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Abstract. — We present some applications of the notion of numerosity to measure theory,

including the construction of a non-Archimedean model for the probability of infinite sequences of
coin tosses1.
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Introduction

The idea of numerosity as a notion of measure for the size of infinite sets was
introduced by the first named author in [1], and then given sound logical foun-
dations in [3]. A theory of numerosities have been then developed in a sequel of
papers (see, e.g., [5, 8]). The main feature of numerosities is that they satisfy the
same basic formal properties as finite cardinalities, including the fact that proper
subsets must have strictly smaller sizes. This has to be contrasted with Cantorian
cardinalities, where every infinite set have proper subsets of the same cardinality.

In this paper we will present three applications of numerosity in topics of mea-
sure theory. The first one is about the existence of ‘‘inner measures’’ associated to
any given non-atomic pre-measure. The second application is focused on sets of
real numbers. We show that elementary numerosities provide a useful tool with
really strong compatibility properties with respect to the Lebesgue measure. For
instance, intervals of equal length can be given the same numerosity, and any in-
terval of rational length p=q has a numerosity which is exactly p=q. We derive
consequences about the existence of totally defined finitely additive measures
that extend the Lebesgue measure. Finally, the third application is about non-
Archimedean probability. Following ideas from [6], we consider a model for infi-
nite sequences of coin tosses which is coherent with the original view of Laplace.
Indeed, probability of an event is defined as the numerosity of positive outcomes

1This paper is related to a talk given by the first-named author at the Accademia dei Lincei on

November 26, 2013.



divided by the numerosity of all possible outcomes; moreover, the probability of
cylindrical sets exactly coincides with the usual Kolmogorov probability.

1. Terminology and preliminary notions

We fix here our terminology, and recall a few basic facts from measure theory
and numerosity theory that will be used in the sequel.

Let us first agree on notation. We write AJB to mean that A is a subset of B,
and we write AHB to mean that A is a proper subset of B. The complement of
a set A is denoted by Ac, and its powerset is denoted by PðAÞ. We use the symbol
t to denote disjoint unions. By N we denote the set of positive integers. For an
ordered field F, we denote by ½0;lÞF ¼ fx a F j xb 0g the set of its non-negative
elements. We will write ½0;þl�R to denote the set of non-negative real numbers
plus the symbol þl, where we agree that xþl ¼ þlþ x ¼ þlþl ¼ þl
for all x a R.

Definition 1.1. A finitely additive measure is a triple ðW;A; mÞ where:

• The space W is a nonempty set;

• A is an algebra of sets over W, i.e. a nonempty family of subsets of W which is
closed under finite unions and intersections, and under relative complements,
i.e. A;B a A ) AAB, ABB, AnB a A. (Actually, the closure under intersec-
tions follow from the other two properties, since ABB ¼ AnðAnBÞ.)

• m : A ! ½0;þl�R is an additive function, i.e. mðAABÞ ¼ mðAÞ þ mðBÞ when-
ever A;B a A are disjoint. (Such functions m are sometimes called contents in
the literature.) We also assume that mðjÞ ¼ 0.

The measure ðW;A; mÞ is called non-atomic when all finite sets in A have mea-
sure zero. We say that ðW;A; mÞ is a probability measure when m : A ! ½0; 1�R
takes values in the unit interval, and mðWÞ ¼ 1.

For simplicity, in the following we will often identify the triple ðW;A; mÞ with
the function m.

Remark that a finitely additive measure m is necessarily monotone, i.e.

• mðAÞa mðBÞ for all A;B a A with AJB.

Definition 1.2. A finitely additive measure m defined on an algebra of sets A
is called a pre-measure if it is s-additive, i.e. if for every countable family
fAngn AN JA of pairwise disjoint sets whose union lies in A, it holds:

m
� G

n AN

An

�
¼

Xl
n¼1

mðAnÞ:

A measure is a pre-measure which is defined on a s-algebra, i.e. on an algebra
of sets which is closed under countable unions and intersections.
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Definition 1.3. An outer measure on a set W is a function

M : PðWÞ ! ½0;þl�R

defined on all subsets of W which is monotone and s-subadditive, i.e.

M
� [

n AN

An

�
a

X
n AN

MðAnÞ:

It is also assumed that MðjÞ ¼ 0.

Definition 1.4. Given an outer measure M on W, the following family is
called the Caratheodory s-algebra associated to M:

CM ¼ fX JW jMðY Þ ¼ MðX BYÞ þMðXnY Þ for all Y JWg:

A well known theorem of Caratheodory states that the above family is actu-
ally a s-algebra, and that the restriction of M to CM is a complete measure, i.e. a
measure where MðXÞ ¼ 0 implies Y a CM for all Y JX . This result is usually
combined with the property that every pre-measure m over a ring A of subsets
of W is canonically extended to the outer measure m : PðWÞ ! ½0;l�R defined
by putting:

mðXÞ ¼ inf
Xl
n¼1

mðAnÞ j fAngn JA & X J
[
n AN

An

( )
:

Indeed, a fundamental result in measure theory is that the above function m is
actually an outer measure that extends m, and that the associated Caratheodory
s-algebra Cm includes A. Moreover, such an outer measure m is regular, i.e. for
all X a PðWÞ there exists C a Cm such that X JC and mðX Þ ¼ mðCÞ. (See e.g.
[9] Prop. 20.9.)

Next, we will recall the notion of elementary numerosity, a variant of the
notion of numerosity that was introduced in [2]. The underlying idea is that of
refining the notion of finitely additive measure in such a way that also single
points count. To this end, one needs to consider ordered fields that extend the
real line.

Recall that every ordered field F that properly extend R is necessarily non-
Archimedean, in that it contains infinitesimal numbers eA 0 such that �1=n <
e < 1=n for all n a N. Two elements x; z a F are called infinitely close if x� z
is infinitesimal; in this case, we write xQz. A number x a F is called finite if
�n < x < n for some n a N, and it is called infinite otherwise. Clearly, a
number x is infinite if and only if its reciprocal 1=x is infinitesimal. We remark
that every finite x a F is infinitely close to a unique real number r, namely
r ¼ inffx a R j x > xg. Such a number r is called the standard part of x, and
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is denoted by r ¼ stðxÞ. Notice that stðxþ zÞ ¼ stðxÞ þ stðzÞ and stðx � zÞ ¼
stðxÞ � stðzÞ for all finite x, z. The notion of standard part can be extended to the
infinite elements x a F by setting stðxÞ ¼ þl when x is positive, and stðxÞ ¼ �l
when x is negative.

Definition 1.5. An elementary numerosity on the set W is a function

n : PðWÞ ! ½0;þlÞF

defined on all subsets of W, taking values in an ordered field FKR that extends
the real line, and that satisfies the following two properties:

1. Additivity: nðAABÞ ¼ nðAÞ þ nðBÞ whenever ABB ¼ j;
2. Unit size: nðfxgÞ ¼ 1 for every point x a W.

Notice that if W is a finite set, then the only elementary numerosity is the finite
cardinality. On the other hand, when W is infinite, then the numerosity function
must also take ‘‘infinite’’ values, and so the field F must be non-Archimedean. It
is worth remarking that also Cantorian cardinality satisfies the above properties
(1), (2), but the sum operation between cardinals is really far from being a ring
operation. (Recall that for infinite cardinals k, n it holds kþ n ¼ maxfk; ng.)

As straight consequences of the definition, we obtain that elementary numer-
osities can be seen as generalizations of finite cardinalities. Indeed, one can easily
show that

• nðAÞ ¼ 0 if and only if A ¼ j;
• If AHB is a proper subset, then nðAÞ < nðBÞ;
• If F is a finite set of cardinality n, then nðF Þ ¼ n.

Given an elementary numerosity and a ‘‘measure unit’’ b a F, there is a canon-
ical way to construct a (real-valued) finitely additive measure.

Definition 1.6. If n : PðWÞ ! ½0;þlÞF is an elementary numerosity, and
b a F is a positive number, the map nb : PðWÞ ! ½0;þl�R is defined by setting

nbðAÞ ¼ st
� nðAÞ

b

�
:

Proposition 1.7. nb is a finitely additive measure. Moreover, nb is non-atomic
if and only if b is an infinite number.

Proof. For all disjoint A;BJW, one has:

nbðAABÞ ¼ st
� nðAABÞ

b

�
¼ st

� nðAÞ
b

þ nðBÞ
b

�

¼ st
� nðAÞ

b

�
þ st

� nðBÞ
b

�
¼ nbðAÞ þ nbðBÞ:
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Notice that the measure nb is non-atomic if and only if nbðfxgÞ ¼ stð1=bÞ ¼ 0,
and this holds if and only if b is infinite. r

The relevant result about elementary numerosities that we will use in the
sequel, is the following representation theorem, that was proved in [2]:

Theorem 1.8. Let ðW;A; mÞ be a non-atomic finitely additive measure on the
infinite set W, and let BJA be a subalgebra that does not contain nonempty null
sets. Then there exist

• a non-Archimedean field FIR;

• an elementary numerosity n : PðWÞ ! ½0;þlÞF;

such that:

1. mðBÞ ¼ mðB 0Þ , nðBÞ ¼ nðB 0Þ for all B;B 0 a B of finite measure;
2. For every set Z a A of positive finite measure, if b ¼ nðZÞ=mðZÞ then mðAÞ ¼

nbðAÞ for all A a A.

2. Numerosities and inner measures

In this section, we will use elementary numerosities to prove a general existence
result about ‘‘inner’’ measures.

Theorem 2.1. Let A be an algebra of subsets of W and let m : A ! ½0;þl�R be
a non-atomic pre-measure. Assume that m is non-trivial, in the sense that there are
sets Z a A with 0 < mðZÞ < þl. Then, along with the associated outer measure m,
there exists an ‘‘inner’’ finitely additive measure

m : PðWÞ ! ½0;þl�R

such that:

1. mðCÞ ¼ mðCÞ for all C a Cm, the Caratheodory s-algebra associated to m. In
particular, mðAÞ ¼ mðAÞ ¼ mðAÞ for all A a A.

2. mðXÞa mðX Þ for all X JW.

Proof. By Caratheodory extension theorem, the restriction of m to Cm is a mea-
sure that agrees with m on A. Now we apply Theorem 1.8 to the measure
ðCm;A; mÞ, and obtain the existence of an elementary numerosity n : PðWÞ !
½0;þlÞF. By property (2) in the Theorem, if we pick any number b ¼ nðZÞ

mðZÞ where

0 < mðZÞ < þl, then nbðCÞ ¼ mðCÞ for all C a Cm. We claim that m ¼ nb : PðWÞ
! ½0;þl�R is the desired ‘‘inner’’ finitely additive measure.

Property (1) is trivially satisfied by our definition of m, so let us turn to (2).
For every X JW, by definition of outer measure we have that for every e > 0
there exists a countable union A ¼

Sl
n¼1 An of sets An a A such that AKX andPl

n¼1 mðAnÞa mðX Þ þ e. Notice that A belongs to the s-algebra generated by
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A, and hence A a Cm. In consequence, mðAÞ ¼ nbðAÞ ¼ mðAÞ. Finally, by monot-
onicity of the finitely additive measure m, and by s-subadditivity of the outer
measure m, we obtain:

mðX Þa mðAÞ ¼ mðAÞa
Xl
n¼1

mðAnÞ ¼
Xl
n¼1

mðAnÞa mðX Þ þ e:

As e > 0 is arbitrary, the desired inequality mðX Þa mðXÞ follows. r

It seems of some interest to investigate the properties of the extension of the
Caratheodory algebra given by family of all sets for which the outer measure
coincides with the above ‘‘inner measure’’:

CðnbÞ ¼ fX JW j mðX Þ ¼ mðX Þg:

Clearly, the properties of CðnbÞ may depend on the choice of the elementary
numerosity n.

Theorem 2.1 ensures that the inclusion CmJCðnbÞ always holds. Moreover,
this inclusion is an equality if and only if all X B Cm satisfy the inequality
mðX Þ < mðX Þ. It turns out that, when mðWÞ < þl, this property is equivalent to
a number of other statements.

Proposition 2.2. If mðWÞ < þl, then the following are equivalent:

1. Cm ¼ CðnbÞ.
2. X B Cm ) mðXÞ < mðX Þ and mðX cÞ < mðX cÞ.
3. mðX Þ ¼ mðX Þ , mðX cÞ ¼ mðX cÞ.
4. mðX Þ ¼ 0 , mðX Þ ¼ 0.

If mðWÞ ¼ þl, then ð1Þ , ð2Þ ) ð3Þ ) ð4Þ.

Proof. We have already seen that (1) and (2) are equivalent.
ð2Þ ) ð3Þ. Suppose towards a contradiction that (2) holds but (3) is false. The

latter hypothesis ensures the existence of a set X such that mðX Þ ¼ mðX Þ and
mðX cÞ < mðX cÞ. Thanks to Theorem 2.1, we deduce that X B Cm. By (2) we get

the contradiction mðX Þ < mðX Þ.
ð3Þ ) ð4Þ. The implication mðX Þ ¼ 0 ) mðXÞ ¼ 0 is always true. On the other

hand, if mðX Þ ¼ 0, then mðX cÞ ¼ mðWÞ ¼ mðWÞ. By the inequality mðX cÞa mðX cÞ,
we deduce mðX cÞ ¼ mðWÞ ¼ mðX cÞ and, thanks to (3), also mðX Þ ¼ 0 follows.

ð4Þ ) ð2Þ, under the hypothesis that mðWÞ < þl. Suppose towards a contra-
diction that (4) holds but (2) is false. The latter hypothesis ensures the existence of
a set X B Cm satisfying mðX Þ ¼ mðX Þ and mðX cÞ < mðX cÞ. Thanks to Propositions
20.9 and 20.11 of [9], we can find a set A a Cm satisfying AIX , mðAÞ ¼ mðXÞ
and mðAnX Þ > 0. From the hypothesis mðX Þ ¼ mðX Þ we obtain the following
equalities:

mðX Þ ¼ mðX Þ ¼ mðAÞ ¼ mðAÞ:
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The above equalities and the hypothesis mðWÞ < þl imply mðAnXÞ ¼ 0. By (4),
we obtain the contradiction mðAnXÞ ¼ 0. r

3. Numerosities and Lebesgue measure

In this section, we show that elementary numerosities exist which are consistent
with Lebesgue measure in a strong sense. Precisely, the following result holds:

Theorem 3.1. Let ðR;L; mLÞ be the Lebesgue measure over R. Then there exists
an elementary numerosity n : PðRÞ ! ½0;þlÞF such that:

1. nð½x; xþ aÞÞ ¼ nð½y; yþ aÞÞ for all x; y a R and for all a > 0.
2. nð½x; xþ aÞÞ ¼ a � nð½0; 1ÞÞ for all rational numbers a > 0.

3. st
� nðXÞ
nð½0;1ÞÞ

�
¼ mLðX Þ for all X a L.

4. st
� nðXÞ
nð½0;1ÞÞ

�
a mLðX Þ for all X JR.

Proof. Notice that the family of half-open intervals

I ¼ f½x; xþ aÞ j x a R & a > 0g

generates a subalgebra BHL whose nonempty sets have all finite positive
measure. Then, by combining Theorems 1.8 and 2.1, we obtain the existence of
an elementary numerosity n : PðRÞ ! ½0;þlÞF such that, for b ¼ nð½0; 1ÞÞ ¼
nð½0;1ÞÞ
mLð½0;1ÞÞ

, one has:

(i) nðXÞ ¼ nðYÞ for all X ;Y a B with mLðXÞ ¼ mLðYÞ;
(ii) nbðXÞ ¼ mLðXÞ for all X a L;
(iii) nbðXÞa mLðX Þ for all X JR.

Since ½x; xþ aÞ a B for all x a R and for all a > 0, property (1) directly
follows from (i). In order to prove (2), it is enough to show that nð½0; aÞÞ ¼
a � nð½0; 1ÞÞ for all positive a a Q. Given p; q a N, by (1) and additivity we have
that

n
�h

0;
p

q

��
¼ n

� Gp�1

i¼0

h i
q
;
i þ 1

q

��
¼

Xp�1

i¼0

n
�h i

q
;
i þ 1

q

��
¼ p � n

�h
0;
1

q

��
:

In particular, for p ¼ q we get that nð½0; 1ÞÞ ¼ q � nð½0; 1=qÞÞ, and hence property
(2) follows:

n
�h

0;
p

q

��
¼ p

q
� nð½0; 1ÞÞ:

Finally, (ii) and (iii) directly correspond to properties (3) and (4), respectively.
r
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Remark 3.2. Let fXn j n a Ng be a countable family of isometric, pairwise dis-
joint, non-Lebesgue measurable sets such that the union A ¼

S
n AN Xn is mea-

surable with positive finite measure. (E.g., one can consider a Vitali set on ½0; 1Þ
and take the countable family of its rational translations modulo 1.) Let n be an
elementary numerosity as given by the above theorem, and consider the finitely
additive measure nb with b ¼ nðAÞ=mðAÞ. Then, one and only one of the follow-
ing holds:

• nbðXnÞ ¼ 0 for all n a N. In this case, the measure nb is not s-additive because
nbðAÞ ¼ mLðAÞ > 0.

• nbðXnÞ ¼ e > 0 for some n a N. In this case, nb is not invariant with respect
to isometries, as otherwise one would get the contradiction mLðAÞ ¼ nbðAÞbP

n AN nbðXnÞ ¼
P

n AN e ¼ þl.

4. Numerosities and probability of infinite coin tosses

The last application of elementary numerosities that we present in this paper is
about the existence of a non-Archimedean probability for infinite sequences of
coin tosses, which we propose as a sound mathematical model for Laplace’s
original ideas.

Recall the Kolmogorovian framework:

• The sample space

W ¼ fH;TgN ¼ fo jo : N ! fH;Tgg

is the set of sequences which take either H (‘‘head’’) or T (‘‘tail’’) as values.

• A cylinder set of codimension n is a set of the following form, where we agree
that i1 < � � � < in.

C
ði1;...; inÞ
ðt1;...; tnÞ ¼ fo a W joðisÞ ¼ ts for s ¼ 1; . . . ; ng

From the probabilistic point of view, the cylinder set C
ði1;...; inÞ
ðt1;...; tnÞ represents the

event that for every s ¼ 1; . . . ; n, the is-th coin toss gives ts as outcome. Notice
that the family C of all finite disjoint unions of cylinder sets is an algebra of sets
over W.

• The function mC : C ! ½0; 1� is defined by setting:

mCðC
ði1;...; inÞ
ðt1;...; tnÞÞ ¼ 2�n

for all cylindrical sets, and then it is extended to a generic element of C by finite
additivity:

mCðC
ði1;...; inÞ
ðt1;...; tnÞ A � � �AC

ð j1;...; imÞ
ðu1;...;umÞÞ ¼ mCðC

ði1;...; inÞ
ðt1;...; tnÞÞ þ � � � þ mCðC

ð j1;...; imÞ
ðu1;...;umÞÞ:

It is shown that mC is a probability pre-measure on the ring C.
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Let A be the s-algebra generated by the ring of cylinder sets C, and let
m : A ! ½0; 1� be the unique probability measure that extends mC , as guaranteed
by Caratheodory extension theorem. The triple ðW;A; mÞ is named the Kolmo-
gorovian probability for infinite sequences of coin tosses.

In [6] it is proved the existence of an elementary numerosity n : PðWÞ !
½0;þlÞF which is coherent with the pre-measure mC . Namely, by considering
the ratio PðEÞ ¼ nðEÞ=nðWÞ between the numerosity of the given event E and
the numerosity of the whole space W, then one obtains a non-Archimedean finitely
additive probability

P : PðWÞ ! ½0; 1�F

that satisfies the following properties:

1. If F HW is finite, then for all EJW, the conditional probability

PðE jFÞ ¼ jEBF j
jF j :

2. P agrees with mC over all cylindrical sets:

PðC ði1;...; inÞ
ðt1;...; tnÞÞ ¼ mCðC

ði1;...; inÞ
ðt1;...; tnÞÞ ¼ 2�n:

We are now able to refine this result by showing that, up to infinitesimals, we
can take P to agree with m on the whole s-algebra A.

Theorem 4.1. Let ðW;A; mÞ be the Kolmogorovian probability for infinite coin
tosses. Then there exists an elementary numerosity n : PðWÞ ! ½0;þlÞF such
that the corresponding non-Archimedean probability PðEÞ ¼ nðEÞ=nðWÞ satisfies
the above properties (1) and (2), along with the additional condition:

(3) stðPðEÞÞ ¼ mðEÞ for all E a A.

Proof. Recall that the family CHA of finite disjoint unions of cylinder sets
is an algebra whose nonempty sets have all positive measure. So, by applying
Theorems 1.8 and 2.1, we obtain an elementary numerosity n : PðWÞ ! ½0;þlÞF
such that for every positive number of the form b ¼ nðZÞ

mðZÞ (where 0 < mðZÞ<þl),
one has:

(i) nðCÞ ¼ nðC 0Þ whenever C;C 0 a C are such that mðCÞ ¼ mðC 0Þ;
(ii) nbðEÞ ¼ mðEÞ for all E a A.

Property (1) trivially follows by recalling that elementary numerosities of finite
sets agree with cardinality:

PðE jFÞ ¼ PðEBF Þ
PðF Þ ¼

nðEBFÞ
nðWÞ
nðFÞ
nðWÞ

¼ nðEBF Þ
nðFÞ ¼ jEBF j

jF j :
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Let us now turn to condition (2). Notice that for any fixed n-tuple of indices
ði1; . . . ; inÞ:

• There are exactly 2n-many di¤erent n-tuples ðt1; . . . ; tnÞ of heads and tails;

• The associated cylinder sets C
ði1;...; inÞ
ðt1;...; tnÞ are pairwise disjoint and their union

equals the whole sample space W.

By (i), all those cylinder sets of codimension n have the same numerosity

h ¼ nðC ði1;...; inÞ
ðt1;...; tnÞÞ and so, by additivity, it must be nðWÞ ¼ 2n � h. We conclude

that

PðC ði1;...; inÞ
ðt1;...; tkÞÞ ¼

nðC ði1;...; inÞ
ðt1;...; tkÞÞ
nðWÞ ¼ h

2n � h ¼ 2�n:

We are left to prove (3). By taking as b ¼ nðWÞ
mðWÞ ¼ nðWÞ, property (ii) ensures

that for every E a A:

mðEÞ ¼ nbðEÞ ¼ st
� nðEÞ

b

�
¼ st

� nðEÞ
nðWÞ

�
¼ stðPðEÞÞ: r
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