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Abstract. — We consider a class of quasilinear elliptic equations whose principal part includes

the p-area (for 1 < p < l) and the p-Laplace (for 1 < pa 2) operator. For the critical points of
the associated functional, we provide estimates of the corresponding critical polynomial.
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1. Introduction

In this note we outline some results that are discussed and proved in a more
complete form in [9].

Consider the quasilinear elliptic problem

�div½ðk2 þ j‘uj2Þ
p�2
2 ‘u� þ gðx; uÞ ¼ 0 in W;

u ¼ 0 on qW;

(
ð1:1Þ

where W is a bounded open subset of RN , Nb 1, with qW of class C1;a for some
a a �0; 1�, while p > 1 and kb 0 are real numbers.

Under suitable assumptions on g, weak solutions u of ð1:1Þ correspond to
critical points of the C1-functional f : W 1;p

0 ðWÞ ! R defined as

f ðuÞ ¼
Z
W

Cp;kð‘uÞ dxþ
Z
W

Gðx; uÞ dx;ð1:2Þ

where

Cp;kðxÞ ¼
1

p
½ðk2 þ jxj2Þ

p
2 � k p�; Gðx; sÞ ¼

Z s

0

gðx; tÞ dt:

About the principal part of the equation, the reference cases are k ¼ 1, which
yields the p-area operator, and k ¼ 0, which yields the p-Laplace operator. In
the case p ¼ 2 the value of k is irrelevant.



In this work we aim to describe the behavior of the functional f near a critical
point u0, checking the critical polynomial of f at u0 (see [4, 6, 21]) via Hessian-
type notions.

For functionals defined on Banach spaces, serious di‰culties arise in extend-
ing Morse theory (see [26, 25, 5, 6, 7]). More precisely, by standard deformation
results, which hold also in general Banach spaces, one can prove the so-called
Morse relations, which can be written as

X
f 0ðuÞ¼0

aa f ðuÞab

ið f ; uÞðtÞ ¼
Xl
m¼0

bmt
m þ ð1þ tÞQðtÞ;

where ðbmÞ is the sequence of the Betti numbers of a pair of sublevels ðf f a bg;
f f < agÞ and ið f ; uÞðtÞ is the (generalized) critical polynomial of f at u (see e.g.
[6, Theorem I.4.3]). The problem, in the extension from Hilbert to Banach spaces,
concerns the estimate of the critical polynomials, by the Hessian of f or some re-
lated concept. In a Hilbert setting, the classical Morse lemma and the generalized
Morse lemma [17] provide a satisfactory answer. For Banach spaces, a similar
general result is so far not known.

More recently, for p > 2 and k > 0, the first and the last author have proved
an extension of the Morse Lemma and established a connection between the crit-
ical polynomial and the Morse index (see [10, 11, 12]), taking advantage of the
fact that, under suitable assumptions on g, the functional f is actually of class
C2 on W

1;p
0 ðWÞ and that

C 00
p;kðhÞ½x�

2
b np;kjxj2 with np;k > 0:

Moreover, an approximation result of Marino-Prodi type is proved in [13].
On the contrary, in the case 1 < p < 2 the functional f is not of class C2 on

W
1;p
0 ðWÞ. For k ¼ 0, even the function Cp;k is not of class C2 on RN . This adds

new di‰culties to the problem.
For any p > 1 estimates of the critical polynomial associated to p-Laplacian

equations on a ball are obtained by Aftalion and Pacella [2] at the positive radial
solutions u such that j‘uðxÞjA 0 for xA 0. Moreover, estimates in the line of
the Morse lemma and of the generalized Morse lemma for quasilinear elliptic
equations with natural growth conditions have been proved in [14, 19].

Our purpose is to consider a class of functionals including (1.2) in the two
cases:

• 1 < p < l and k > 0;

• 1 < pa 2 and k ¼ 0.

Actually, we are mainly interested in the case 1 < pa 2 also when k > 0, but
our results are new also for p > 2, as our assumptions are less restrictive than in
previous papers. On the contrary, our results do not cover the case p > 2 with
k ¼ 0.

50 s. cingolani, m. degiovanni and g. vannella



More precisely, define

f ðuÞ ¼
Z
W

Cð‘uÞ dxþ
Z
W

Gðx; uÞ dx:ð1:3Þ

We will assume that:

ðC1Þ the function C : RN ! R is of class C1 on RN with Cð0Þ ¼ 0 and
‘Cð0Þ ¼ 0; moreover, there exist p > 1, kb 0 and 0 < naC such that
the functions ðC� nCp;kÞ and ðCCp;k �CÞ are both convex;

ðC2Þ if k ¼ 0 and 1 < p < 2, then C is of class C2 on RNnf0g; otherwise, C is
of class C2 on RN ;

ðg1Þ the function g : W� R ! R is such that gð�; sÞ is measurable for every s a R
and gðx; �Þ is of class C1 for a.e. x a W; if paN, we also assume there exist
C; q > 0 such that

jgðx; sÞjaCð1þ jsjqÞ for a:e: x a W and every s a R;

where qa p� � 1 ¼ Np

N�p
� 1 if p < N, while no restriction on q is required

if p ¼ N;
ðg2Þ for every S > 0 there exists CS > 0 such that

jDsgðx; sÞjaCS for a:e: x a W and every s a R with jsjaS:

Under these assumptions, it is easily seen that f : W 1;p
0 ðWÞ ! R is of class C1,

while it is of class C2 if p > maxfN; 2g. Moreover, even in the case g ¼ 0, f is
never of class C2 for 1 < p < 2 and is of class C2 in the case p ¼ 2 i¤ C is a
quadratic form on RN (see [1, Proposition 3.2]).

Now, let u0 a W
1;p
0 ðWÞ be a critical point of the functional f , namely a weak

solution of

�div½‘Cð‘uÞ� þ gðx; uÞ ¼ 0 in W;

u ¼ 0 on qW:

�

According to [18, 16, 20, 23, 24], u0 a C1;bðWÞ for some b a �0; 1�.
Let us recall the first ingredient we need from [6, 15, 21].

Definition 1.1. Let K be a field, c¼ f ðu0Þ and f c ¼fu aW 1;p
0 ðWÞ : f ðuÞacg.

The generalized critical polynomial of f at u0 with coe‰cients in K is defined by

ið f ; u0;KÞðtÞ ¼
Xl
m¼0

½dimKHmð f c; f cnfu0g;KÞ�tm;

where H � stands for Alexander-Spanier cohomology [22].

We will simply write ið f ; u0ÞðtÞ, if no confusion can arise. In general, ið f ; u0ÞðtÞ
is a formal power series with coe‰cients in NA flg. If however u0 is an isolated
critical point, under assumptions ðC1Þ and ðg1Þ it follows from [8, Theorem 1.1]
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and [3, Theorem 3.4] that H �ð f c; f cnfu0gÞ is of finite type, so that ið f ; u0ÞðtÞ is a
true polynomial with coe‰cients in N.

The other ingredient is a notion of Morse index, which is not standard, as the
functional f is not of class C2.

In the case k > 0 and 1 < p < l, observe that

ðp� 1Þnðk2 þ jhj2Þ
p�2
2 jxj2 aC 00ðhÞ½x�2 aCðk2 þ jhj2Þ

p�2
2 jxj2 for any h; x a RN ;

as ðC� nCp;kÞ and ðCCp;k �CÞ are both convex. Therefore, there exists ~nn > 0
such that

~nnjxj2 aC 00ð‘u0ðxÞÞ½x�2 a
1

~nn
jxj2 for any x a W and x a RN ;

as ‘u0 is bounded. Moreover, Dsgðx; u0Þ a LlðWÞ, as u0 is bounded. Thus, we
can define a smooth quadratic form Qu0 : W

1;2
0 ðWÞ ! R by

Qu0ðvÞ ¼
Z
W

C 00ð‘u0Þ½‘v�2 dxþ
Z
W

Dsgðx; u0Þv2 dx

and define the Morse index of f at u0 (denoted by mð f ; u0Þ) as the supremum of
the dimensions of the linear subspaces of W 1;2

0 ðWÞ where Qu0 is negative definite
and the large Morse index of f at u0 (denoted by m�ð f ; u0Þ) as the supremum of
the dimensions of the linear subspaces of W 1;2

0 ðWÞ where Qu0 is negative semide-
finite. We clearly have mð f ; u0Þam�ð f ; u0Þ < þl.

In the case k ¼ 0 and 1 < p < 2, observe that

ðp� 1Þn
jhj2�p

jxj2 aC 00ðhÞ½x�2 a C

jhj2�p
jxj2 for any h; x a RN with hA 0:

Set

Zu0 ¼ fx a W : ‘u0ðxÞ ¼ 0g;

Xu0 ¼ v a W
1;2
0 ðWÞ : ‘vðxÞ ¼ 0 a:e: in Zu0 and

j‘vj2

j‘u0j2�p
a L1ðWnZu0Þ

( )
:

Then

ðvjwÞu0 ¼
Z
WnZu0

C 00ð‘u0Þ½‘v;‘w� dx

is a scalar product on Xu0 which makes Xu0 a Hilbert space continuously
embedded in W

1;2
0 ðWÞ. Moreover, we can define a smooth quadratic form

Qu0 : Xu0 ! R by

Qu0ðvÞ ¼
Z
WnZu0

C 00ð‘u0Þ½‘v�2 dxþ
Z
W

Dsgðx; u0Þv2 dx
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and denote again by mð f ; u0Þ the supremum of the dimensions of the linear sub-
spaces of Xu0 where Qu0 is negative definite and by m�ð f ; u0Þ the supremum of the
dimensions of the linear subspaces of Xu0 where Qu0 is negative semidefinite. Since
the derivative of Qu0 is a compact perturbation of the Riesz isomorphism, we still
have mð f ; u0Þam�ð f ; u0Þ < þl.

Now we can state our main results.

Theorem 1.2. Let k > 0 and 1 < p < l. Let u0 a W
1;p
0 ðWÞ be a critical point

of the functional f defined in ð1:3Þ. Then we have

ið f ; u0ÞðtÞ ¼
Xm�ð f ;u0Þ

m¼mð f ;u0Þ
amt

m

with am a NA flg.

When the quadratic form Qu0 has no kernel, we can provide a complete de-
scription of the critical polynomial.

Theorem 1.3. Let k > 0 and 1 < p < l. Let u0 a W
1;p
0 ðWÞ be a critical point of

the functional f defined in ð1:3Þ with mð f ; u0Þ ¼ m�ð f ; u0Þ.
Then u0 is an isolated critical point of f and we have

ið f ; u0ÞðtÞ ¼ tmð f ;u0Þ:

If u0 is an isolated critical point of f , then a sharper form of Theorem 1.2 can
be proved. Taking into account Theorem 1.3, only the case mð f ; u0Þ < m�ð f ; u0Þ
is interesting.

Theorem 1.4. Let k > 0 and 1 < p < l. Let u0 a W
1;p
0 ðWÞ be an isolated criti-

cal point of the functional f defined in ð1:3Þ with mð f ; u0Þ < m�ð f ; u0Þ.
Then one and only one of the following facts hold:

(a) we have

ið f ; u0ÞðtÞ ¼ tmð f ;u0Þ;

(b) we have

ið f ; u0ÞðtÞ ¼ tm
�ð f ;u0Þ;

(c) we have

ið f ; u0ÞðtÞ ¼
Xm�ð f ;u0Þ

m¼mð f ;u0Þ
amt

m

with am a N and amð f ;u0Þ ¼ am�ð f ;u0Þ ¼ 0.
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Remark 1.5. Since the value of k is irrelevant in the case p ¼ 2, Theorems 1.2,
1.3 and 1.4 cover also the case k ¼ 0 with p ¼ 2.

In the case k ¼ 0 and 1 < p < 2, we can prove that the generalized critical
polynomial cannot contain tm with m large.

Theorem 1.6. Let k ¼ 0 and 1 < p < 2. Let u0 a W
1;p
0 ðWÞ be a critical point of

the functional f defined in ð1:3Þ. Then we have

ið f ; u0ÞðtÞ ¼
Xm�ð f ;u0Þ

m¼0

amt
m

with am a NA flg.
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