to De Giorgi (see
[25] and also Thm. 4.79 in [27]).

Lemma 2.2. There exists a sequence fakgHCl
c ðRNÞ, with ak b 0 andZ

RN

akðxÞ dx ¼ 1 such that, if f : W� RN ! ½0;þlÞ is a function convex in the

last variable and we consider

a0;kðxÞ ¼
Z
RN

f ðx; xÞððN þ 1ÞakðxÞ þ 3‘akðxÞ; x4Þ dxð2:1Þ

ai;kðxÞ ¼ �
Z
RN

f ðx; xÞ q

qxi
akðxÞ dx; i ¼ 1; . . . ;Nð2:2Þ

and ak ¼ ða1;k; . . . ; aN;kÞ, then for all ðx; r; t; xÞ a W� RN we have

f ðx; xÞ ¼ sup
k AN

½a0;kðxÞ þ 3akðxÞ; x4�þ:

If f is also positively 1-homogeneous, then

f ðx; xÞ ¼ sup
k AN

3akðxÞ; x4þ:ð2:3Þ
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2.3. Capacity. Given an open set AHRN , the 1-capacity of A is defined by
setting

C1ðAÞ :¼ inf

Z
RN

jDjj dx : j a W 1;1ðRNÞ; jb 1 LN-a:e: on A

� �
:

Then, the 1-capacity of an arbitrary set BHRN is given by

C1ðBÞ :¼ inffC1ðAÞ : AKB;A openg:

It is well known that for every Borel set BHRN

C1ðBÞ ¼ 0 , HN�1ðBÞ ¼ 0:

Definition 2.3. Let BHRN be a Borel set with C1ðBÞ < þl. Given e > 0,
we call capacitary e-quasi-potential (or simply capacitary quasi-potential ) of B a
function je a W 1;1ðRNÞ, such that 0a ~jje a 1 HN�1-a.e. in RN , ~jje ¼ 1 HN�1-
a.e. in B and Z

RN

jDjej dxaC1ðBÞ þ e:

We recall that a function g : RN ! R is said C1-quasi continuous if for every
e > 0 there exists an open set A, with C1ðAÞ < e, such that gjAc is continuous on
Ac; C1-quasi lower semicontinuous and C1-quasi upper semicontinuous functions
are defined similarly.

It is well known that if g is a W 1;1 function, then its precise representative ~gg is
C1-quasi continuous (see [26, Sections 9 and 10]). Moreover, to every BV func-
tion g, it is possible to associate a C1-quasi lower semicontinuous and a C1-quasi
upper semicontinuous representative, as stated by the following theorem (see [15],
Theorem 2.5).

Theorem 2.4. For every function g a BVðWÞ, the approximate upper limit gþ

and the approximate lower limit g� are C1-quasi upper semicontinuous and C1-
quasi lower semicontinuous, respectively.

Moreover we recall the following lemma which is an approximation result due to
Dal Maso (see [16], Lemma 1.5 and §6).

Lemma 2.5. Let g : RN ! ½0;þlÞ be a C1-quasi lower semicontinuous function.
Then there exists an increasing sequence of nonnegative functions fghgJW 1;1ðRNÞ
such that, for every h a N, gh is approximately continuousHN�1-almost everywhere
in RN and ghðxÞ ! gðxÞ, when h ! þl, for HN�1-almost every x a RN.

2.4. Chain rules.

2.4.1. Vectorial case. We recall a chain rule formula in SBV which is a particu-
lar case of a chain rule in BV recently obtained in [12] under more general as-
sumptions on the dependence in x.
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Let g : RN � Rm ! RN be satisfying:

(a) x 7! gðx; rÞ belongs to W
1;1
loc ðR

N ;RNÞ for all r a Rm;
(b) there exist a positive function h a L1

locðRNÞ and a modulus of continuity o
such that

j‘xgðx; rÞ � ‘xgðx; r 0Þjaoðjr� r 0jÞhðxÞ

for all r; r 0 a Rm and for LN -a.e. x a RN ;
(c) there exists a Lebesgue negligible set NHRN such that r 7! gðx; rÞ is contin-

uously di¤erentiable in Rm for all x a RNnN;
(d) for some constant M, j‘rgðx; rÞjaM for all x a RNnN and r a Rm;
(e) for any compact set HHRm there exists a modulus of continuity ~ooH inde-

pendent of x such that

j‘rgðx; rÞ � ‘rgðx; r 0Þja ~ooHðjr� r 0jÞ

for all r; r 0 a H and x a RNnN.

Theorem 2.6. Let g be satisfying (a), (b), (c), (d) and (e) above. Then there

exists a set NHRN with HN�1ðNÞ ¼ 0, such that, for any function u a
SBVlocðRN ;RmÞ, the function vðxÞ :¼ gðx; uðxÞÞ belongs to SBVlocðRN ;RNÞ and
the following chain rule holds:

(i) for every r a Rm the function gð�; rÞ is approximately continuous in RNnN
and ~ggðx; rÞ denotes the precise representative of gð�; rÞ on RNnN;

(ii) (Lebesgue part) for LN-a.e. x the map y 7! gðy; uðxÞÞ is approximately
di¤erentiable at x and

‘vðxÞ ¼ ð‘xgÞðx; uÞ þ ð‘rgÞðx; uÞ � ‘uðxÞ LN-a:e: in RN ;ð2:4Þ

(iii) ( jump part) Jv H Ju and it holds

D jv ¼ ð~ggðx; uþÞ � ~ggðx; u�Þn nuH
N�1

KJuð2:5Þ

in the sense of measures, where ueðxÞ are the upper and lower approximate
limits of u at x.

Moreover

div vðxÞ ¼ ½ðdivx gÞðx; uÞ þ trðð‘rgÞðx; uÞ‘uÞ�LNð2:6Þ
þ 3~ggðx; uþÞ � ~ggðx; u�Þ; nu4HN�1

KJu

in the sense of measures.

2.4.2. Scalar case. We recall a chain rule formula for scalar functions proven
in [22].
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Let g : RN � R ! RN be satisfying:

(A) the function x 7! gðx; rÞ belongs to W 1;1ðRN ;RNÞ for all r a R and there
exists a positive constant M such that for all r a R

Z
RN

j‘xgðx; rÞj dxaM;

(B) there exists a Lebesgue negligible set NHRN such that r 7! gðx; rÞ is
Lipschitz continuous in R for all x a RNnN;

(C) for some constant M, j‘rgðx; rÞjaM for all x a RNnN and r a R.

Theorem 2.7. Let g be satisfying (A), (B) and (C) above. Then there exists a
set NHRN with HN�1ðNÞ ¼ 0, such that, for any function u a SBVlocðRNÞ,
the function vðxÞ :¼ gðx; uðxÞÞ belongs to SBVlocðRN ;RNÞ and the following chain
rule holds:

(I) for every r a R the function gð�; rÞ is approximately continuous in RNnN and
~ggðx; rÞ denotes the precise representative of gð�; rÞ on RNnN;

(II) (Lebesgue part) for LN-a.e. x the map y 7! gðy; uðxÞÞ is approximately
di¤erentiable at x and

‘vðxÞ ¼ ð‘xgÞðx; uÞ þ ð‘rgÞðx; uÞ � ‘u LN-a:e: in RN ;ð2:7Þ

(III) ( jump part) Jv H Ju and it holds

D jv ¼ ð~ggðx; uþÞ � ~ggðx; u�Þ � nuHN�1
KJuð2:8Þ

in the sense of measures, where ue are the upper and lower approximate limits
of u at x.

Moreover

div vðxÞ ¼ ½ðdivx gÞðx; uÞ þ ð‘rgÞðx; uÞ‘u�LNð2:9Þ
þ 3~ggðx; uþÞ � ~ggðx; u�Þ; nu4HN�1

KJu

in the sense of measures.

2.5. Jointly convex functions.

Definition 2.8. Let KHRm be a compact set and f : K � K � RN !
½0;þlÞ. We say that f is jointly convex if there exists a sequence of functions
gj a CðK ;RNÞ such that

fðr; t; xÞ ¼ sup
j AN

3gjðrÞ � gjðtÞ; x4 for all ðr; t; xÞ a K � K � RN :
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We remark that if f is jointly convex, then

(J1) fðr; r; xÞ ¼ 0;
(J2) (subadditivity) fðr; t; xÞa fðr; s; xÞ þ fðs; t; xÞ for all r; s; t a K and x a RN ;
(J3) (simmetry) fðr; t; xÞ ¼ fðt; r;�xÞ for all r; t a K and x a RN ;
(J4) f is convex, positively 1-homogeneous in x.

Remark 2.9. As in Example 5.23 in [13] some classes of jointly convex func-
tions f can be obtained in the following way:

(E1) Let f : K � K � RN ! ½0;þlÞ

fðr; t; xÞ ¼ gðjr� tjÞjðxÞ;

where g is a lower semicontinuous, increasing and subadditive function with
gð0Þ ¼ 0 and j is lower semicontinuous, convex, positively 1-homogeneous
and even.

(E2) Let f : K � K � RN ! ½0;þlÞ

fðr; t; xÞ ¼ Qðr; tÞjðxÞ;

where Q : K � K ! ½0;þlÞ is a continuous function and it is a pseudo-
distance in K (i.e. a positive, symmetric function satisfying the triangle in-
equality) and j : RN ! ½0;þl� is lower semicontinuous, convex, positively
1-homogeneous and even.

3. Nonautonomous jointly convex functions

We give a definition of nonautonomous (NA) jointly convex function with
W 1;1 dependence of the approximating functions with respect to the spatial
variable x.

Definition 3.1. Let K HRm be a compact set and f : W� K � K � RN !
½0;þlÞ. We say that f is NA jointly convex if there exists a sequence of functions
gj : W� K ! RN such that

fðx; r; t; xÞ ¼ sup
j AN

3gjðx; rÞ � gjðx; tÞ; x4 for all ðx; r; t; xÞ a W� K � K � RN

and for every j a N the function gj satisfies conditions (a), (b), (c), (d) and (e) of
the vectorial chain rule or, if m ¼ 1, the function gj satisfies conditions (A), (B)
and (C) of the scalar chain rule.

Remark 3.2. We give some example of NA jointly convex functions. The
model case is

fðx; r; t; xÞ :¼ 3gðx; rÞ � gðx; tÞ; x4þ;
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where g satisfies conditions (a), (b), (c), (d) and (e) of the vectorial chain rule
(or (A), (B) and (C) of the scalar chain rule). A further example is

fðx; r; t; xÞ :¼ aðxÞjðr; t; xÞ;

where a is a nonnegative bounded W 1;1 function,

jðr; t; xÞ ¼ sup
j AN

3hjðrÞ � hjðtÞ; x4þ

and hj are C
1 functions with bounded derivatives.

Another example of a NA jointly convex function is given in the following
proposition.

Proposition 3.3. Let f : W� K � K � RN ! ½0;þlÞ be a locally bounded
function such that

fðx; r; t; xÞ :¼ Qðr; tÞjðx; xÞ;

where

ði1Þ Q is a continuous function and it is a pseudo-distance in K (i.e. a positive,
symmetric function satisfying the triangle inequality);

ði2Þ j is convex, positively 1-homogeneous and even in x and there exists a constant
L > 0 such that

jfðx; xÞ � fðx; x 0ÞaLjx� x 0j Ex a W Ex; x 0 a RN ;

ði3Þ for every x a RN the map x 7! jðx; xÞ belongs to W 1;1ðWÞ and there exists a
Borel set NHW with HN�1ðNÞ ¼ 0 such that jð�; xÞ is approximately con-
tinuous in WnN for all x a RN;

ði4Þ there exists a positive constant M such that for all x a RN

Z
W

j‘xjðx; xÞj dxaM;

ði5Þ for every t a K the map r 7! Qðr; tÞ belongs to C1ðWÞ, there exists a positive
constant C such that j‘rQðr; tÞjaC for every t; r a K and there exists a mod-
ulus of continuity ~oo such that

j‘rQðr; tÞ � ‘rQðr 0; tÞja ~ooðjr� r 0jÞ

for all t; r; r 0 a K.

Then f is a NA jointly convex function.
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Proof. By Proposition 2.2 there exists a sequence fakgHCl
c ðRNÞ, with ak b 0

and

Z
RN

akðxÞ dx ¼ 1 such that,

jðx; xÞ ¼ sup
k AN

3akðxÞ; x4;ð3:1Þ

where for every i ¼ 1; . . . ;N

ai;kðxÞ ¼ �
Z
RN

jðx; xÞ q

qxi
akðxÞ dx ¼

Z
RN

q

qxi
jðx; xÞakðxÞ dxð3:2Þ

and ak ¼ ða1;k; . . . ; aN;kÞ. By ði2Þ the functions ak are bounded and by ði3Þ and
ði4Þ the functions ak belong to W 1;1ðW;RNÞ and so there exists a Borel set
NHW with HN�1ðNÞ ¼ 0 such that ak are approximately continuous in WnN.
As in Example 5.23 (a) of [13], we can choose a countable dense sequence ch in
K such that

fðx; r; t; xÞ ¼ Qðr; tÞjðx; xÞ ¼ sup
h;k AN

½Qðr; chÞ � Qðt; chÞ�3akðxÞ; x4:

Then the functions

gh;kðx; rÞ :¼ Qðr; chÞakðxÞ

satisfy the conditions (a), (b), (c), (d) and (e) (or (A), (B) and (C) in the scalar
case). r

A first lower semicontinuity result can be obtained for NA jointly convex inte-
grands in the vectorial case.

Theorem 3.4. Let K HRm be a compact set and let f : W� K � K � RN !
½0;þlÞ be a locally bounded NA jointly convex function. Then, for every fungH
SBV pðW;RmÞ and u a SBV pðW;RmÞ such that unðxÞ ! uðxÞ for LN-a.e. x a W,
unðxÞ; uðxÞ a K for LN-a.e. x a W and

sup
n AN

kunkl þ
Z
W

j‘unj p dxþHN�1ðJunÞ
� �

< þl;

we have

Z
WBJu

fðx; u�; uþ; nuÞ dHN�1
a lim inf

n!þl

Z
WBJun

fðx; u�n ; uþn ; nunÞ dHN�1:ð3:3Þ

Proof. We follow the outlines of the proof of Theorem 5.22 in [13].
Let

C :¼ sup
n AN

kunkl þ
Z
W

j‘unj p dxþHN�1ðJunÞ
� �

:
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Since f is nonnegative, we have

fðx; r; t; xÞ ¼ sup
j AN

3gjðx; rÞ � gjðx; tÞ; x4þ

for all ðx; r; t; xÞ a W� K � K � RN . By Lemma 2.1, it is enough to prove the
lower semicontinuity for functionals of the type

FgðuÞ :¼
Z
Ju

3gðx; uþÞ � gðx; u�Þ; nu4þ dHN�1:ð3:4Þ

Let us now fix c a C1
0 ðWÞ, 0aca 1. The lower semicontinuity of the functional

in (3.4) will follow if we prove the continuity of

F c
g ðuÞ :¼

Z
Ju

3gðx; uþÞ � gðx; u�Þ; nu4cðxÞ dHN�1:ð3:5Þ

Using the chain rule formula (2.6) we have

Z
Ju

3gðx; uþÞ � gðx; u�Þ; nu4c dHN�1

¼ �
Z
W

3‘cðxÞ; gðx; uðxÞÞ4 dx

�
Z
W

cðxÞ divx gðx; uðxÞÞ dx�
Z
W

cðxÞ tr½‘rgðx; uðxÞÞ � ‘uðxÞ� dx:

Notice that

Z
W

3‘cðxÞ; gðx; uðxÞÞ4 dx ¼ lim
n!þl

Z
W

3‘cðxÞ; gðx; unðxÞÞ4 dx;ð3:6Þ

Z
W

cðxÞ divx gðx; uðxÞÞ dx ¼ lim
n!þl

Z
W

cðxÞ divx gðx; unðxÞÞ dx;ð3:7Þ

Z
W

cðxÞ tr½‘rgðx; uðxÞÞ � ‘uðxÞ� dxð3:8Þ

¼ lim
n!þl

Z
W

cðxÞ tr½‘rgðx; unðxÞÞ � ‘unðxÞ� dx:ð3:9Þ

In fact, by using (d), the sequence fgðx; unÞ � gðx; uÞg converges almost every-
where to 0 and is equibounded in LlðWÞ. Similarly, by using (b), fdivx gðx; unÞg
converges almost everywhere to divx gðx; uÞ and is equibounded by an L1-
function. Thus (3.6) and (3.7) hold. In order to prove equality (3.8), we observe
that, by using (e), c a LlðWÞ, ‘rgðx; unÞ ! ‘rgðx; uÞ strongly in Lp 0 ðW;MN�mÞ
and ‘un * ‘u weakly in LpðW;Mm�NÞ. By (3.6), (3.7) and (3.8) we have the
continuity of the functional F c

g and so the lower semicontinuity of Fg. r
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The same lower semicontinuity result holds for NA jointly convex integrands in
the scalar case (m ¼ 1), by repeating the proof and by using the scalar chain rule
(2.9) (Theorem 2.7) instead of the vectorial chain rule (2.6) (Theorem 2.6).

4. Nonautonomous BV or W 1;1
jointly convex functions

In this section we give a di¤erent definition of nonautonomous jointly convex
function with BV (or W 1;1) dependence with respect to the spatial variable x.

Let KHRm be a compact set and let f : W� K � K � RN ! ½0;þlÞ be a
locally bounded function.

Definition 4.1. The function f is BV jointly convex (respectively W 1;1 jointly
convex) if the following conditions hold

(a 0) for every ðr; t; xÞ a K � K � RN the function fð�; r; t; xÞ belongs to BV and
there exists a Borel set NHW with HN�1ðNÞ ¼ 0 such that fð�; r; t; xÞ ¼
f�ð�; r; t; xÞ (respectively fð�; r; t; xÞ ¼ ~ffð�; r; t; xÞ) in WnN for all ðr; t; xÞ a
K � K � RN ;

(b 0) for every x a WnN the function fðx; �; �; �Þ is jointly convex;
(g 0) there exists a positive constant L such that

jfðx; r; t; xÞ � fðx; r 0; t; xÞjaLjr� r 0j

for all x a WnN, for all r; r 0; t a K and x a RN .

Remark 4.2. We will prove (see Theorem 4.8 below) that for integrand BV
jointly convex the lower semicontinuity holds by requiring the further condition
that f is strictly positive for HN�1 almost everywhere x a W.

Remark 4.3. We give some examples of BV jointly convex functions.
The model case is

fðx; r; t; xÞ :¼ 3gðx; rÞ � gðx; tÞ; x4þ;ðA0Þ

with g satisfying the following conditions

(a 00) for every r a K the function gð�; rÞ is a locally bounded BV and there exists a
Borel set NHW with HN�1ðNÞ ¼ 0 such that gð�; rÞ ¼ g�ð�; rÞ in WnN for
all r a K ;

(g 00) there exists a positive constant L such that

jgðx; rÞ � gðx; r 0ÞjaLjr� r 0j

for all x a WnN, for all r; r 0 a K.

Another example is

fðx; r; t; xÞ :¼ aðxÞjðr; t; xÞ;ðA1Þ

12 v. de cicco



where a is a nonnegative bounded BV function coinciding with its lower ap-
proximate limit a� and j is a jointly convex function satisfying the following
condition:
there exists a positive constant L such that

jjðr; t; xÞ � jðr 0; t; xÞjaLjr� r 0j

for all r; r 0; t a K and x a RN .
Moreover let

fðx; r; t; xÞ :¼ gðjr� tjÞjðx; xÞ;ðA2Þ

where g : ½0;þl½ ! ½0;þl½ is a continuous, increasing and subadditive function
with gð0Þ ¼ 0 and gðsÞaCjsj for all s a R, and j is a bounded function, which
is convex, positively 1-homogeneous and even in x and it satisfies conditions (i3)
below.

Functions of the type (A2) are already considered in [5].
Another type of BV jointly convex function, which generalizes example (A2),

can be obtained as in the following way.
Let f : W� K � K � RN ! ½0;þlÞ

fðx; r; t; xÞ :¼ Qðr; tÞjðx; xÞ;ðA3Þ

where

ði1Þ Q is a Lipschitz continuous function and it is a pseudo-distance in K (i.e. a
positive, symmetric function satisfying the triangle inequality);

ði2Þ j is a bounded function and it is convex, positively 1-homogeneous and even
in x;

ði3Þ for every x a RN the map x 7! jðx; xÞ belongs to BV and there exists a Borel
set NHW with HN�1ðNÞ ¼ 0 such that jð�; xÞ coincides with its lower
approximate limit j�ð�; xÞ in WnN for all x a RN .

In order to study the lower semicontinuity, firstly we consider the model case

fðx; r; t; xÞ :¼ aðxÞjðr; t; xÞ;ð4:1Þ

where j is a jointly convex function and a is a locally bounded BV function.

Proposition 4.4. Let a : W ! ½0;þlÞ be a locally bounded BV function coin-
ciding with its lower approximate limit a� and let j : K � K � RN ! ½0;þlÞ be
a locally bounded jointly convex function. Then, for every fungH SBV pðW;RmÞ
and u a SBV pðW;RmÞ such that unðxÞ ! uðxÞ for LN-a.e. x a W, unðxÞ; uðxÞ a K
for LN-a.e. x a W and

sup
n AN

kunkl þ
Z
W

j‘unj p dxþHN�1ðJunÞ
� �

< þl;
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we have

Z
WBJu

aðxÞjðu�; uþ; nuÞ dHN�1
a lim inf

n!þl

Z
WBJun

aðxÞjðu�n ; uþn ; nunÞ dHN�1:ð4:2Þ

Proof. It su‰ces to note that by Theorem 2.4 the function a is lower semicon-
tinuous with respect to the 1-capacity. Therefore the conclusion of the proof is
obtained by using Lemma 2.5, Proposition 3.1 in [5] and Lemma 2.1. r

In order to treat the general case of BV jointly convex function firstly we study
integrands which are lower semicontinuous in x uniformly with respect to the
other variables. For these integrands the following approximation from below
holds with functions of the type (4.1).

Proposition 4.5. Let f : W� K � K � RN ! ½0;þlÞ be a locally bounded
Borel function such that

(A) given x0 a W, for all e > 0 there exists d > 0 such that

fðx0; r; t; xÞa ð1þ eÞfðx; r; t; xÞð4:3Þ

for all ðx; r; t; xÞ a W� K � K � RN such that jx� x0j < d;
(b) for every x a W the function fðx; �; �; �Þ is jointly convex.

Then there exists aj a Cl
0 ðWÞ, 0a aj a 1, ajðxjÞ ¼ 1 for some xj a W, and there

exists gj a CðK;RNÞ such that

fðx; r; t; xÞ ¼ sup
j AN

ajðxÞ3gjðrÞ � gjðtÞ; x4þ

for all ðx; r; t; xÞ a W� K � K � RN.

Proof. We adapt the proof of Proposition 6.40 of [27] (proven in [19]). Let G
be the class of all functions G : W� K � K � RN ! ½0;þlÞ of the form

Gðx; r; t; xÞ ¼ jðxÞ3gðrÞ � gðtÞ; x4þ Eðx; r; t; xÞ a W� K � K � RN ;

with g a CðK ;RNÞ, j a Cl
0 ðWÞ, 0a ja 1, jðxÞ ¼ 1 for some x a W, and

Gðx; r; t; xÞa fðx; r; t; xÞ Eðx; r; t; xÞ a W� K � K � RN :

We remark that GA j, since, for g ¼ 0, we have G ¼ 0 a G.
We will prove that

fðx; r; t; xÞ ¼ sup
G AG

Gðx; r; t; xÞ for all ðx; r; t; xÞ a W� K � K � RN :ð4:4Þ
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The inequality

sup
G AG

Gðx; r; t; xÞa fðx; r; t; xÞ

is due to the definition of G. Now, given x0 a W, we will prove the opposite
inequality

fðx0; r; t; xÞa sup
G AG

Gðx0; r; t; xÞ:

By using ðAÞ, for all e > 0 there exists d > 0 such that (4.3) holds. Let
j a Cl

0 ðWÞ, 0a ja 1, j ¼ 1 on Bðx0; d=2Þ and j ¼ 0 outside Bðx0; dÞ. Since
the function fðx0; �; �; �Þ is jointly convex, there exists a sequence of functions
gk a CðK;RNÞ such that

fðx0; r; t; xÞ ¼ sup
k AN

3gkðrÞ � gkðtÞ; x4þ for all ðr; t; xÞ a K � K � RN :

For every � > 0, if we define

G�
kðx; r; t; xÞ :¼ jðxÞ3ð1� �ÞðgkðrÞ � gkðtÞÞ; x4þ

for every ðx; r; t; xÞ a W� K � K � RN , then G�
k a f, G�

k a G and

ð1� �Þfðx0; r; t; xÞ ¼ sup
k AN

G�
kðx0; r; t; xÞa sup

G AG
Gðx0; r; t; xÞ;

hence, by letting � ! 0þ, (4.4) is obtained. By Lemma 3.2 of [4] there exists a
sequence Gj in G such that

Gjðx; r; t; xÞ ¼ ajðxÞ3gjðrÞ � gjðtÞ; x4þ

fðx; r; t; xÞ ¼ sup
j AN

Gjðx; r; t; xÞ;ð4:5Þ

for every ðx; r; t; xÞ a W� K � K � RN . r

Proposition 4.6. Let f : W� K � K � RN ! ½0;þlÞ be a locally bounded
Borel function such that condition ðAÞ and (b) hold. Then, for every fungH
SBV pðW;RmÞ and u a SBV pðW;RmÞ such that unðxÞ ! uðxÞ for LN-a.e. x a W,
unðxÞ; uðxÞ a K for LN-a.e. x a W and

sup
n AN

kunkl þ
Z
W

j‘unj p dxþHN�1ðJunÞ
� �

< þl;

we have

Z
WBJu

fðx; u�; uþ; nuÞ dHN�1
a lim inf

n!þl

Z
WBJun

fðx; u�n ; uþn ; nunÞ dHN�1:ð4:6Þ
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Proof. By Proposition 4.5, we have that there exist fajgHCl
0 ðWÞ, 0a aj a 1,

and gj a CðK ;RNÞ such that

fðx; r; t; xÞ ¼ sup
j AN

ajðxÞ3gjðrÞ � gjðtÞ; x4þð4:7Þ

for all ðx; r; t; xÞ a W� K � K � RN . For j a N, the function

fj : W� K � K � RN ! ½0;þlÞ

defined by fjðx; r; t; xÞ :¼ ajðxÞ3gjðrÞ � gjðtÞ; x4þ satisfies the assumptions of
Proposition 3.1 in [5]). Therefore, the corresponding functionals are all lower
semicontinuous and the thesis follows by Lemma 2.1. r

As in Theorem 3.4 of [2], it is possible to obtain the lower semicontinuity by
assuming, instead of hypothesis ðAÞ, some conditions which are easier to verify.

Proposition 4.7. Let f : W� K � K � RN ! ½0;þlÞ be a locally bounded
Borel function such that

(A1) fð�; �; �; xÞ is lower semicontinuous on W� K � K for every x a RN;
(A2) fðx; r; t; xÞ > 0 Eðx; r; t; xÞ a ðWnN0Þ � K � K � ðRNnf0gÞ with HN�1ðN0Þ

¼ 0;
(b) for every x a W the function fðx; �; �; �Þ is jointly convex;
(g 0) there exists a positive constant L such that

jfðx; r; t; xÞ � fðx; r 0; t; xÞjaLjr� r 0j

for all x a W, for all r; r 0; t a K and x a RN.

Then condition ðAÞ holds.

Proof. Notice that, since f is locally bounded and positively 1-homogeneous
with respect to x, for any open set W 0HHW, there exists a constant L 0 such that

0a fðx; r; t; xÞaL 0jxj for all ðx; r; t; xÞ a W 0 � K � K � RN :ð4:8Þ

Hence the convexity of f with respect to x immediately yields that, for all
ðx; r; t; x1Þ; ðx; r; t; x2Þ a W 0 � K � K � RN ,

jfðx; r; t; x1Þ � fðx; r; t; x2ÞjaL 0jx1 � x2j:ð4:9Þ

Then f is lower semicontinuous in W 0 � K � K � RN and fðx; �; �; �Þ is continuous
in K � K � RN for every x a W 0.

We claim that, given x0 a W 0nN0, for all e > 0, condition ðAÞ holds, i.e. there
exists d > 0 such that

fðx0; r; t; xÞa ð1þ eÞfðx; r; t; xÞð4:10Þ

for all ðx; r; t; xÞ a W 0 � K � K � RN such that jx� x0j < d.
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To prove this, we argue by contradiction, assuming that there exist x0 a W 0nN0

and e0 > 0 such that for any k a N, there exist sequences fxkgJW 0, with
jxk � x0j < 1=k, and fðrk; tk; xkÞgJK � K � RN such that

fðx0; rk; tk; xkÞ > ð1þ e0Þfðxk; rk; tk; xkÞ:ð4:11Þ

Clearly, by the positive 1-homogeneity of fðx; r; t; �Þ, we may assume that jxkj ¼ 1,
for every k a N; hence, up to a subsequence, there exists x0 a SN�1 such that
xk ! x0. Moreover, since fskg; ftkgJK , we may assume that also sk ! s0,
tk ! t0, with s0; t0 a K . Then, passing to the limit when k ! þl in (4.11) and
using the lower semicontinuity of f and the continuity of fðx0; �; �; �Þ, we get that

fðx0; r0; t0; x0Þ ¼ lim
k!þl

fðx0; rk; tk; xkÞ

b ð1þ e0Þ lim inf
k!þl

fðxk; rk; tk; xkÞb ð1þ e0Þfðx0; r0; t0; x0Þ:

Hence, fðx0; r0; t0; x0Þ ¼ 0, which is a contradiction, since x0 a W 0nN0; therefore
(4.10) holds.

The conclusion follows by letting W 0 % W. r

Theorem 4.8. Let f be a BV jointly convex function satisfying ðA2Þ. Then the
lower semicontinuity (4.6) holds.

Proof. Firstly, we claim that for every open set W 0 HHW, for every h a N there
exists an open set Ah HW 0 with N0BW 0 HAh, C1ðAhÞ < 1=h, such that the func-
tion f is lower semicontinuous in ðW 0nAhÞ � K � K � RN and, given x0 a W 0nN0,
for all e > 0 there exists d > 0 such that

fðx0; r; t; xÞa ð1þ eÞfðx; r; t; xÞð4:12Þ

for all ðx; r; t; xÞ a ðW 0nAhÞ � K � K � RN such that jx� x0j < d.
As in the proof of Theorem 4.7, conditions (4.8) and (4.9) hold in

ðW 0nN0Þ � K � K � RN . Let us now fix h, a sequence fxjg dense in RN and two
sequences frjg and ftjg dense in K . By Theorem 2.4 for every j a N the function
fð�; rj; tj; xjÞ is C1-quasi lower semicontinuous; then for all j there exists an open
set Aj;h HW 0, N0 HAj;h, with C1ðAj;hÞ < 1=ðh2 jÞ, such that fð�; rj ; tj; xjÞ is lower
semicontinuous in W 0nAj;h. Setting Ah ¼

S
j Aj;h, Ah is open, C1ðAhÞ < 1=h, and

making use of (4.9) and (g 0), one easily gets that fð�; r; t; xÞ is lower semicontinu-
ous in W 0nAh for every ðr; t; xÞ a K � K � RN and fð�; �; �; xÞ is lower semicontin-
uous in ðW 0nAhÞ � K � K for every x a RN (we can assume that Ah is a decreas-
ing sequence of open sets). Hence, as in the proof of Theorem 4.7, the claim
holds.

Therefore by Proposition 4.5 there exist fah
j gHCl

0 ðW 0Þ, 0a ah
j a 1, and

gh
j a CðK ;RNÞ such that

fðx; r; t; xÞ ¼ sup
j AN

ajðxÞ3gh
j ðrÞ � gh

j ðtÞ; x4þ
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for all ðx; r; t; xÞ a ðW 0nAhÞ � K � K � RN : Moreover for every j a N there exists
xh
j a W 0nAh such that ah

j ðxh
j Þ ¼ 1. If we set

ch
j ðr; t; xÞ ¼ 3gh

j ðrÞ � gh
j ðtÞ; x4þ;

we have that ch
j b 0, ch

j is a locally bounded jointly convex function and

fðx; r; t; xÞ ¼ sup
j AN

ah
j ðxÞch

j ðr; t; xÞ

for all ðx; r; t; xÞ a ðW 0nAhÞ � K � K � RN .
We will prove that there exists a constant C > 0 (independent of h) such that

sup
j AN

ch
j ðr; t; nÞaC Eðr; t; nÞ a K � K � SN�1:ð4:13Þ

Since f is locally bounded, there exists a constant C > 0 such that fðx; r; t; nÞaC
for every ðx; r; t; nÞ a W 0 �K �K �SN�1. Then for every ðr; t; nÞ a K �K �SN�1

and for every j; h a N we have

ch
j ðr; t; nÞ ¼ ah

j ðxh
j Þch

j ðr; t; nÞa fðxh
j ; r; t; nÞaC:

Then (4.13) holds.
Let jh a W 1;1ðRNÞ be a capacitary quasi-potential of Ah. More precisely, let

us assume that there exists a Borel set Nh HRN , with C1ðNhÞ ¼ HN�1ðNhÞ ¼ 0,
such that 0a ~jjhðxÞa 1 for every x a RNnNh, ~jjh ¼ 1 on AhnNh,

Z
RN

j‘~jjhj dxaC1ðAhÞ þ
1

h
<

2

h

and by Lemma 1.2 in [16], ~jjhðxÞ tends to 0, as h ! þl, for HN�1 almost every
x a W. Moreover, setting ~NN ¼

S
h Nh, C1ð ~NNÞ ¼ HN�1ð ~NNÞ ¼ 0, for every j a N

and for every x a W 0n ~NN we set

~aah
j ðxÞ :¼ maxf0; ah

j ðxÞ � ~jjhðxÞg:ð4:14Þ

Since 0a ~jjhðxÞa 1, we have

0a ~aah
j ðxÞa 1; ah

j ðxÞb ~aah
j ðxÞb ah

j ðxÞ � ~jjhðxÞ for all x a W 0ð4:15Þ

and

fðx; r; t; xÞb ~aah
j ðxÞch

j ðr; t; xÞð4:16Þ

for all ðx; r; t; xÞ a W 0 � K � K � RN : Finally, we set for all h; j a N

fh
j ðx; r; t; xÞ ¼ ~aah

j ðxÞch
j ðr; t; xÞ; fhðx; r; t; xÞ ¼ sup

j AN
fh
j ðx; r; t; xÞ;
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for all ðx; r; t; xÞ a W 0 � K � K � RN . We notice that fh
j satisfies all the assump-

tions of Proposition 4.4. Hence the corresponding functional

Ff h
j
ðuÞ :¼

Z
W 0BJu

fh
j ðx; u�; uþ; nuÞ dHN�1

is lower semicontinuous; by Lemma 2.1 the same holds for the functional

FfhðuÞ :¼
Z
W 0BJu

fhðx; u�; uþ; nuÞ dHN�1:

Moreover, since

fh
j ðx; r; t; xÞb ½ah

j ðxÞ � ~jjhðxÞ�ch
j ðr; t; xÞð4:17Þ

for all ðx; r; t; xÞ a W 0 � K � K � RN , we have that

fhðx; r; t; xÞb fðx; r; t; xÞ � ~jjhðxÞchðr; t; xÞð4:18Þ

for all ðx; r; t; xÞ a W 0 � K � K � RN , where ch :¼ supj AN ch
j ; by (4.13) there ex-

ists a constant C > 0 such that

0achðr; t; nÞaCð4:19Þ

for all ðr; t; nÞ a K � K � RN with jnj ¼ 1.
From the lower semicontinuity of FfhðuÞ, from (4.18) and (4.19), we then get

that

lim inf
n!þl

Z
W 0BJun

fðx; u�n ; uþn ; nunÞ dHN�1

b lim inf
n!þl

Z
W 0BJun

fhðx; u�n ; uþn ; nunÞ dHN�1
b

Z
W 0BJu

fhðx; u�; uþ; nuÞ dHN�1

b

Z
ðW 0nAhÞBJu

fðx; u�; uþ; nuÞ dHN�1 �
Z
W 0BJu

~jjhðxÞchðu�; uþ; nuÞ dHN�1

b

Z
ðW 0nAhÞBJu

fðx; u�; uþ; nuÞ dHN�1 � C

Z
W 0BJu

~jjhðxÞ dHN�1:

Since ~jjh ! 0 strongly in W 1;1ðRNÞ as h ! l, we have that, up to a subse-
quence, ~jjhðxÞ ! 0 for HN�1-almost every x a RN (see Proposition 1.2 in [16]).
Therefore, by letting h ! þl and recalling that Ahþ1 HAh for all h and that
HN�1ð

T
h AhÞ ¼ 0, from the Dominated Convergence Theorem we get (4.6) in

W 0. Hence, by letting W 0 % W, the thesis is achieved. r
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