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ABSTRACT. — The existence of at least two nonnegative smooth solutions to a homogeneous Di-
richlet problem with p-Laplacian and reaction (p — 1)-linear, but asymmetric, at +oo is investigated
through variational and truncation techniques. The case p = 2 is separately examined, obtaining a
third nontrivial smooth solution via Morse’s theory.
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1. INTRODUCTION

Let Q be a bounded domain in RV, N > 3, with a smooth boundary 0Q, let
l<p<+4oo, and let f: QxR — R be a Carathéodory function such that
f(x,0) = 0. Consider the homogeneous Dirichlet problem

{ —Apu = f(x,u) inQ,

1.1
(1.1) u=20 on 0Q,

where A, denotes the p-Laplace differential operator, namely A,u:=
div(|Vu|?"*Vu). As usual, a function u € W, ”(Q) is called a (weak) solution to
(1.1) provided

/ IVu(x)|?*Vu(x) - Vo(x) dx = / f(xu(x))v(x)dx Yo e W, (Q).
Q Q

The literature concerning (1.1) is by now very wide and many existence or multi-
plicity results are already available. Quite popular hypotheses are the following:

t
(1.2) ‘ |1' {r:’z) = o uniformly in x € Q,
t|—+ |t t
t
(1.3) lir%ﬁ:’z) = #0 uniformly in x € Q.
— t t

If o € R\{0} then one usually says that ¢ — f(x, ¢) exhibits a symmetric (p — 1)-
linear growth at infinity; see [3, 17] and the references therein. The recent paper
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[8] treats the case o <0 and f(x,?) := Ag(x,?) with 2 > 0 large enough, while
o= 4o0in [9, 10, 11].

Let A; (respectively, 4;) be the first (respectively, second) eigenvalue of the
operator —A, in Wol”’ (Q). Roughly speaking, in this paper, we shall consider a
reaction term f whose behavior is (p — 1)-linear, but asymmetric, near —oo and
+00, in the sense that the graph of the function 7 — I{ l(sz’i crosses A; as t moves
from —oo to +co0. Such an f is usually called crossing or jumping nonlinearity.
The existence of two solutions to (1.1) lying in C; (Q)\{0} is established via vari-
ational and truncation methods; see Theorem 3.3. Section 4 investigates the case
p = 2. A third nontrivial C}(Q)-solution is obtained through Morse’s theory.

Equations with p-Laplacian and (p — 1)-linear asymmetric reactions have
previously been studied by mainly using the so-called Fucik spectrum of —A, in
WO1 P (Q); see [16], besides the seminal work [1]. This approach depends on the
knowledge of the Fucik spectrum and requires that the limit (1.2) exists.

Our arguments are patterned after those of [6] (cf. also [15]) where, however, a
further sign condition on f is taken on and the semi-linear case is not separately
treated. Accordingly, (1.2)—(1.3) become here

(1.4) limsupf(x’lt) <a <M <a< liminff(x’zt) < limsup&’? <b
ot 1P e i e L '
and
S f(x,1)
1.5 A < a3 < liminf=—=% < limsup=——~ <b
() PSS e = T e =

uniformly in x € Q, with a;, b; being nonnegative constants. It should be noted
that none of limits (1.2)—(1.3) needs to exist. Moreover, (1.2) and (1.4) are mutu-
ally independent, whereas (1.3) forces (1.5) as soon as 1, < ff < +o0.

2. PRELIMINARIES

Let (X, || - ||) be a real Banach space. Given a set V' = X, write V for the closure
of V', 0V for the boundary of ¥, and int(¥") for the interior of V. If x € X and
0 > 0 then

Bs(x):={z€e X : ||z — x| <J}.

The symbol (X, || - || ;) denotes the dual space of X, {-,-) indicates the duality
pairing between X and X*, while x,, — x (respectively, x, — x) in X means ‘the
sequence {x,} converges strongly (respectively, weakly) in X”.

Let T be a topological space and let L be a multifunction from 7 into
X (briefly, L:T — 2%), namely a function which assigns to each te T a
nonempty subset L(z) of X. We say that L is lower semi-continuous when
{teT:L(t)nV # 0} turns out to be open in T for every open set V = X. A
function / : T — X is called a selection of L provided /(7) € L(¢) forallze T.
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We say that @ : X — R is coercive when

lim ®(x) = +oo0.

[lx||—+o0

The function ® is called weakly sequentially lower semi-continuous if x, — x
in X implies ®(x) < liminf, .., ®(x,). Let ® € C!'(X). The classical Cerami
compactness condition for @ reads as follows.

(C) Every sequence {x,} < X such that {®(x,)} is bounded and

Jim (1 [ D[ (o) = 0

possesses a convergent subsequence.
Define, provided ¢ € R,
O :={xe X :0(x)<c}, K(DP):=K(D) D '(c),

where, as usual, K(®) denotes the critical set of @, i.e., K(®) := {x e X : ®'(x)
= 0}. Given a topological pair (4, B) fulfilling B < 4 < X, the symbol H,(4, B),
q € Ny, indicates the q""-relative singular homology group of (A4, B) with integer
coefficients. Let xy € K .(®) be an isolated point of K(®). Then

Cy(D,x0) := Hy(D NV, nV\{x0}), ¢qe€ Ny,

are the critical groups of @ at xy. Here, V' stands for any neighborhood of xj such
that K(®) n®“n V' = {x}. By excision, this definition does not depend on the
choice of V. Suppose @ satisfies condition (C). When ®|y 4, is bounded below

and ¢ < inf ®(x), we define
xeK(®D)

Cy(D, 00) := Hy(X, D), qeNy.

The second deformation lemma [4, Theorem 5.1.33] implies that this definition
does not depend on the choice of ¢. If K(®) is finite then, setting

+o©
M(t,x) := " rank C,(®,x)t?
=0
! V(t,x) e R x K(D),

+o0
P(t,0) = Z rank Cy(®, o)t

q=0

the following Morse relation holds:

(2.1) > M(1,x) = P(1,0) + (1+1)0(1),

xeK(®)
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where Q(7) denotes a formal series with nonnegative integer coefficients; see for
instance [14, Theorem 6.62].

Now, let X be a Hilbert space, let x € K(®), and let ® be C? in a neighbor-
hood of x. If ®"(x) turns out to be invertible then x is called non-degenerate. The
Morse index d of x is the supremum of the dimensions of the vector subspaces of
X on which ®”(x) turns out to be negative definite. When x is non-degenerate
and with Morse index d one has

(2.2) Cy(D,x) =0447Z, q e N.

The monographs [12, 14] represent general references on the subject.

Throughout the paper, Q is a bounded domain of the real euclidean N-space
(RY)]-]) with a smooth boundary 0Q, m stands for the Lebesgue measure,
pe(l,+mw), pl:=p/(p—=1), |14 with ¢ > 1 indicates the usual norm of
L1(Q), and W ( ) denotes the closure of C#(Q) in W7(Q). On W ?(Q) we
introduce the norm

1/p
o= ([ Va7 as)" e wiri),

Write p* for the critical exponent of the Sobolev embedding Wol’p (Q) = L1(Q).
Recall that p* = Np/(N — p) if p < N, p* = +o0 otherwise, and the embedding
is compact whenever 1 < g < p*.

Define C}(Q) := {u e C'(Q) : u= 0 on 6Q}. Obviously, C}(Q) turns out to
be an ordered Banach space with positive cone

Co(Q), == {ue Cy(Q) :u(x) =0 Vx € Q}.

Moreover, one has

,\

int(C(}((_l)Jr):{ueC&( ):u>0inQ, n <OonaQ}

where n(x) is the outward unit normal vector to dQ at the point x € 0Q; see, for
example, [4, Remark 6.2.10].

Let W12 (Q) be the dual space of W1 7(Q) and let A, : Wol”’(Q) —
W-1r(Q) be the nonlinear operator stemmmg from the negative p-Laplacian,
ie.,

(2.3) (Ap(u),v) = /Q \Vu(x)|”2Vu(x) - Vo(x) dx  Yu,v e Wol’p(Q).

The Liusternik-Schnirelman theory glves a strictly increasing sequence {4, } of ei-
genvalues for the operator —A, in Wo P(Q). The following assertions involving
A1, 42, and A, can be found in [4 Section 6.2]; see also [14, Sections 9.1-9.2].



ON A DIRICHLET PROBLEM WITH p-LAPLACIAN AND ASYMMETRIC NONLINEARITY 61

(pl) 0< }vl < )»2.
Lo . .
(bs) 1l i) < -l for il w e W37 (@)

(p3) There exists an eigenfunction ¢, corresponding to iy such that ¢, €
int(Cj(Q),) as 11/vell as |1l prq) = 1.
(py) If U = {ue Wy'(Q): [ull Lo = 1} and

Lo:={ye C'([~1,1], U) : (1) = —=¢y,7(1) = 4},
then

Jy = inf max |u||? .
2 el ues(L1)) Il

(ps) Uy — u in Wol”'(Q) and limsup {A,(u,),u, —uy <0 imply u, —u in
WOIP(Q) n—-+oo

Let o € L*(Q)\{0} satisfy o > 0. Consider the weighted eigenvalue problem
(2.4) —Aju = Ja(x)|u|”u in Q, u=0ondQ.

As before, there exists a strictly increasing sequence {4,(x)} of eigenvalues for
(2.4) enjoying the properties [4, Section 6.2]:

(Ps) 0 < A1(e) < Za(w).
(p7) If 0. p e L= (Q\{0}, 0 < o0 < B, and a # B then iy (B) < Jy(). If 0 <o < B
then 2(B) < Aa(a).

Obviously, 4, = Z,(1), n € N. Now, suppose p =2 and denote by E(/,) the
eigenspace associated with 4,. It is known (see e.g. [4, Section 6.2]) that:

(ps) E(4) < CHQ) for all n e N.
(po) If u lies in E(1,) and vanishes on a set of positive Lebesgue measure then
u=0.

Setting, for every integer m > 1, H,, := " E(4,) and H,, := P_I;, we get
H}(Q)=H, ®H,.

Consequently, each u € H}(Q) can uniquely be written as u =i + @, where
e H,, ue H,. A simple argument, based on orthogonality and (py), yields
the next result.

LemMmA 2.1. Let me N and let 0 € L*(Q)\{ A} satisfy 0 = A,. Then there
exists a constant ¢ > 0 such that

lall? - / O()i(x) dx < —clal, Vae Hn.
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Let me Ng and let 0 € L*(Q)\{Ant1} satisfy 0 < Any1. Then there exists a
constant ¢ > 0 such that

a2, /9 v = ellall?, Vae H,

Define Uc —{ue CH(Q) : lullr@)y = 1}. Evidently, Uc turns out to be
dense in the set U given by (py). Moreover if

Te:={ye C%=1L1],Uc) : y(=1) = —¢. (1) = ¢y }
then the following result holds.
LEMMA 2.2. The set I'¢ is dense in T,

PRrROOF. Pick any y, € I';. We shall prove that there exists a sequence {y,} < I'¢c
fulfilling

(2.5) lim = max_|[7,(z) = 7o(1)]| = 0.

n—+w re[-1,1]

The multifunction L, : [~1,1] — 25©@ defined by

{~d1} if =1,
L(t) =4 {ue CU@) : Ju—y0(0)| < U/} if e (~1,1),
{9} if =1

takes nonempty convex values and is lower semi-continuous. So, Theorem 3.1"”
in [13] provides a continuous selection /, : [—1,1] — C}(Q) of L,. This entails

1
(2.6)  [17a(2) = oDl < 0 Vie (=11), L(=1)=—¢;, L(1)=4¢.
Consequently,
(2.7) Jim 15O a@) = 170D o) =1

uniformly with respect to # € [—1, 1]. For any n large enough we can thus set

L) )
= e (S0

On account of (2.6) and (p;) one has y, € I'c. Moreover, thanks to (2.6),
(2:8)  l7a(6) = oIl < Nlpu (1) = (D + (11 (2) = 7o (D)

<11 = ) Lra ||,”(l>f|j'p' 1 owel-11l
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Recall that y, € I'y. Since, by (2.6) again,

max, (1= [lh(@llLoe)l = max [l

ooy — |1 (2
max ma e LG

< max 170() = L) oo

<c¢ max |y (1) = L(1)] <
te[-1,1]

SIo

for some ¢ > 0, (2.5) immediately follows from (2.6)—(2.8). O
Finally, put, provided t e R, u: Q — R,and g : Q x R — R,

¢t~ :=max{-7,0}, 1" :=max{s,0},
u (x) =ulx)", u(x):=ulx)", Ny(u)(x) == g(x, u(x)).

3. EXISTENCE RESULTS

To avoid unnecessary technicalities, ‘for every x € ’ will take the place of ‘for
almost every x € Q’ and the variable x will be omitted when no confusion can
arise.

Let /: Q x R — R be a Carathéodory function such that f(x,0) = 0 and let

(3.1) F(x,z):= /Ozf(x, ndt, (x,z) e QxR.

We will posit the following assumptions, where a; and b; denote appropriate
nonnegative constants.

(fo) |f(x,0)] < ao(l+ |t|p_1)f0r every (x,1) € Q x R.
S(x, 1)

tp-1

(f;) limsup

t——+0

< a) < Ay uniformly with respect to x € Q.
S (1) S (x,1)
fr) A1 < ay < liminf u
(f2) = P72 T e 1P
< limsup

(£3) 12 < ay < liminf/ 520 < S
xeQ. =0 P =0 |f777t

(f4) There exists ay > Ay such that % lz|” < F(x,z) for all (x,z) e Q x Ry.

< by uniformly in x € Q.

< b3 uniformly with respect to

On account of (fy) and (f3), to every p > 0 there corresponds u, > 0 satisfying
(3.2) SO0 +p " =0, (x,1) e Qx[0,].

REMARK 3.1. The constants that appear in (fy)—(f4) can evidently be re-
placed by suitable functions belonging to L*(Q). In particular, we might have
ay,dy,dy € Lx(Q)\{ll} with0 <a; <1 < min{az, a4}.
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Write X := WOI""(Q) and C; := C}(Q),. The energy functional ¢ : X — R
stemming from Problem (1.1) is

1
(3.3) o(u) == ;||u||f’p - /QF(x,u(x))dx Yue X,

with F as in (3.1). Obviously, ¢ € C'(X). Moreover, if

ﬁmo:fmﬁxfuna:lﬂmwwz

then F,(x,z) = F(x,z") and the corresponding truncated function

1
o) =l = [ Fulxu(oydr. uex.

turns out to be C! as well.

LEMMA 3.1. Under hypotheses (fo)—(f1), the functional ¢ is weakly sequentially
lower semi-continuous and coercive.

PRrROOF. The space X compactly embeds in L?(Q) while the Nemitskii operator
Ny, turns out to be continuous on L?(Q). Thus, a standard argument ensures that
¢, is weakly sequentially lower semi-continuous.

Pick ¢ € (0,4 — ay). By (fo)—(f;) there exists ¢y > 0 fulfilling

a1+82”+co V(x,2) e Q x Ry.

F(x,z) <
Consequently, on account of (p,),
[||“||f7,p — (a1 + 8)||”+||£P(Q)] — com(Q)

9 (u) =

>

[H”H]p,p — (a1 +¢€)||ul i,,(g)] — com(Q)

SRS R e

1 ay + ¢
> (1= 55 ], — com(@)

A
for any u € X. Since a; + ¢ < /1, the conclusion follows. O

THEOREM 3.1. Let (fy), (f1), and (f3) be satisfied. Then Problem (1.1) admits a
solution uy € int(C..), which is a local minimizer of ¢.

PrROOF. Thanks to Lemma 3.1 we can find uy € X such that

(34) ¢ (o) = L}gg 9 (u).
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Bearing in mind (p,), fix ¢ € (0,a3 — 4;). By (f3) one has

(3.5) Fx,2)= B2 inQx[-9,0]

for appropriate 6 > 0. If £ > 0 is so small that
0<tp(x)<é VxeQ

where ¢, comes from (ps), then (3.5) yields

(3.6) ouli) < oo 0y = )]l gy <0
Hence,
(3.7) 9. (uo) <0 =9,(0),

which clearly means uy # 0. Now, through (3.4) we get ¢/, (uy) = 0, namely
)0y = [ folru()olx) v, ve X,
Q

Choosing v := —u, leads to [|ug ||, = 0. Thus, uy > 0 and, a fortiori, the func-
tion uy solves (1.1). Standard regularity results [5, Theorems 1.5.5-1.5.6] ensure
that up € C:\{0}. Let p := [Jug|| .- (q)- Due to (3.2) one has

—Apup(x) + ,upuo(x)pf = f(x,up(x)) + /vtpuo(x)’"*1 >0 ae. inQ.

Therefore, by Theorem 5 in [18], uy € int(C, ). This also implies that uy is a local
C 1(Q)—mrmrnlzer of ¢, because ¢|- = ¢.|c, . Finally, owing to [2, Theorem 1.1],
the same holds true with C}(Q) replaced by X. O

LeEMMA 3.2. Under hypotheses (fo)—(f2), the functional ¢ fulfills condition (C).

Proor. Since X compactly embeds in L7(€2), the Nemitskii operator Ny is
continuous on L”(Q), and A4, enjoys property (ps), it suffices to show that every
sequence {u,} = X satisfying

(338) o) < VneN
(39) i (14 [ ]y,)0' (1) =0

turns out to be bounded. Obviously, this happens once the same holds for both
{uF} and {u, }. We are thus reduced to verifying two claims.

CLAIM 1. The sequence {u, } is bounded in X .
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If the assertion were false then, up to subsequences, |||, , — +oo. Write
vp = ul/|luw||; ,- From |lv,||, , = 1 it follows, along a subsequence when neces-
n- 1.p* nill,p = g q

sary,

(3.10) v, —v inX, v, — v in LP(Q), vy —v=>0 ae. inQ.

Through (3.9) one has {¢'(u,),u > — 0, which, dividing by |ju, ||1p, easily
entails

+
(3.11) lonll?, < e+ /f”x” X)) () dx Ve N,

where ¢, — 0. Because of (fy) the sequence {||u+||1p+1Nf(uj)} c LP'(Q) is
bounded. Via the same reasoning made in [14, pp. 302-303] we thus get a func-
tion o« € L™ (Q) such that 0 < o < a; and

TNf(u;)éaUpil n LP,(Q)

Thanks to (3.10)—(3.11) this produces, as n — +0,

(3.12) 67, < [ #(00x)” dx < Aol

Consequently, v=t¢$, for some t>0. If =0 then, by (3.10)—(3.11) again,

vy — 0 in X, which contradicts [|v,[|, , =1 for all n € N. Otherwise, on account
of (3.12) and (fl)

1
lllf, = || ollf, < - OC(X)U(X)”dx < /Q)~1¢1(X)”dx = lldill7nq)

1P
but this is impossible; cf. (ps).
CLAIM 2. The sequence {u, } is bounded in X .

If the assertion were false then, up to subsequences, [|u, ||, , — +o0. Write, like
before, wy, :==u, /|lu, ||, ,- From |[jw,|, , =1 it follows, along a subsequence
when necessary,

(3.13) w, —w inJX, wy, — w in L?(Q), w, —w>=0 ae. inQ.

Through (3.9) one has

(3.14) '<Ap(un),v>—/Qf(x,u,,(x))v(x)dx

<é&llvll,, VvelX,
where &, — 07. Assumption (fy) and the boundedness of {u,} readily lead to

< alolly ,

(3.15) ‘(A u,),vy — /f x,u,; (x)dx
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for appropriate ¢, > 0. Since u, = u,” —u,

n o
after dividing by ||un_||1p; ,

inequalities (3.14)—(3.15) produce,

(3.16) | <Ay (=), /f Do(x)dx| <&l veX,

g II” 1

with ¢/ — 0. Observe next that, by (f) besides (3.13),

/ f(x wy(x) —w(x))dx = 0.

i [ ||" :

So, (3.16) written for v := w, — w and (3.13) again provide

lim <{A,(w,),w, —w) =0,

n—400
namely, because of (ps),

(3.17) lim w,=w in X,

n—-+40o0

whence [|w[|; , = 1. Thanks to (fo) the sequence {|lu, ||, PN (—u;)} = LY (Q)
is bounded. Usmg the arguments made in [14, pp. 302 303] we thus obtain a
function o € L*(Q) such that a; < o < by and

1

1
[l

N(—u;) — —aw?™!in LP'(Q).

On account of (3.16)—(3.17) this implies, as n — +o0,
(w),vy = / )7 ldx Woe X,

i.e., w turns out to be a weak positive solution of the problem
—Ayu = o(x)[ul”*u inQ, u=0on oQ.
Now, recalling (f}), from (p-) it follows

)\«1(0{) < /11(/11) =1= /12(},2) < /12(0().
Therefore w = 0, which contradicts [wl|, , = 1. O
A further nontrivial smooth solution to (1.1) can now be found.

THEOREM 3.2. Let (fo)—(f4) be satisfied. Then Problem (1.1) possesses a non-
trivial solution uy € C(Q)\{uo}.
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PrROOF. We may evidently assume that the local minimizer uy of ¢ given by
Theorem 3.1 is proper. Thus, for sufficiently small p > 0 one has

(3.18) p(ug) < c,:= inf o(u).

uedB,(up)

Since, due to (f7),
lim ¢(t¢l) = —0,
t——00
there exists #; > 0 such that

gy +uolly , > p, o(=t1)) < cp.

On account of Lemma 3.2, the Mountain-Pass Theorem can be applied, which
yields a point #; € X complying with ¢'(u;) = 0 and

(3.19) ¢, < p(u1) = inf max ¢(y(1)),
vel 1e(0,1]

where
= {yeC%0,1],X):9(0) = —t1¢;,7(1) = uo}.

Obviously, the function u; solves (1.1). Through (3.18)—(3.19) we get uy # uo,
while standard regularity arguments ensure that u; € CJ(Q). The proof is thus
completed once one verifies that u; # 0. This will follow from the inequality

(3.20) p(u) <0,
which, in view of (3.19), can be shown by constructing a path 7 € T such that
(3.21) p(p(1)) <0 Vrel0,1].

By (f3) to every # > 0 small there corresponds 0 > 0 such that

(3.22) ———z|? < F(x,2), (x,2z) € Qx[-d,d].

Combining (p,) with Lemma 2.2 entails

3.23 NP <2
(3.23) tg[l_a1{<1]\m()lll,,,< 2+

for appropriate y, € Ic. Since y,([—1,1]) is compact in Cj(Q) and t1¢;,uy €
int(C; ) we can find ¢ > 0 so small that

—hi(x) <ep,((x) <uo(x), ey, (1)(¥)| <0
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whenever x € Q, ¢ € [—1, 1]. Thanks to (3.22)—(3.23) one has
e? ?
p(ey, (1) = o 17, (OIT, — QF(x, &7, (1)(x)) dx

er er
<Zatn) =2 G2t [ 0@ dy =0 Viel-11]
p p Q
because y,(7) € Uc. Consequently,

(3.24) Pl 1-1,17) < O-

Next, write a := ¢, (u). From (3.7) it follows a < 0. We may suppose

K(p,) ={0,uo},

otherwise the conclusion is straightforward. Hence, no critical value of ¢ lies in
(a,0) while

Kalp) = {uo}-

Due to the second deformation lemma [4, Theorem 5.1.33], there exists a con-
tinuous function /4 : [0, 1] x (p9\{0}) — ¢? satisfying

h(0,u) =u, h(l,u) =uy, and ¢, (h(t,u)) < e, (u)

for all (r,u) € [0,1] x (p2\{0}). Let y,(¢) := h(t,e¢,)", 1 € [0,1]. Then y,(0) =
epy, v, (1) = up, as well as

(3.25) (. (1) = 0. (7.(1) < @, (h(1,e41)) < 0. (ed)) = p(ey, (1)) <O;
cf. (3.24). Finally, define

y (1) = —(tt+e(1 —0)gy, te]0,1].
By (f4) and (p,)—(p;) we easily have

(1t +&(1 —1)?

(3.26) o(r_(1)) < (21— an) |1y <.

Concatenating y_, ¢y,, and y, one obtains a path j € I" which, in view of (3.24)—
(3.26), fulfills (3.21). This shows (3.20), whence u; # 0. O

The next multiplicity result directly stems from Theorems 3.1-3.2.

THEOREM 3.3. Let (fo)—(f4) be satisfied. Then Problem (1.1) possesses at least
two nontrivial solutions uy € int(C) and u; € C}(Q).
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4. THE CASE p =2

Suppose f: Q x R — R is a function such that f(x,0) =0 and f(x,-) belongs
to C!(R) for every x € Q, while f(-,7) and f/(-, ) are measurable for all 7 € R.
The following assumptions will be made in the sequel, where a; and b; denote
appropriate nonnegative constants.

(fs) 1f(x,0)] < ao(1 + |f)2) for every (x,1) € Q x R, being 2 < r < 2*.

. X, ) . .
(fg) lim t’ = ay < Ay uniformly with respect to x € Q.

1=+
(f7) A1 <ap < litm_infﬂ);’ f) < limsup@

f(x’ t) [——o0
t

< by uniformly in x € Q.

(fs) f/(x,0) = ltgr(} uniformly with respect to x € Q. Moreover, for some

m =2 one has Ay < a3 < f/(x,0) < by < Ay in Q.

(f9) There exists as > Ay fulfilling %zz < F(x,z) for all (x,z) € Q x R

A comment analogous to that made in Remark 3.1 is true here.
Consider the semi-linear problem

4.1) {—Au:f(x,u) in Q,
u=20 on 0Q.
If X := H}(Q) and, to simplify notation, || - | := | - |1, then the energy func-

tional ¢ : X — R stemming from (4.1) is

(4.2) (1) = % lul)? - /QF(x,u(x)) dx Vue X,

with F as in (3.1). Obviously, ¢ € C?(X).
Adapting the arguments of Section 3 we see that ¢ satisfies condition (C) and
the following result holds.

THEOREM 4.1. Let (f5)—(fy) be satisfied. Then (4.1) admits at least two nontrivial
solutions uy € int(Cy) and u; € C}(Q).

A further nontrivial smooth solution to (4.1) will be found via Morse’s theory.
LemMMA 4.1. Under hypotheses (f5)—(f7) one has Cy(p, 0) = 0 for all g € N,.

Proor. Pick any f e L*(Q)\{0} such that > 0. Define, provided u € X,
te[0,1],

) = 3l ~ 2 gy + / PxJulx) dx.
h(t,u) .= tp(u) + (1 — )y
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On account of (fs) the function /:[0,1] x X — R maps bounded sets into
bounded sets, while 4(0, -) and A(1,-) evidently comply with condition (C). Since
u— hi(t,u) and u — h,(t,u) are locally Lipschitz continuous, as a simple com-
putation shows, Proposition 3.2 in [7] can be applied once we prove that there
exist ¢ € R, 0 > 0 fulfilling

h(tu) < e = (U lul )l (2 20) |- = Olful|.

If the assertion were false then one might construct two sequences {z,} < [0, 1],
{u,} = X such that ¢, — ¢, h(t,,u,) — —o0, and

1
(4.3) (1l DV (s ) - < ;IlunHZ, neN.

By the properties of &, from h(t,,u,) — —oo it follows

(4.4) lim |ju,| = +o0.
n—+oo
u .
Set w, :=——, neN. Passing to a subsequence when necessary, we may
suppose fea
wy, —w in X, w, — w in L*(Q), wa(Xx) — w(x) a.e.inQ,

because ||w,|| = 1 for all n € N. Inequality (4.3) yields

_ f(xa un) _ U,
(4.5) ’<A2(Wn),1)> ln/Q vdx+ (1 t,,)az/Q vdx

A [

—k(l—t,,)/Q p vdx

24

1
< —|lv| VveX.
n

Now observe that, on account of (fs)—(f7), the sequence {||u,|| ' Ny(w,)} is
bounded in L?(Q). Choosing v:=w, —w and letting n — +o0 in (4.5) easily
leads to

lim <Ay(wy,),w, —w) =0,

n—+00

whence w, — w in X by (ps). Through (fs)—(f7) we get

Ny (uy _ .
o) ayw —oaw™  in L*(Q)

for appropriate o € L?*(Q) such that ay < o < by; see [6, pp. 1377-1378] or [14,
pp- 302-303]. By (4.5) this implies, as n — 400,

(A (w), vy = /Q{tale“(x) — [ta(x) + (1 = az)w™ (x)}v(x)dx, veX,
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namely w turns out to be a weak solution of the problem
—Au = taju" — o, (x)u” inQ, u=0ondQ,
where o,(x) := to(x) + (1 — t)ay. Since ta; < A, while
I < @y < 0(X) < by < A,

one has w = 0, which however contradicts ||w|| = 1. Hence, Proposition 3.2 in
[7] provides

(4.6) Cylp, 0) = Cy(h, 0) Vg € No.
The conclusion is achieved once we show that C,(y, c0) = 0. If u € K(y) then
Cx(w),0) =~ [ fasu () + el . ve X.
Q
Letting v := ut immediately leads to u < 0. So, u solves the problem
(4.7 —Au=au—f(x) inQ, u=0oniQ.
Since f € L*(Q)\{0} and f > 0, standard regularity results [5, Theorems 1.5.5—
1.5.6], besides [18, Theorem 5], yield —u € int(C, ). Define, for every v € int(C, ),

v2

R(v, —u) = |Vo|* — V(—u) - v(—).

—u

From the classical Picone identity (see, e.g., [14, Proposition 9.60]), (4.7), the sign
properties of u and f, as well as (f7) it follows

2

0< /QR(U,—M)(x)dx—||U||2—/Q(—Au) dx

v
u

= ol? ~ aslol + [ pis

- Wl + f -

2 2 2 2

< loll” = axlvllz2iq) < Ill” = Amlvll72q)-

Bearing in mind (ps) this entails, for v := ¢,
0< A —An < 0,

which is clearly impossible. So, K () = 0 and, a fortiori, C,(\, o0) = 0. 0

LeMMA 4.2. Suppose (fs) and (fg) hold true. Then Cy(¢,0) =0y4,Z for all
q € No, where d,, := dim @Zl E().
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PrROOF. Recall that ¢ € C?(X) and one has

(4.8) p"(u)(v),w)y = , Vo(x) - Vw(x) dx

—/f,’(x,u(x))v(x)w(x)dx Yu,o,we X.
Q

Thanks to (fg), Lemma 2.1 can be applied. Thus, # = 0 is a non-degenerate crit-
ical point of ¢ with Morse index d,,. Now, the conclusion follows from (2.2). 0O

THEOREM 4.2. Let (f5)—(f9) be satisfied. Then Problem (4.1) possesses at least
three nontrivial solutions uy € int(C.) and uy,u, € C}(Q).

PRrROOF. Theorem 4.1 directly gives the solutions uy € int(C, ), u; € C3(Q)\{0}.
Through Theorem 3.1 we next infer

(4.9) Cy(p,u0) = 0402, g€ Ny;

see [14, Example 6.45]. The proof of Theorem 3.2 ensures that #; is a Mountain-
Pass type critical point for ¢. Hence, taking into account (4.8), Corollary 6.102 in
[14] yields

(410) Cq(go,ul) :5%12, q e N.

If the assertion were false then K(p) = {0, uo,u; }. Lemmas 4.1-4.2, (4.9), (4.10),
and Morse’s relation (2.1) written for = —1 would imply

(D™ + (-1 + (-1)' =0,

which is absurd. Therefore, there exists a further point u; € K(¢)\{0,uo,u;}.
Standard regularity arguments lead to the conclusion. O
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