Rend. Lincei Mat. Appl. 26 (2015), 57–[74](#page-17-0) DOI 10.4171/RLM/692

Partial Differential Equations — On a Dirichlet problem with p-Laplacian and asymmetric nonlinearity, by SALVATORE A. MARANO and NIKOLAOS S. Papageorgiou, communicated on 14 November 2014.

Abstract. — The existence of at least two nonnegative smooth solutions to a homogeneous Dirichlet problem with p-Laplacian and reaction $(p - 1)$ -linear, but asymmetric, at $\pm \infty$ is investigated through variational and truncation techniques. The case $p = 2$ is separately examined, obtaining a third nontrivial smooth solution via Morse's theory.

KEY WORDS: *p*-Laplacian, asymmetric nonlinearity, critical groups, Morse identity.

MATHEMATICS SUBJECT CLASSIFICATION: 35J20, 35J60, 35J92.

1. Introduction

Let Ω be a bounded domain in \mathbb{R}^N , $N \geq 3$, with a smooth boundary $\partial\Omega$, let $1 < p < +\infty$, and let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Caratheodory function such that $f(x, 0) \equiv 0$. Consider the homogeneous Dirichlet problem

(1.1)
$$
\begin{cases}\n-\Delta_p u = f(x, u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial \Omega,\n\end{cases}
$$

where $\Delta_{p_{\alpha}}$ denotes the p-Laplace differential operator, namely $\Delta_{p}u :=$ $\text{div}(|\nabla u|^{p-2}\nabla u)$. As usual, a function $u \in W_0^{1,p}(\Omega)$ is called a (weak) solution to (1.1) provided

$$
\int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) dx = \int_{\Omega} f(x, u(x)) v(x) dx \quad \forall v \in W_0^{1,p}(\Omega).
$$

The literature concerning (1.1) is by now very wide and many existence or multiplicity results are already available. Quite popular hypotheses are the following:

(1.2)
$$
\lim_{|t| \to +\infty} \frac{f(x,t)}{|t|^{p-2}t} = \alpha \quad \text{uniformly in } x \in \Omega,
$$

(1.3)
$$
\lim_{t \to 0} \frac{f(x, t)}{|t|^{p-2}t} = \beta \neq 0 \quad \text{uniformly in } x \in \Omega.
$$

If $\alpha \in \mathbb{R} \setminus \{0\}$ then one usually says that $t \mapsto f(x, t)$ exhibits a symmetric $(p - 1)$ linear growth at infinity; see [\[3](#page-16-0), [17](#page-17-0)] and the references therein. The recent paper [[8\]](#page-17-0) treats the case $\alpha \leq 0$ and $f(x, t) := \lambda g(x, t)$ with $\lambda > 0$ large enough, while $\alpha = +\infty$ in [[9](#page-17-0), [10, 11\]](#page-17-0).

Let λ_1 (respectively, λ_2) be the first (respectively, second) eigenvalue of the operator $-\Delta_p$ in $W_0^{1,p}(\Omega)$. Roughly speaking, in this paper, we shall consider a reaction term f whose behavior is $(p - 1)$ -linear, but asymmetric, near $-\infty$ and $+\infty$, in the sense that the graph of the function $t \mapsto \frac{f(x,t)}{|t|^{p-2}t}$ crosses λ_1 as t moves from $-\infty$ to $+\infty$. Such an f is usually called crossing or jumping nonlinearity. The existence of two solutions to (1.1) lying in $C_0^1(\overline{\Omega}) \setminus \{0\}$ is established via variational and truncation methods; see Theorem 3.3. Section 4 investigates the case $p = 2$. A third nontrivial $C_0^1(\overline{\Omega})$ -solution is obtained through Morse's theory.

Equations with *p*-Laplacian and $(p - 1)$ -linear asymmetric reactions have previously been studied by mainly using the so-called Fuctik spectrum of $-\Delta_p$ in $W_0^{1,p}(\Omega)$; see [\[16\]](#page-17-0), besides the seminal work [[1\]](#page-16-0). This approach depends on the knowledge of the Fučik spectrum and requires that the limit (1.2) exists.

Our arguments are patterned after those of [\[6](#page-17-0)] (cf. also [\[15\]](#page-17-0)) where, however, a further sign condition on f is taken on and the semi-linear case is not separately treated. Accordingly, (1.2) – (1.3) become here

$$
(1.4) \quad \limsup_{t \to +\infty} \frac{f(x,t)}{t^{p-1}} \le a_1 < \lambda_1 < a_2 \le \liminf_{t \to -\infty} \frac{f(x,t)}{|t|^{p-2}t} \le \limsup_{t \to -\infty} \frac{f(x,t)}{|t|^{p-2}t} \le b_2
$$

and

(1.5)
$$
\lambda_2 < a_3 \le \liminf_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \le \limsup_{t \to 0} \frac{f(x,t)}{|t|^{p-2}t} \le b_3
$$

uniformly in $x \in \Omega$, with a_i , b_i being nonnegative constants. It should be noted that none of limits (1.2) – (1.3) needs to exist. Moreover, (1.2) and (1.4) are mutually independent, whereas (1.3) forces (1.5) as soon as $\lambda_2 < \beta < +\infty$.

2. Preliminaries

Let $(X, \|\cdot\|)$ be a real Banach space. Given a set $V \subseteq X$, write \overline{V} for the closure of V, ∂V for the boundary of \overline{V} , and int (V) for the interior of V. If $x \in X$ and $\delta > 0$ then

$$
B_{\delta}(x) := \{ z \in X : ||z - x|| < \delta \}.
$$

The symbol $(X^*, \|\cdot\|_{X^*})$ denotes the dual space of $X, \langle \cdot, \cdot \rangle$ indicates the duality pairing between X and X^* , while $x_n \to x$ (respectively, $x_n \to x$) in X means 'the sequence $\{x_n\}$ converges strongly (respectively, weakly) in X'.

Let T be a topological space and let L be a multifunction from T into X (briefly, $L: T \rightarrow 2^{\overline{X}}$), namely a function which assigns to each $t \in T$ a nonempty subset $L(t)$ of X. We say that L is lower semi-continuous when $\{t \in T : L(t) \cap V \neq \emptyset\}$ turns out to be open in T for every open set $V \subseteq X$. A function $l : T \to X$ is called a selection of L provided $l(t) \in L(t)$ for all $t \in T$.

We say that $\Phi : X \to \mathbb{R}$ is coercive when

$$
\lim_{\|x\|\to+\infty}\Phi(x)=+\infty.
$$

The function Φ is called weakly sequentially lower semi-continuous if $x_n \to x$ in X implies $\Phi(x) \le \liminf_{n \to \infty} \Phi(x_n)$. Let $\Phi \in C^1(X)$. The classical Cerami compactness condition for Φ reads as follows.

(C) Every sequence $\{x_n\} \subseteq X$ such that $\{\Phi(x_n)\}\)$ is bounded and

$$
\lim_{n\to+\infty}(1+\|x_n\|)\|\Phi'(x_n)\|_{X^*}=0
$$

possesses a convergent subsequence.

Define, provided $c \in \mathbb{R}$,

$$
\Phi^c := \{ x \in X : \Phi(x) \le c \}, \quad K_c(\Phi) := K(\Phi) \cap \Phi^{-1}(c),
$$

where, as usual, $K(\Phi)$ denotes the critical set of Φ , i.e., $K(\Phi) := \{x \in X : \Phi'(x)$ $= 0$. Given a topological pair (A, B) fulfilling $B \subset A \subseteq X$, the symbol $H_q(A, B)$, $q \in \mathbb{N}_0$, indicates the qth-relative singular homology group of (A, B) with integer coefficients. Let $x_0 \in K_c(\Phi)$ be an isolated point of $K(\Phi)$. Then

$$
C_q(\Phi, x_0) := H_q(\Phi^c \cap V, \Phi^c \cap V \setminus \{x_0\}), \quad q \in \mathbb{N}_0,
$$

are the critical groups of Φ at x_0 . Here, V stands for any neighborhood of x_0 such that $K(\Phi) \cap \Phi^c \cap V = \{x_0\}$. By excision, this definition does not depend on the choice of V. Suppose Φ satisfies condition (C). When $\Phi|_{K(\Phi)}$ is bounded below and $c < \inf$ $\Phi(x)$, we define $x \in K(\Phi)$

$$
C_q(\Phi,\infty) := H_q(X,\Phi^c), \quad q \in \mathbb{N}_0.
$$

The second deformation lemma [\[4](#page-16-0), Theorem 5.1.33] implies that this definition does not depend on the choice of c. If $K(\Phi)$ is finite then, setting

$$
M(t, x) := \sum_{q=0}^{+\infty} \text{rank } C_q(\Phi, x) t^q
$$

$$
P(t, \infty) := \sum_{q=0}^{+\infty} \text{rank } C_q(\Phi, \infty) t^q
$$

$$
W(t, x) \in \mathbb{R} \times K(\Phi),
$$

the following Morse relation holds:

(2.1)
$$
\sum_{x \in K(\Phi)} M(t, x) = P(t, \infty) + (1 + t)Q(t),
$$

where $Q(t)$ denotes a formal series with nonnegative integer coefficients; see for instance [\[14,](#page-17-0) Theorem 6.62].

Now, let X be a Hilbert space, let $x \in K(\Phi)$, and let Φ be C^2 in a neighborhood of x. If $\Phi''(x)$ turns out to be invertible then x is called non-degenerate. The Morse index d of x is the supremum of the dimensions of the vector subspaces of X on which $\Phi''(x)$ turns out to be negative definite. When x is non-degenerate and with Morse index d one has

$$
(2.2) \t C_q(\Phi, x) = \delta_{q,d} \mathbb{Z}, \quad q \in \mathbb{N}_0.
$$

The monographs [\[12, 14](#page-17-0)] represent general references on the subject.

Throughout the paper, Ω is a bounded domain of the real euclidean N-space $(\mathbb{R}^N, |\cdot|)$ with a smooth boundary $\partial\Omega$, m stands for the Lebesgue measure, $p \in (1, +\infty)$, $p' := p/(p-1)$, $\|\cdot\|_{L^q(\Omega)}$ with $q \ge 1$ indicates the usual norm of $L^q(\Omega)$, and $W_0^{1,p}(\Omega)$ denotes the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p}(\Omega)$. On $W_0^{1,p}(\Omega)$ we introduce the norm

$$
||u||_{1,p} := \left(\int_{\Omega} |\nabla u(x)|^p \, dx\right)^{1/p}, \quad u \in W_0^{1,p}(\Omega).
$$

Write p^* for the critical exponent of the Sobolev embedding $W_0^{1,p}(\Omega) \subseteq L^q(\Omega)$. Recall that $p^* = Np/(N-p)$ if $p < N$, $p^* = +\infty$ otherwise, and the embedding is compact whenever $1 \leq q < p^*$.

Define $C_0^1(\overline{\Omega}) := \{u \in C^1(\overline{\Omega}) : u = 0 \text{ on } \partial\Omega\}$. Obviously, $C_0^1(\overline{\Omega})$ turns out to be an ordered Banach space with positive cone

$$
C_0^1(\overline{\Omega})_+ := \{ u \in C_0^1(\overline{\Omega}) : u(x) \ge 0 \,\,\forall x \in \overline{\Omega} \}.
$$

Moreover, one has

$$
int(C_0^1(\overline{\Omega})_+) = \left\{ u \in C_0^1(\overline{\Omega}) : u > 0 \text{ in } \Omega, \frac{\partial u}{\partial n} < 0 \text{ on } \partial \Omega \right\},\
$$

where $n(x)$ is the outward unit normal vector to $\partial\Omega$ at the point $x \in \partial\Omega$; see, for example, [\[4](#page-16-0), Remark 6.2.10].

Let $W^{-1,p'}(\Omega)$ be the dual space of $W_0^{1,p}(\Omega)$ and let $A_p: W_0^{1,p}(\Omega) \to$ $W^{-1,p'}(\Omega)$ be the nonlinear operator stemming from the negative p-Laplacian, i.e.,

$$
(2.3) \qquad \langle A_p(u), v \rangle := \int_{\Omega} |\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \, dx \quad \forall u, v \in W_0^{1,p}(\Omega).
$$

The Liusternik-Schnirelman theory gives a strictly increasing sequence $\{\lambda_n\}$ of eigenvalues for the operator $-\Delta_p$ in $W_0^{1,p}(\Omega)$. The following assertions involving λ_1 , λ_2 , and A_p can be found in [\[4,](#page-16-0) Section 6.2]; see also [[14](#page-17-0), Sections 9.1–9.2].

$$
\begin{aligned} \n\text{(p}_1) \ \ 0 &< \lambda_1 < \lambda_2. \\ \n\text{(p}_2) \ \ \|u\|_{L^p(\Omega)}^p &\leq \frac{1}{\lambda_1} \|u\|_{1,p}^p \ \text{for all } u \in W_0^{1,p}(\Omega). \n\end{aligned}
$$

- (p₃) There exists an eigenfunction ϕ_1 corresponding to λ_1 such that $\phi_1 \in$ $\text{int}(C_0^1(\overline{\Omega})_+)$ as well as $\|\phi_1\|_{L^p(\Omega)}=1.$
- (p_4) If $U := \{u \in W_0^{1,p}(\Omega) : ||u||_{L^p(\Omega)} = 1\}$ and

$$
\Gamma_0 := \{ \gamma \in C^0([-1, 1], U) : \gamma(-1) = -\phi_1, \gamma(1) = \phi_1 \},
$$

then

$$
\lambda_2 = \inf_{\gamma \in \Gamma_0} \max_{u \in \gamma([-1,1])} ||u||_{1,p}^p.
$$

 \mathfrak{p}_{5}) $u_{n} \to u$ in $W_{0}^{1,p}(\Omega)$ and $\limsup_{n \to +\infty} \langle A_{p}(u_{n}), u_{n} - u \rangle \leq 0$ imply $u_{n} \to u$ in $W_0^{1,p}(\Omega)$.

Let $\alpha \in L^{\infty}(\Omega) \setminus \{0\}$ satisfy $\alpha \geq 0$. Consider the weighted eigenvalue problem

(2.4)
$$
-\Delta_p u = \lambda \alpha(x) |u|^{p-2} u \quad \text{in } \Omega, u = 0 \text{ on } \partial \Omega.
$$

As before, there exists a strictly increasing sequence $\{\lambda_n(\alpha)\}\$ of eigenvalues for (2.4) enjoying the properties [\[4](#page-16-0), Section 6.2]:

 (p_6) $0 < \lambda_1(\alpha) < \lambda_2(\alpha)$. $\overrightarrow{p_7}$ If $\alpha, \beta \in L^{\infty}(\Omega) \setminus \{0\}, 0 \leq \alpha \leq \beta$, and $\alpha \neq \beta$ then $\lambda_1(\beta) < \lambda_1(\alpha)$. If $0 \leq \alpha < \beta$ then $\lambda_2(\beta) < \lambda_2(\alpha)$.

Obviously, $\lambda_n = \lambda_n(1)$, $n \in \mathbb{N}$. Now, suppose $p = 2$ and denote by $E(\lambda_n)$ the eigenspace associated with λ_n . It is known (see e.g. [\[4](#page-16-0), Section 6.2]) that:

 (p_8) $E(\lambda_n) \subseteq C_0^1(\overline{\Omega})$ for all $n \in \mathbb{N}$. $\overline{p_9}$) If u lies in $E(\lambda_n)$ and vanishes on a set of positive Lebesgue measure then $u = 0$.

Setting, for every integer $m \geq 1$, $\overline{H}_m := \bigoplus_{n=1}^m E(\lambda_n)$ and $\hat{H}_m := \overline{H}_m^{\perp}$, we get

$$
H_0^1(\Omega) = \overline{H}_m \oplus \hat{H}_m.
$$

Consequently, each $u \in H_0^1(\Omega)$ can uniquely be written as $u = \bar{u} + \hat{u}$, where $\bar{u} \in \overline{H}_m$, $\hat{u} \in \hat{H}_m$. A simple argument, based on orthogonality and (p_9) , yields the next result.

LEMMA 2.1. Let $m \in \mathbb{N}$ and let $\theta \in L^{\infty}(\Omega) \setminus {\lambda_m}$ satisfy $\theta \geq \lambda_m$. Then there exists a constant $\bar{c} > 0$ such that

$$
\|\bar{u}\|_{1,2}^2 - \int_{\Omega} \theta(x)\bar{u}(x)^2 dx \leq -\bar{c} \|\bar{u}\|_{1,2}^2 \quad \forall \bar{u} \in \overline{H}_m.
$$

Let $m \in \mathbb{N}_0$ and let $\theta \in L^{\infty}(\Omega) \backslash {\{\lambda_{m+1}\}}$ satisfy $\theta \leq \lambda_{m+1}$. Then there exists a constant $\hat{c} > 0$ such that

$$
\|\hat{u}\|_{1,2}^2 - \int_{\Omega} \theta(x)\hat{u}(x)^2 dx \ge \hat{c} \|\hat{u}\|_{1,2}^2 \quad \forall \hat{u} \in \hat{H}_m.
$$

Define $U_C := \{ u \in C_0^1(\overline{\Omega}) : ||u||_{L^p(\Omega)} = 1 \}$. Evidently, U_C turns out to be dense in the set U given by (p_4) . Moreover, if

$$
\Gamma_C := \{ \gamma \in C^0([-1, 1], U_C) : \gamma(-1) = -\phi_1, \gamma(1) = \phi_1 \}
$$

then the following result holds.

LEMMA 2.2. The set Γ_C is dense in Γ_0 .

PROOF. Pick any $\gamma_0 \in \Gamma_0$. We shall prove that there exists a sequence $\{\gamma_n\} \subseteq \Gamma_C$ fulfilling

(2.5)
$$
\lim_{n \to +\infty} \max_{t \in [-1,1]} ||\gamma_n(t) - \gamma_0(t)|| = 0.
$$

The multifunction $L_n: [-1,1] \to 2^{C_0^1(\overline{\Omega})}$ defined by

$$
L_n(t) := \begin{cases} \{-\phi_1\} & \text{if } t = -1, \\ \{u \in C_0^1(\overline{\Omega}) : ||u - \gamma_0(t)|| < 1/n\} & \text{if } t \in (-1, 1), \\ \{\phi_1\} & \text{if } t = 1 \end{cases}
$$

takes nonempty convex values and is lower semi-continuous. So, Theorem $3.1^{'''}$ in [\[13\]](#page-17-0) provides a continuous selection $l_n: [-1,1] \to C_0^1(\overline{\Omega})$ of L_n . This entails

$$
(2.6) \qquad ||l_n(t) - \gamma_0(t)|| < \frac{1}{n} \quad \forall t \in (-1, 1), \quad l_n(-1) = -\phi_1, \quad l_n(1) = \phi_1.
$$

Consequently,

(2.7)
$$
\lim_{n \to +\infty} ||l_n(t)||_{L^p(\Omega)} = ||\gamma_0(t)||_{L^p(\Omega)} = 1
$$

uniformly with respect to $t \in [-1, 1]$. For any *n* large enough we can thus set

$$
\gamma_n(t) := \frac{l_n(t)}{\|l_n(t)\|_{L^p(\Omega)}}, \quad t \in [-1, 1].
$$

On account of (2.6) and (p₃) one has $\gamma_n \in \Gamma_C$. Moreover, thanks to (2.6),

$$
(2.8) \quad \|\gamma_n(t) - \gamma_0(t)\| \le \|\gamma_n(t) - l_n(t)\| + \|l_n(t) - \gamma_0(t)\|
$$

$$
< |1 - \|l_n(t)\|_{L^p(\Omega)} \frac{\|l_n(t)\|}{\|l_n(t)\|_{L^p(\Omega)}} + \frac{1}{n} \quad \forall t \in [-1, 1].
$$

Recall that $\gamma_0 \in \Gamma_0$. Since, by (2.6) again,

$$
\max_{t \in [-1,1]} |1 - ||l_n(t)||_{L^p(\Omega)}| = \max_{t \in [-1,1]} ||\gamma_0(t)||_{L^p(\Omega)} - ||l_n(t)||_{L^p(\Omega)}|
$$

$$
\leq \max_{t \in [-1,1]} ||\gamma_0(t) - l_n(t)||_{L^p(\Omega)}
$$

$$
\leq c \max_{t \in [-1,1]} ||\gamma_0(t) - l_n(t)|| \leq \frac{c}{n}
$$

for some $c > 0$, (2.5) immediately follows from (2.6)–(2.8).

Finally, put, provided $t \in \mathbb{R}$, $u : \Omega \to \mathbb{R}$, and $g : \Omega \times \mathbb{R} \to \mathbb{R}$,

$$
t^- := \max\{-t, 0\}, \quad t^+ := \max\{t, 0\},
$$

$$
u^-(x) := u(x)^-, \quad u^+(x) := u(x)^+, \quad N_g(u)(x) := g(x, u(x)).
$$

3. EXISTENCE RESULTS

To avoid unnecessary technicalities, 'for every $x \in \Omega$ ' will take the place of 'for almost every $x \in \Omega$ and the variable x will be omitted when no confusion can arise.

Let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ be a Caratheodory function such that $f(x, 0) \equiv 0$ and let

(3.1)
$$
F(x, z) := \int_0^z f(x, t) dt, \quad (x, z) \in \Omega \times \mathbb{R}.
$$

We will posit the following assumptions, where a_i and b_i denote appropriate nonnegative constants.

- (f₀) $|f(x,t)| \le a_0(1+|t|^{p-1})$ for every $(x,t) \in \Omega \times \mathbb{R}$.
- (f_1) $\limsup_{t\to+\infty}$ $\frac{f(x,t)}{t^{p-1}} \leq a_1 < \lambda_1$ uniformly with respect to $x \in \Omega$.
- (f_2) $\lambda_1 < a_2 \leq \liminf_{t \to -\infty}$ $f(x,t)$ $|t|^{p-2}$ $\leq \limsup_{t \to -\infty}$ $f(x,t)$ $|t|^{p-2}$ $\leq b_2$ uniformly in $x \in \Omega$.
- (f_3) $\lambda_2 < a_3 \leq \liminf_{t \to 0} \frac{f(x, t)}{|t|^{p-2}t}$ $|t|^{p-2}$ \leq lim sup $t\rightarrow 0$ $f(x,t)$ $|t|^{p-2}$ $\leq b_3$ uniformly with respect to $x \in \Omega$.

(f4) There exists
$$
a_4 > \lambda_1
$$
 such that $\frac{a_4}{p}|z|^p \le F(x, z)$ for all $(x, z) \in \Omega \times \mathbb{R}_0^-$.

On account of (f_0) and (f_3) , to every $\rho > 0$ there corresponds $\mu_\rho > 0$ satisfying

(3.2)
$$
f(x,t) + \mu_p t^{p-1} \ge 0, \quad (x,t) \in \Omega \times [0,\rho].
$$

REMARK 3.1. The constants that appear in (f_0) – (f_4) can evidently be replaced by suitable functions belonging to $L^{\infty}(\Omega)$. In particular, we might have $a_1, a_2, a_4 \in L^{\infty}(\Omega) \backslash {\lambda_1}$ with $0 \le a_1 \le \lambda_1 \le \min{\{a_2, a_4\}}$.

Write $X := W_0^{1,p}(\Omega)$ and $C_+ := C_0^1(\overline{\Omega})_+$. The energy functional $\varphi : X \to \mathbb{R}$ stemming from Problem (1.1) is

(3.3)
$$
\varphi(u) := \frac{1}{p} ||u||_{1,p}^p - \int_{\Omega} F(x, u(x)) dx \quad \forall u \in X,
$$

with F as in (3.1). Obviously, $\varphi \in C^1(X)$. Moreover, if

$$
f_+(x,t) := f(x,t^+), \quad F_+(x,z) := \int_0^z f_+(x,t) dt
$$

then $F_{+}(x, z) = F(x, z^{+})$ and the corresponding truncated function

$$
\varphi_+(u) := \frac{1}{p} ||u||_{1,p}^p - \int_{\Omega} F_+(x, u(x)) dx, \quad u \in X,
$$

turns out to be C^1 as well.

LEMMA 3.1. Under hypotheses (f_0) – (f_1) , the functional φ_+ is weakly sequentially lower semi-continuous and coercive.

PROOF. The space X compactly embeds in $L^p(\Omega)$ while the Nemitskii operator N_{f_+} turns out to be continuous on $L^p(\Omega)$. Thus, a standard argument ensures that φ_+ is weakly sequentially lower semi-continuous.

Pick $\varepsilon \in (0, \lambda_1 - a_1)$. By $(f_0) - (f_1)$ there exists $c_0 > 0$ fulfilling

$$
F(x, z) < \frac{a_1 + \varepsilon}{p} z^p + c_0 \quad \forall (x, z) \in \Omega \times \mathbb{R}_0^+.
$$

Consequently, on account of (p_2) ,

$$
\varphi_{+}(u) \geq \frac{1}{p} [\|u\|_{1,p}^{p} - (a_{1} + \varepsilon)\|u^{+}\|_{L^{p}(\Omega)}^{p}] - c_{0}m(\Omega)
$$

\n
$$
\geq \frac{1}{p} [\|u\|_{1,p}^{p} - (a_{1} + \varepsilon)\|u\|_{L^{p}(\Omega)}^{p}] - c_{0}m(\Omega)
$$

\n
$$
\geq \frac{1}{p} \left(1 - \frac{a_{1} + \varepsilon}{\lambda_{1}}\right) \|u\|_{1,p}^{p} - c_{0}m(\Omega)
$$

for any $u \in X$. Since $a_1 + \varepsilon < \lambda_1$, the conclusion follows.

THEOREM 3.1. Let (f_0) , (f_1) , and (f_3) be satisfied. Then Problem (1.1) admits a solution $u_0 \in \text{int}(C_+)$, which is a local minimizer of φ .

PROOF. Thanks to Lemma 3.1 we can find $u_0 \in X$ such that

(3.4)
$$
\varphi_{+}(u_{0}) = \inf_{u \in X} \varphi_{+}(u).
$$

Bearing in mind (p_1) , fix $\varepsilon \in (0, a_3 - \lambda_1)$. By (f_3) one has

(3.5)
$$
F(x, z) \ge \frac{a_3 - \varepsilon}{p} |z|^p \quad \text{in } \Omega \times [-\delta, \delta]
$$

for appropriate $\delta > 0$. If $t > 0$ is so small that

$$
0 \leq t\phi_1(x) \leq \delta \quad \forall x \in \overline{\Omega},
$$

where ϕ_1 comes from (p_3) , then (3.5) yields

(3.6)
$$
\varphi_+(t\phi_1) \leq \frac{t^p}{p} \left[\varepsilon - (a_3 - \lambda_1) \right] ||\phi_1||^p_{L^p(\Omega)} < 0.
$$

Hence,

ð3:7Þ jþðu0Þ < 0 ¼ jþð0Þ;

which clearly means $u_0 \neq 0$. Now, through (3.4) we get $\varphi'_+(u_0) = 0$, namely

$$
\langle A_p(u_0), v \rangle = \int_{\Omega} f_+(x, u_0(x)) v(x) \, dx, \quad v \in X.
$$

Choosing $v := -u_0^-$ leads to $||u_0||_{1,p}^p = 0$. Thus, $u_0 \ge 0$ and, a fortiori, the function u_0 solves (1.1). Standard regularity results [\[5,](#page-16-0) Theorems 1.5.5–1.5.6] ensure that $u_0 \in C_+\backslash \{0\}$. Let $\rho := ||u_0||_{L^\infty(\Omega)}$. Due to (3.2) one has

$$
-\Delta_p u_0(x) + \mu_p u_0(x)^{p-1} = f(x, u_0(x)) + \mu_p u_0(x)^{p-1} \ge 0 \quad \text{a.e. in } \Omega.
$$

Therefore, by Theorem 5 in [\[18\]](#page-17-0), $u_0 \in \text{int}(C_+)$. This also implies that u_0 is a local $C_0^1(\overline{\Omega})$ -minimizer of φ , because $\varphi|_{C_+} = \varphi_{+}|_{C_+}$. Finally, owing to [\[2](#page-16-0), Theorem 1.1], the same holds true with $C_0^1(\overline{\Omega})$ replaced by X.

LEMMA 3.2. Under hypotheses (f_0) – (f_2) , the functional φ fulfills condition (C).

PROOF. Since X compactly embeds in $L^p(\Omega)$, the Nemitskii operator N_f is continuous on $L^p(\Omega)$, and A_p enjoys property (p_5) , it suffices to show that every sequence $\{u_n\} \subseteq X$ satisfying

$$
|\varphi(u_n)| \leq c_1 \quad \forall n \in \mathbb{N},
$$

(3.9)
$$
\lim_{n \to +\infty} (1 + ||u_n||_{1,p}) \varphi'(u_n) = 0
$$

turns out to be bounded. Obviously, this happens once the same holds for both $\{u_n^+\}$ and $\{u_n^-\}$. We are thus reduced to verifying two claims.

CLAIM 1. The sequence $\{u_n^+\}$ is bounded in X.

If the assertion were false then, up to subsequences, $||u_n^+||_{1,p} \to +\infty$. Write $v_n := u_n^+ / ||u_n^+||_{1,p}$. From $||v_n||_{1,p} \equiv 1$ it follows, along a subsequence when necessary,

$$
(3.10) \t v_n \rightharpoonup v \t \text{in } X, \t v_n \rightharpoonup v \t \text{in } L^p(\Omega), \t v_n \rightharpoonup v \ge 0 \t a.e. in Ω .
$$

Through (3.9) one has $\langle \varphi'(u_n), u_n^+ \rangle \to 0$, which, dividing by $||u_n^+||_{1,p}^p$, easily entails

$$
(3.11) \t\t\t ||v_n||_{1,p}^p \le \varepsilon_n + \int_{\Omega} \frac{f(x, u_n^+(x))}{\|u_n^+\|_{1,p}^{p-1}} v_n(x) dx \quad \forall n \in \mathbb{N},
$$

where $\varepsilon_n \to 0^+$. Because of (f_0) the sequence $\{||u_n^+||_{1,p}^{-p+1}N_f(u_n^+)\} \subseteq L^{p'}(\Omega)$ is bounded. Via the same reasoning made in [[14](#page-17-0), pp. 302–303] we thus get a function $\alpha \in L^{\infty}(\Omega)$ such that $0 \leq \alpha \leq a_1$ and

$$
\frac{1}{\|u_n^+\|_{1,p}^{p-1}}\,N_f(u_n^+) \rightharpoonup \alpha v^{p-1} \quad \text{in } L^{p'}(\Omega).
$$

Thanks to (3.10)–(3.11) this produces, as $n \to +\infty$,

(3.12)
$$
||v||_{1,p}^p \leq \int_{\Omega} \alpha(x) v(x)^p dx \leq \lambda_1 ||v||_{L^p(\Omega)}^p.
$$

Consequently, $v = t\phi_1$ for some $t \geq 0$. If $t = 0$ then, by (3.10)–(3.11) again, $v_n \to 0$ in X, which contradicts $||v_n||_{1,n} = 1$ for all $n \in \mathbb{N}$. Otherwise, on account of (3.12) and (f_1) ,

$$
\|\phi_1\|_{1,p}^p = \frac{1}{t^p} \|v\|_{1,p}^p \le \frac{1}{t^p} \int_{\Omega} \alpha(x) v(x)^p dx < \int_{\Omega} \lambda_1 \phi_1(x)^p dx = \lambda_1 \|\phi_1\|_{L^p(\Omega)}^p,
$$

but this is impossible; cf. (p_3) .

CLAIM 2. The sequence $\{u_n^-\}$ is bounded in X.

If the assertion were false then, up to subsequences, $||u_n||_{1,p} \to +\infty$. Write, like before, $w_n := u_n^- / ||u_n^-||_{1,p}$. From $||w_n||_{1,p} \equiv 1$ it follows, along a subsequence when necessary,

(3.13) $w_n \rightharpoonup w$ in X; $w_n \rightharpoonup w$ in $L^p(\Omega)$, $w_n \rightharpoonup w \geq 0$ a.e. in Ω .

Through (3.9) one has

$$
(3.14) \qquad \Big|\langle A_p(u_n), v\rangle - \int_{\Omega} f(x, u_n(x))v(x)\,dx\Big| \leq \varepsilon_n \|v\|_{1,p} \quad \forall v \in X,
$$

where $\varepsilon_n \to 0^+$. Assumption (f₀) and the boundedness of $\{u_n^+\}$ readily lead to

(3.15)
$$
\left| \langle A_p(u_n^+), v \rangle - \int_{\Omega} f(x, u_n^+(x)) v(x) dx \right| \leq c_2 \|v\|_{1,p}
$$

for appropriate $c_2 > 0$. Since $u_n = u_n^+ - u_n^-$, inequalities (3.14)–(3.15) produce, after dividing by $\overline{\|u_n^-\|_{1,p}^{p-1}}$,

$$
(3.16)\quad \left| \langle A_p(-w_n), v \rangle - \frac{1}{\|u_n^-\|_{1,p}^{p-1}} \int_{\Omega} f(x, -u_n^-(x)) v(x) \, dx \right| \le \varepsilon_n' \|v\|_{1,p}, \quad v \in X,
$$

with $\varepsilon_n' \to 0^+$. Observe next that, by (f_0) besides (3.13),

$$
\lim_{n \to +\infty} \frac{1}{\|u_n^-\|_{1,p}^{p-1}} \int_{\Omega} f(x, -u_n^-(x))(w_n(x) - w(x)) dx = 0.
$$

So, (3.16) written for $v := w_n - w$ and (3.13) again provide

$$
\lim_{n\to+\infty}\langle A_p(w_n),w_n-w\rangle=0,
$$

namely, because of (p_5) ,

$$
\lim_{n \to +\infty} w_n = w \quad \text{in } X,
$$

whence $||w||_{1,p} = 1$. Thanks to (f_0) the sequence ${||u_n||_{1,p}^{-p+1}N_f(-u_n^-)} \subseteq L^{p'}(\Omega)$ is bounded. Using the arguments made in [[14](#page-17-0), pp. 302–303] we thus obtain a function $\alpha \in L^{\infty}(\Omega)$ such that $a_2 \leq \alpha \leq b_2$ and

$$
\frac{1}{\|u_{n}^{-}\|_{1,p}^{p-1}}N_{f}(-u_{n}^{-})\rightharpoonup -\alpha w^{p-1}\quad\text{in }L^{p'}(\Omega).
$$

On account of (3.16)–(3.17) this implies, as $n \to +\infty$,

$$
\langle A_p(w), v \rangle = \int_{\Omega} \alpha(x) w(x)^{p-1} dx \quad \forall v \in X,
$$

i.e., w turns out to be a weak positive solution of the problem

$$
-\Delta_p u = \alpha(x)|u|^{p-2}u \quad \text{in } \Omega, \ u = 0 \text{ on } \partial\Omega.
$$

Now, recalling (f_1) , from (p_7) it follows

$$
\lambda_1(\alpha) < \lambda_1(\lambda_1) = 1 = \lambda_2(\lambda_2) < \lambda_2(\alpha).
$$

Therefore $w = 0$, which contradicts $||w||_{1, p} = 1$.

A further nontrivial smooth solution to (1.1) can now be found.

THEOREM 3.2. Let (f_0) – (f_4) be satisfied. Then Problem (1.1) possesses a nontrivial solution $u_1 \in C_0^1(\overline{\Omega}) \setminus \{u_0\}.$

PROOF. We may evidently assume that the local minimizer u_0 of φ given by Theorem 3.1 is proper. Thus, for sufficiently small $\rho > 0$ one has

$$
\varphi(u_0) < c_\rho := \inf_{u \in \partial B_\rho(u_0)} \varphi(u).
$$

Since, due to (f_2) ,

$$
\lim_{t\to-\infty}\varphi(t\phi_1)=-\infty,
$$

there exists $t_1 > 0$ such that

$$
||t_1\phi_1+u_0||_{1,p} > \rho, \quad \varphi(-t_1\phi_1) < c_\rho.
$$

On account of Lemma 3.2, the Mountain-Pass Theorem can be applied, which yields a point $u_1 \in X$ complying with $\varphi'(u_1) = 0$ and

(3.19)
$$
c_{\rho} \leq \varphi(u_1) = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} \varphi(\gamma(t)),
$$

where

$$
\Gamma := \{ \gamma \in C^0([0,1], X) : \gamma(0) = -t_1 \phi_1, \gamma(1) = u_0 \}.
$$

Obviously, the function u_1 solves (1.1). Through (3.18)–(3.19) we get $u_1 \neq u_0$, while standard regularity arguments ensure that $u_1 \in C_0^1(\overline{\Omega})$. The proof is thus completed once one verifies that $u_1 \neq 0$. This will follow from the inequality

$$
(3.20) \qquad \qquad \varphi(u_1) < 0,
$$

which, in view of (3.19), can be shown by constructing a path $\hat{\gamma} \in \Gamma$ such that

$$
\varphi(\hat{\gamma}(t)) < 0 \quad \forall t \in [0, 1].
$$

By (f₃) to every $\eta > 0$ small there corresponds $\delta > 0$ such that

(3.22)
$$
\frac{\lambda_2 + \eta}{p} |z|^p \le F(x, z), \quad (x, z) \in \Omega \times [-\delta, \delta].
$$

Combining (p_4) with Lemma 2.2 entails

(3.23)
$$
\max_{t \in [-1,1]} \|\gamma_{\eta}(t)\|_{1,p}^p < \lambda_2 + \eta
$$

for appropriate $\gamma_{\eta} \in \Gamma_C$. Since $\gamma_{\eta}([-1, 1])$ is compact in $C_0^1(\overline{\Omega})$ and $t_1\phi_1, u_0 \in$ $int(C_+)$ we can find $\varepsilon > 0$ so small that

$$
-t_1\phi_1(x) \le \varepsilon \gamma_\eta(t)(x) \le u_0(x), \quad |\varepsilon \gamma_\eta(t)(x)| \le \delta
$$

whenever $x \in \Omega$, $t \in [-1, 1]$. Thanks to (3.22)–(3.23) one has

$$
\varphi(\varepsilon\gamma_{\eta}(t)) = \frac{\varepsilon^{p}}{p} \|\gamma_{\eta}(t)\|_{1,p}^{p} - \int_{\Omega} F(x, \varepsilon\gamma_{\eta}(t)(x)) dx
$$

$$
< \frac{\varepsilon^{p}}{p} (\lambda_{2} + \eta) - \frac{\varepsilon^{p}}{p} (\lambda_{2} + \eta) \int_{\Omega} |\gamma_{\eta}(t)(x)|^{p} dx = 0 \quad \forall t \in [-1, 1],
$$

because $\gamma_n(t) \in U_C$. Consequently,

$$
(3.24) \t\t \t\t \t\t \t\t \t\t \t\t \t\t \t\t \t\t \t \t\t \t\t \t \mathcal{O}.
$$

Next, write $a := \varphi_+(u_0)$. From (3.7) it follows $a < 0$. We may suppose

$$
K(\varphi_{+}) = \{0, u_{0}\},
$$

otherwise the conclusion is straightforward. Hence, no critical value of φ_+ lies in $(a, 0)$ while

$$
K_a(\varphi_+) = \{u_0\}.
$$

Due to the second deformation lemma [[4](#page-16-0), Theorem 5.1.33], there exists a continuous function $h: [0,1] \times (\varphi_+^0 \setminus \{0\}) \to \varphi_+^0$ satisfying

$$
h(0, u) = u
$$
, $h(1, u) = u_0$, and $\varphi_+(h(t, u)) \le \varphi_+(u)$

for all $(t, u) \in [0, 1] \times (\varphi_+^0 \setminus \{0\})$. Let $\gamma_+(t) := h(t, \varepsilon \phi_1)^+$, $t \in [0, 1]$. Then $\gamma_+(0) =$ $\varepsilon\phi_1$, $\gamma_+(1) = u_0$, as well as

$$
(3.25) \quad \varphi(\gamma_+(t)) = \varphi_+(\gamma_+(t)) \le \varphi_+(h(t, \varepsilon \phi_1)) \le \varphi_+(\varepsilon \phi_1) = \varphi(\varepsilon \gamma_\eta(1)) < 0;
$$

cf. (3.24). Finally, define

$$
\gamma_{-}(t) := -(t_1 t + \varepsilon (1-t))\phi_1, \quad t \in [0,1].
$$

By (f_4) and (p_2) – (p_3) we easily have

$$
(3.26) \t\t \varphi(\gamma_{-}(t)) \leq \frac{(t_1t+\varepsilon(1-t))^p}{p}(\lambda_1-a_4)\|\phi_1\|_{L^p(\Omega)}^p < 0.
$$

Concatenating $\gamma_-, \varepsilon \gamma_\eta$, and γ_+ one obtains a path $\hat{\gamma} \in \Gamma$ which, in view of (3.24)– (3.26), fulfills (3.21). This shows (3.20), whence $u_1 \neq 0$.

The next multiplicity result directly stems from Theorems 3.1–3.2.

THEOREM 3.3. Let (f_0) – (f_4) be satisfied. Then Problem (1.1) possesses at least two nontrivial solutions $u_0 \in \text{int}(C_+)$ and $u_1 \in C_0^1(\overline{\Omega})$.

4. THE CASE $p = 2$

Suppose $f : \Omega \times \mathbb{R} \to \mathbb{R}$ is a function such that $f(x, 0) \equiv 0$ and $f(x, \cdot)$ belongs to $C^1(\mathbb{R})$ for every $x \in \Omega$, while $f(\cdot, t)$ and $f'_t(\cdot, t)$ are measurable for all $t \in \mathbb{R}$. The following assumptions will be made in the sequel, where a_i and b_j denote appropriate nonnegative constants.

 (f_5) $|f'_t(x,t)| \le a_0(1+|t|^{r-2})$ for every $(x,t) \in \Omega \times \mathbb{R}$, being $2 \le r < 2^*$. (f_6) $\lim_{t\to+\infty}\frac{f(x,t)}{t}=a_1 < \lambda_1$ uniformly with respect to $x \in \Omega$.

$$
\liminf_{t \to +\infty} f(x, t) = \limsup_{x \to +\infty} f(x, t) = \limsup_{x \to +\infty} f(x, t) = \liminf_{x \to +\infty} f(x, t) = \liminf_{x \to +\infty} f(x, t) = \liminf_{x \to +\infty} f(x, t) = \limsup_{x \to +\infty} f(x, t) = \limsup_{
$$

$$
\text{(f_7)}\ \lambda_1 < a_2 \le \liminf_{t \to -\infty} \frac{f(x, t)}{t} \le \limsup_{t \to -\infty} \frac{f(x, t)}{t} \le b_2 \text{ uniformly in } x \in \Omega.
$$

- (f_8) $f'_t(x, 0) = \lim_{t \to 0}$ $\frac{f(x,t)}{t}$ uniformly with respect to $x \in \Omega$. Moreover, for some $m \geq 2$ one has $\lambda_m < a_3 \leq f'_t(x,0) \leq b_3 < \lambda_{m+1}$ in Ω .
- (f₉) There exists $a_4 > \lambda_1$ fulfilling $\frac{a_4}{2} z^2 \leq F(x, z)$ for all $(x, z) \in \Omega \times \mathbb{R}_0^-$.

A comment analogous to that made in Remark 3.1 is true here.

Consider the semi-linear problem

(4.1)
$$
\begin{cases} -\Delta u = f(x, u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}
$$

If $X := H_0^1(\Omega)$ and, to simplify notation, $\|\cdot\| := \|\cdot\|_{1,2}$ then the energy functional $\varphi : X \to \mathbb{R}$ stemming from (4.1) is

(4.2)
$$
\varphi(u) := \frac{1}{2} ||u||^2 - \int_{\Omega} F(x, u(x)) dx \quad \forall u \in X,
$$

with F as in (3.1). Obviously, $\varphi \in C^2(X)$.

Adapting the arguments of Section 3 we see that φ satisfies condition (C) and the following result holds.

THEOREM 4.1. Let (f_5) – (f_9) be satisfied. Then (4.1) admits at least two nontrivial solutions $u_0 \in \text{int}(C_+)$ and $u_1 \in C_0^1(\overline{\Omega})$.

A further nontrivial smooth solution to (4.1) will be found via Morse's theory.

LEMMA 4.1. Under hypotheses (f_5) – (f_7) one has $C_q(\varphi, \infty) = 0$ for all $q \in \mathbb{N}_0$.

PROOF. Pick any $\beta \in L^{\infty}(\Omega) \setminus \{0\}$ such that $\beta \ge 0$. Define, provided $u \in X$, $t \in [0, 1],$

$$
\psi(u) := \frac{1}{2} ||u||^2 - \frac{a_2}{2} ||u^-||^2_{L^2(\Omega)} + \int_{\Omega} \beta(x) u(x) dx,
$$

$$
h(t, u) := t\varphi(u) + (1 - t)\psi(u).
$$

On account of (f_5) the function $h : [0,1] \times X \to \mathbb{R}$ maps bounded sets into bounded sets, while $h(0, \cdot)$ and $h(1, \cdot)$ evidently comply with condition (C). Since $u \mapsto h'_t(t, u)$ and $u \mapsto h'_u(t, u)$ are locally Lipschitz continuous, as a simple computation shows, Proposition 3.2 in [[7\]](#page-17-0) can be applied once we prove that there exist $c \in \mathbb{R}, \delta > 0$ fulfilling

$$
h(t, u) \le c \quad \Rightarrow \quad (1 + ||u||) ||h'_u(t, u)||_{X^*} \ge \delta ||u||^2.
$$

If the assertion were false then one might construct two sequences $\{t_n\} \subseteq [0,1],$ $\{u_n\} \subseteq X$ such that $t_n \to t$, $h(t_n, u_n) \to -\infty$, and

(4.3)
$$
(1 + ||u_n||) ||h'_u(t_n, u_n)||_{X^*} < \frac{1}{n} ||u_n||^2, \quad n \in \mathbb{N}.
$$

By the properties of h, from $h(t_n, u_n) \rightarrow -\infty$ it follows

$$
\lim_{n\to+\infty}||u_n||=+\infty.
$$

Set $w_n := \frac{u_n}{\|u_n\|}$, $n \in \mathbb{N}$. Passing to a subsequence when necessary, we may suppose

 $w_n \rightharpoonup w$ in X, $w_n \rightharpoonup w$ in $L^2(\Omega)$, $w_n(x) \rightharpoonup w(x)$ a.e. in Ω ,

because $\|w_n\| = 1$ for all $n \in \mathbb{N}$. Inequality (4.3) yields

$$
(4.5) \qquad \left| \langle A_2(w_n), v \rangle - t_n \int_{\Omega} \frac{f(x, u_n)}{\|u_n\|} v \, dx + (1 - t_n) a_2 \int_{\Omega} \frac{u_n^-}{\|u_n\|} v \, dx \right|
$$

$$
+ (1 - t_n) \int_{\Omega} \frac{\beta}{\|u_n\|} v \, dx \Big| \le \frac{1}{n} \|v\| \quad \forall v \in X.
$$

Now observe that, on account of (f_5) - (f_7) , the sequence $\{||u_n||^{-1}N_f(u_n)\}\$ is bounded in $L^2(\Omega)$. Choosing $v := w_n - w$ and letting $n \to +\infty$ in (4.5) easily leads to

$$
\lim_{n\to+\infty}\langle A_2(w_n),w_n-w\rangle=0,
$$

whence $w_n \to w$ in X by (p_5) . Through (f_6) – (f_7) we get

$$
\frac{N_f(u_n)}{\|u_n\|} \rightharpoonup a_1 w^+ - \alpha w^- \quad \text{in } L^2(\Omega)
$$

for appropriate $\alpha \in L^2(\Omega)$ such that $a_2 \leq \alpha \leq b_2$; see [\[6](#page-17-0), pp. 1377–1378] or [[14](#page-17-0), pp. 302–303]. By (4.5) this implies, as $n \rightarrow +\infty$,

$$
\langle A_2(w), v \rangle = \int_{\Omega} \{ t a_1 w^+(x) - [t \alpha(x) + (1-t) a_2] w^-(x) \} v(x) dx, \quad v \in X,
$$

namely w turns out to be a weak solution of the problem

$$
-\Delta u = t a_1 u^+ - \alpha_t(x) u^- \quad \text{in } \Omega, \ u = 0 \text{ on } \partial \Omega,
$$

where $\alpha_t(x) := t\alpha(x) + (1 - t)a_2$. Since $ta_1 < \lambda_1$ while

$$
\lambda_m < a_2 \le \alpha_t(x) \le b_2 < \lambda_{m+1},
$$

one has $w = 0$, which however contradicts $||w|| = 1$. Hence, Proposition 3.2 in [[7\]](#page-17-0) provides

(4.6)
$$
C_q(\varphi, \infty) = C_q(\psi, \infty) \quad \forall q \in \mathbb{N}_0.
$$

The conclusion is achieved once we show that $C_q(\psi, \infty) = 0$. If $u \in K(\psi)$ then

$$
\langle A_2(u), v \rangle = -\int_{\Omega} [a_2 u^-(x) + \beta(x)] v(x) \, dx, \quad v \in X.
$$

Letting $v := u^+$ immediately leads to $u \leq 0$. So, u solves the problem

(4.7)
$$
-\Delta u = a_2 u - \beta(x) \quad \text{in } \Omega, u = 0 \text{ on } \partial \Omega.
$$

Since $\beta \in L^{\infty}(\Omega) \setminus \{0\}$ and $\beta \ge 0$, standard regularity results [\[5,](#page-16-0) Theorems 1.5.5– 1.5.6], besides [\[18,](#page-17-0) Theorem 5], yield $-u \in \text{int}(C_+)$. Define, for every $v \in \text{int}(C_+)$,

$$
R(v, -u) := |\nabla v|^2 - \nabla(-u) \cdot \nabla \left(\frac{v^2}{-u}\right).
$$

From the classical Picone identity (see, e.g., [[14](#page-17-0), Proposition 9.60]), (4.7), the sign properties of u and β , as well as (f_7) it follows

$$
0 \le \int_{\Omega} R(v, -u)(x) dx = ||v||^2 - \int_{\Omega} (-\Delta u) \frac{v^2}{u} dx
$$

= $||v||^2 - a_2 ||v||^2_{L^2(\Omega)} + \int_{\Omega} \frac{v^2}{u} \beta dx$
 $\le ||v||^2 - a_2 ||v||^2_{L^2(\Omega)} < ||v||^2 - \lambda_m ||v||^2_{L^2(\Omega)}.$

Bearing in mind (p₃) this entails, for $v := \phi_1$,

$$
0<\lambda_1-\lambda_m\leq 0,
$$

which is clearly impossible. So, $K(\psi) = \emptyset$ and, a fortiori, $C_q(\psi, \infty) = 0$.

LEMMA 4.2. Suppose (f_5) and (f_8) hold true. Then $C_q(\varphi, 0) = \delta_{q,d_m} \mathbb{Z}$ for all $q \in \mathbb{N}_0$, where $d_m := \dim \bigoplus_{i=1}^m E(\lambda_i)$.

PROOF. Recall that $\varphi \in C^2(X)$ and one has

(4.8)
$$
\langle \varphi''(u)(v), w \rangle = \int_{\Omega} \nabla v(x) \cdot \nabla w(x) dx - \int_{\Omega} f'_t(x, u(x)) v(x) w(x) dx \quad \forall u, v, w \in X.
$$

Thanks to (f_8) , Lemma 2.1 can be applied. Thus, $u = 0$ is a non-degenerate critical point of φ with Morse index d_m . Now, the conclusion follows from (2.2). \Box

THEOREM 4.2. Let (f_5) – (f_9) be satisfied. Then Problem (4.1) possesses at least three nontrivial solutions $u_0 \in \text{int}(C_+)$ and $u_1, u_2 \in C_0^1(\overline{\Omega})$.

PROOF. Theorem 4.1 directly gives the solutions $u_0 \in \text{int}(C_+)$, $u_1 \in C_0^1(\overline{\Omega}) \setminus \{0\}$. Through Theorem 3.1 we next infer

$$
(4.9) \t C_q(\varphi, u_0) = \delta_{q,0} \mathbb{Z}, \quad q \in \mathbb{N}_0;
$$

see [[14,](#page-17-0) Example 6.45]. The proof of Theorem 3.2 ensures that u_1 is a Mountain-Pass type critical point for φ . Hence, taking into account (4.8), Corollary 6.102 in [\[14\]](#page-17-0) yields

$$
(4.10) \t C_q(\varphi, u_1) = \delta_{q,1} \mathbb{Z}, \quad q \in \mathbb{N}_0.
$$

If the assertion were false then $K(\varphi) = \{0, u_0, u_1\}$. Lemmas 4.1–4.2, (4.9), (4.10), and Morse's relation (2.1) written for $t = -1$ would imply

$$
(-1)^{d_m} + (-1)^0 + (-1)^1 = 0,
$$

which is absurd. Therefore, there exists a further point $u_2 \in K(\varphi) \setminus \{0, u_0, u_1\}.$ Standard regularity arguments lead to the conclusion.

REFERENCES

- [1] M. CUESTA D. DE FIGUEIREDO J.-P. GOSSEZ, The beginning of the Fučik spectrum for the p-Laplacian, J. Differential Equations 159 (1999), 212-238.
- [2] J. P. GARCIA AZORERO J. J. MANFREDI I. PERAL ALONSO, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math. 2 (2000), 385–404.
- [3] L. GASIŃSKI N. S. PAPAGEORGIOU, Multiple solutions for asymptotically $(p-1)$ homogeneous p-Laplacian equations, J. Funct. Anal. 262 (2012), 2403-2433.
- [4] L. GASIŃSKI N. S. PAPAGEORGIOU, *Nonlinear Analysis*, Ser. Math. Anal. Appl. 9, Chapman and Hall/CRC Press, Boca Raton, 2006.
- [5] L. GASIŃSKI N. S. PAPAGEORGIOU, Nonsmooth Critical Point Theory and Nonlinear Boundary Value Problems, Ser. Math. Anal. Appl. 8, Chapman and Hall/CRC Press, Boca Raton, 2005.
- [6] S. Hu - N. S. PAPAGEORGIOU, *Multiple nontrivial solutions for p-Laplacian equations* with an asymmetric nonlinearity, Differential Integral Equations 19 (2006), 1371-1390.
- [7] Z. Liang J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl. 354 (2009), 147–158.
- [8] S. A. MARANO D. MOTREANU D. PUGLISI, Multiple solutions to a Dirichlet eigenvalue problem with p-Laplacian, Topol. Methods Nonlinear Anal., 42 (2013), 277–291.
- [9] S. A. Marano N. S. Papageorgiou, Multiple solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Adv. Nonlinear Anal. 1 (2012), 257–275.
- [10] S. A. Marano N. S. Papageorgiou, Constant-sign and nodal solutions to a Dirichlet problem with p-Laplacian and nonlinearity depending on a parameter, Proc. Edinburgh Math. Soc., 57 (2014), 521–532. DOI: 10.1017/S0013091513000515
- [11] S. A. MARANO N. S. PAPAGEORGIOU, Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter, Comm. Pure Appl. Anal. 12 (2013), 815–829.
- [12] J. Mawhin M. Willem, Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. 74, Springer-Verlag, Berlin, 1989.
- [13] E. Michael, Continuous selections. I, Ann. of Math. 63 (1956), 361–382.
- [14] D. Motreanu V. V. Motreanu N. S. Papageorgiou, Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems, Springer, 2014.
- [15] D. Motreanu V. V. Motreanu N. S. Papageorgiou, On p-Laplace equation with concave terms and asymmetric perturbations, Proc. Roy. Soc. Edinburgh Section A 141 (2011), 171–192.
- [16] D. MOTREANU M. TANAKA, Sign-changing and constant sign solutions for p-Laplacian problems with jumping nonlinearities, J. Differential Equations 249 (2010), 3352–3376.
- [17] N. S. PAPAGEORGIOU E. M. ROCHA, Existence of three nontrivial solutions for asymptotically p-linear noncoercive p-Laplacian equations, Nonlinear Anal. 74 (2011), 5314–5326.
- [18] J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202.

Received 21 July 2014 and in revised form 28 August 2014.

> Salvatore A. Marano Dipartimento di Matematica e Informatica Universita` degli Studi di Catania Viale A. Doria 6, 95125 Catania, Italy marano@dmi.unict.it

Nikolaos S. Papageorgiou Department of Mathematics National Technical University of Athens Zografou Campus, Athens 15780, Greece npapg@math.ntua.gr