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Abstract. — The existence of at least two nonnegative smooth solutions to a homogeneous Di-

richlet problem with p-Laplacian and reaction ðp� 1Þ-linear, but asymmetric, atel is investigated
through variational and truncation techniques. The case p ¼ 2 is separately examined, obtaining a

third nontrivial smooth solution via Morse’s theory.
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1. Introduction

Let W be a bounded domain in RN , Nb 3, with a smooth boundary qW, let
1 < p < þl, and let f : W� R ! R be a Carathéodory function such that
f ðx; 0ÞC 0. Consider the homogeneous Dirichlet problem

�Dpu ¼ f ðx; uÞ in W;

u ¼ 0 on qW;

�
ð1:1Þ

where Dp denotes the p-Laplace di¤erential operator, namely Dpu :¼
divðj‘uj p�2‘uÞ. As usual, a function u a W

1;p
0 ðWÞ is called a (weak) solution to

(1.1) provided

Z
W

j‘uðxÞj p�2‘uðxÞ � ‘vðxÞ dx ¼
Z
W

f ðx; uðxÞÞvðxÞ dx Ev a W
1;p
0 ðWÞ:

The literature concerning (1.1) is by now very wide and many existence or multi-
plicity results are already available. Quite popular hypotheses are the following:

lim
jtj!þl

f ðx; tÞ
jtj p�2

t
¼ a uniformly in x a W;ð1:2Þ

lim
t!0

f ðx; tÞ
jtj p�2

t
¼ bA 0 uniformly in x a W:ð1:3Þ

If a a Rnf0g then one usually says that t 7! f ðx; tÞ exhibits a symmetric ðp� 1Þ-
linear growth at infinity; see [3, 17] and the references therein. The recent paper



[8] treats the case aa 0 and f ðx; tÞ :¼ lgðx; tÞ with l > 0 large enough, while
a ¼ þl in [9, 10, 11].

Let l1 (respectively, l2) be the first (respectively, second) eigenvalue of the
operator �Dp in W

1;p
0 ðWÞ. Roughly speaking, in this paper, we shall consider a

reaction term f whose behavior is ðp� 1Þ-linear, but asymmetric, near �l and

þl, in the sense that the graph of the function t 7! f ðx; tÞ
jtj p�2t

crosses l1 as t moves
from �l to þl. Such an f is usually called crossing or jumping nonlinearity.
The existence of two solutions to (1.1) lying in C1

0 ðWÞnf0g is established via vari-
ational and truncation methods; see Theorem 3.3. Section 4 investigates the case
p ¼ 2. A third nontrivial C1

0 ðWÞ-solution is obtained through Morse’s theory.
Equations with p-Laplacian and ðp� 1Þ-linear asymmetric reactions have

previously been studied by mainly using the so-called Fučik spectrum of �Dp in
W

1;p
0 ðWÞ; see [16], besides the seminal work [1]. This approach depends on the

knowledge of the Fučik spectrum and requires that the limit (1.2) exists.
Our arguments are patterned after those of [6] (cf. also [15]) where, however, a

further sign condition on f is taken on and the semi-linear case is not separately
treated. Accordingly, (1.2)–(1.3) become here

lim sup
t!þl

f ðx; tÞ
t p�1

a a1 < l1 < a2 a lim inf
t!�l

f ðx; tÞ
jtj p�2

t
a lim sup

t!�l

f ðx; tÞ
jtj p�2

t
a b2ð1:4Þ

and

l2 < a3 a lim inf
t!0

f ðx; tÞ
jtj p�2

t
a lim sup

t!0

f ðx; tÞ
jtj p�2

t
a b3ð1:5Þ

uniformly in x a W, with ai, bj being nonnegative constants. It should be noted
that none of limits (1.2)–(1.3) needs to exist. Moreover, (1.2) and (1.4) are mutu-
ally independent, whereas (1.3) forces (1.5) as soon as l2 < b < þl.

2. Preliminaries

Let ðX ; k � kÞ be a real Banach space. Given a set V JX , write V for the closure
of V , qV for the boundary of V , and intðVÞ for the interior of V . If x a X and
d > 0 then

BdðxÞ :¼ fz a X : kz� xk < dg:

The symbol ðX �; k � kX � Þ denotes the dual space of X , 3� ; �4 indicates the duality
pairing between X and X �, while xn ! x (respectively, xn * x) in X means ‘the
sequence fxng converges strongly (respectively, weakly) in X ’.

Let T be a topological space and let L be a multifunction from T into
X (briefly, L : T ! 2X ), namely a function which assigns to each t a T a
nonempty subset LðtÞ of X . We say that L is lower semi-continuous when
ft a T : LðtÞBV A jg turns out to be open in T for every open set V JX . A
function l : T ! X is called a selection of L provided lðtÞ a LðtÞ for all t a T .
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We say that F : X ! R is coercive when

lim
kxk!þl

FðxÞ ¼ þl:

The function F is called weakly sequentially lower semi-continuous if xn * x
in X implies FðxÞa lim infn!l FðxnÞ. Let F a C1ðX Þ. The classical Cerami
compactness condition for F reads as follows.

(C) Every sequence fxngJX such that fFðxnÞg is bounded and

lim
n!þl

ð1þ kxnkÞkF 0ðxnÞkX � ¼ 0

possesses a convergent subsequence.

Define, provided c a R,

Fc :¼ fx a X : FðxÞa cg; KcðFÞ :¼ KðFÞBF�1ðcÞ;

where, as usual, KðFÞ denotes the critical set of F, i.e., KðFÞ :¼ fx a X : F 0ðxÞ
¼ 0g. Given a topological pair ðA;BÞ fulfilling BHAJX , the symbol HqðA;BÞ,
q a N0, indicates the q

th-relative singular homology group of ðA;BÞ with integer
coe‰cients. Let x0 a KcðFÞ be an isolated point of KðFÞ. Then

CqðF; x0Þ :¼ HqðFcBV ;FcBVnfx0gÞ; q a N0;

are the critical groups of F at x0. Here, V stands for any neighborhood of x0 such
that KðFÞBFcBV ¼ fx0g. By excision, this definition does not depend on the
choice of V . Suppose F satisfies condition ðCÞ. When FjKðFÞ is bounded below
and c < inf

x AKðFÞ
FðxÞ, we define

CqðF;lÞ :¼ HqðX ;FcÞ; q a N0:

The second deformation lemma [4, Theorem 5.1.33] implies that this definition
does not depend on the choice of c. If KðFÞ is finite then, setting

Mðt; xÞ :¼
Xþl

q¼0

rankCqðF; xÞtq

Pðt;lÞ :¼
Xþl

q¼0

rankCqðF;lÞtq
Eðt; xÞ a R� KðFÞ;

the following Morse relation holds:

X
x AKðFÞ

Mðt; xÞ ¼ Pðt;lÞ þ ð1þ tÞQðtÞ;ð2:1Þ
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where QðtÞ denotes a formal series with nonnegative integer coe‰cients; see for
instance [14, Theorem 6.62].

Now, let X be a Hilbert space, let x a KðFÞ, and let F be C2 in a neighbor-
hood of x. If F 00ðxÞ turns out to be invertible then x is called non-degenerate. The
Morse index d of x is the supremum of the dimensions of the vector subspaces of
X on which F 00ðxÞ turns out to be negative definite. When x is non-degenerate
and with Morse index d one has

CqðF; xÞ ¼ dq;dZ; q a N0:ð2:2Þ

The monographs [12, 14] represent general references on the subject.
Throughout the paper, W is a bounded domain of the real euclidean N-space

ðRN ; j � jÞ with a smooth boundary qW, m stands for the Lebesgue measure,
p a ð1;þlÞ, p 0 :¼ p=ðp� 1Þ, k � kLqðWÞ with qb 1 indicates the usual norm of
LqðWÞ, and W

1;p
0 ðWÞ denotes the closure of Cl

0 ðWÞ in W 1;pðWÞ. On W
1;p
0 ðWÞ we

introduce the norm

kuk1;p :¼
�Z

W

j‘uðxÞj p dx
�1=p

; u a W
1;p
0 ðWÞ:

Write p� for the critical exponent of the Sobolev embedding W
1;p
0 ðWÞJLqðWÞ.

Recall that p� ¼ Np=ðN � pÞ if p < N, p� ¼ þl otherwise, and the embedding
is compact whenever 1a q < p�.

Define C1
0 ðWÞ :¼ fu a C1ðWÞ : u ¼ 0 on qWg. Obviously, C1

0 ðWÞ turns out to
be an ordered Banach space with positive cone

C1
0 ðWÞþ :¼ fu a C1

0 ðWÞ : uðxÞb 0 Ex a Wg:

Moreover, one has

intðC1
0 ðWÞþÞ ¼ u a C1

0 ðWÞ : u > 0 in W;
qu

qn
< 0 on qW

� �
;

where nðxÞ is the outward unit normal vector to qW at the point x a qW; see, for
example, [4, Remark 6.2.10].

Let W�1;p 0 ðWÞ be the dual space of W
1;p
0 ðWÞ and let Ap : W

1;p
0 ðWÞ !

W�1;p 0 ðWÞ be the nonlinear operator stemming from the negative p-Laplacian,
i.e.,

3ApðuÞ; v4 :¼
Z
W

j‘uðxÞj p�2‘uðxÞ � ‘vðxÞ dx Eu; v a W
1;p
0 ðWÞ:ð2:3Þ

The Liusternik-Schnirelman theory gives a strictly increasing sequence flng of ei-
genvalues for the operator �Dp in W

1;p
0 ðWÞ. The following assertions involving

l1, l2, and Ap can be found in [4, Section 6.2]; see also [14, Sections 9.1–9.2].
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ðp1Þ 0 < l1 < l2.

ðp2Þ kuk p

L pðWÞ a
1

l1
kuk p

1;p for all u a W
1;p
0 ðWÞ.

ðp3Þ There exists an eigenfunction f1 corresponding to l1 such that f1 a
intðC1

0 ðWÞþÞ as well as kf1kL pðWÞ ¼ 1.

ðp4Þ If U :¼ fu a W
1;p
0 ðWÞ : kukL pðWÞ ¼ 1g and

G0 :¼ fg a C0ð½�1; 1�;UÞ : gð�1Þ ¼ �f1; gð1Þ ¼ f1g;

then

l2 ¼ inf
g AG0

max
u A gð½�1;1�Þ

kuk p
1;p:

ðp5Þ un * u in W
1;p
0 ðWÞ and lim sup

n!þl
3ApðunÞ; un � u4a 0 imply un ! u in

W
1;p
0 ðWÞ.

Let a a LlðWÞnf0g satisfy ab 0. Consider the weighted eigenvalue problem

�Dpu ¼ laðxÞjuj p�2
u in W; u ¼ 0 on qW:ð2:4Þ

As before, there exists a strictly increasing sequence flnðaÞg of eigenvalues for
(2.4) enjoying the properties [4, Section 6.2]:

ðp6Þ 0 < l1ðaÞ < l2ðaÞ.
ðp7Þ If a; b a LlðWÞnf0g, 0a aa b, and aA b then l1ðbÞ < l1ðaÞ. If 0a a < b

then l2ðbÞ < l2ðaÞ.

Obviously, ln ¼ lnð1Þ, n a N. Now, suppose p ¼ 2 and denote by EðlnÞ the
eigenspace associated with ln. It is known (see e.g. [4, Section 6.2]) that:

ðp8Þ EðlnÞJC1
0 ðWÞ for all n a N.

ðp9Þ If u lies in EðlnÞ and vanishes on a set of positive Lebesgue measure then
u ¼ 0.

Setting, for every integer mb 1, Hm :¼ 0m

n¼1
EðlnÞ and ĤHm :¼ H

?
m , we get

H 1
0 ðWÞ ¼ Hm a ĤHm:

Consequently, each u a H 1
0 ðWÞ can uniquely be written as u ¼ uþ ûu, where

u a Hm, ûu a ĤHm. A simple argument, based on orthogonality and ðp9Þ, yields
the next result.

Lemma 2.1. Let m a N and let y a LlðWÞnflmg satisfy yb lm. Then there
exists a constant c > 0 such that

kuk21;2 �
Z
W

yðxÞuðxÞ2 dxa�ckuk21;2 Eu a Hm:
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Let m a N0 and let y a LlðWÞnflmþ1g satisfy ya lmþ1. Then there exists a
constant ĉc > 0 such that

kûuk21;2 �
Z
W

yðxÞûuðxÞ2 dxb ĉckûuk21;2 Eûu a ĤHm:

Define UC :¼ fu a C1
0 ðWÞ : kukL pðWÞ ¼ 1g. Evidently, UC turns out to be

dense in the set U given by ðp4Þ. Moreover, if

GC :¼ fg a C0ð½�1; 1�;UCÞ : gð�1Þ ¼ �f1; gð1Þ ¼ f1g

then the following result holds.

Lemma 2.2. The set GC is dense in G0.

Proof. Pick any g0 a G0. We shall prove that there exists a sequence fgngJGC

fulfilling

lim
n!þl

max
t A ½�1;1�

kgnðtÞ � g0ðtÞk ¼ 0:ð2:5Þ

The multifunction Ln : ½�1; 1� ! 2C 1
0
ðWÞ defined by

LnðtÞ :¼
f�f1g if t ¼ �1;

fu a C1
0 ðWÞ : ku� g0ðtÞk < 1=ng if t a ð�1; 1Þ;

ff1g if t ¼ 1

8><
>:

takes nonempty convex values and is lower semi-continuous. So, Theorem 3:1 000

in [13] provides a continuous selection ln : ½�1; 1� ! C1
0 ðWÞ of Ln. This entails

klnðtÞ � g0ðtÞk <
1

n
Et a ð�1; 1Þ; lnð�1Þ ¼ �f1; lnð1Þ ¼ f1:ð2:6Þ

Consequently,

lim
n!þl

klnðtÞkL pðWÞ ¼ kg0ðtÞkL pðWÞ ¼ 1ð2:7Þ

uniformly with respect to t a ½�1; 1�. For any n large enough we can thus set

gnðtÞ :¼
lnðtÞ

klnðtÞkL pðWÞ
; t a ½�1; 1�:

On account of (2.6) and ðp3Þ one has gn a GC . Moreover, thanks to (2.6),

kgnðtÞ � g0ðtÞka kgnðtÞ � lnðtÞk þ klnðtÞ � g0ðtÞkð2:8Þ

< j1� klnðtÞkL pðWÞj
klnðtÞk

klnðtÞkL pðWÞ
þ 1

n
Et a ½�1; 1�:
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Recall that g0 a G0. Since, by (2.6) again,

max
t A ½�1;1�

j1� klnðtÞkL pðWÞj ¼ max
t A ½�1;1�

jkg0ðtÞkL pðWÞ � klnðtÞkL pðWÞj

a max
t A ½�1;1�

kg0ðtÞ � lnðtÞkL pðWÞ

a c max
t A ½�1;1�

kg0ðtÞ � lnðtÞka
c

n

for some c > 0, (2.5) immediately follows from (2.6)–(2.8). r

Finally, put, provided t a R, u : W ! R, and g : W� R ! R,

t� :¼ maxf�t; 0g; tþ :¼ maxft; 0g;
u�ðxÞ :¼ uðxÞ�; uþðxÞ :¼ uðxÞþ; NgðuÞðxÞ :¼ gðx; uðxÞÞ:

3. Existence results

To avoid unnecessary technicalities, ‘for every x a W’ will take the place of ‘for
almost every x a W’ and the variable x will be omitted when no confusion can
arise.

Let f : W� R ! R be a Carathéodory function such that f ðx; 0ÞC 0 and let

Fðx; zÞ :¼
Z z

0

f ðx; tÞ dt; ðx; zÞ a W� R:ð3:1Þ

We will posit the following assumptions, where ai and bj denote appropriate
nonnegative constants.

ðf0Þ j f ðx; tÞja a0ð1þ jtj p�1Þ for every ðx; tÞ a W� R.

ðf1Þ lim sup
t!þl

f ðx; tÞ
t p�1

a a1 < l1 uniformly with respect to x a W.

ðf2Þ l1 < a2 a lim inf
t!�l

f ðx; tÞ
jtj p�2

t
a lim sup

t!�l

f ðx; tÞ
jtj p�2

t
a b2 uniformly in x a W.

ðf3Þ l2 < a3 a lim inf
t!0

f ðx; tÞ
jtj p�2

t
a lim sup

t!0

f ðx; tÞ
jtj p�2

t
a b3 uniformly with respect to

x a W.

ðf4Þ There exists a4 > l1 such that
a4

p
jzj p aFðx; zÞ for all ðx; zÞ a W� R�

0 .

On account of ðf0Þ and ðf3Þ, to every r > 0 there corresponds mr > 0 satisfying

f ðx; tÞ þ mrt
p�1

b 0; ðx; tÞ a W� ½0; r�:ð3:2Þ

Remark 3.1. The constants that appear in ðf0Þ–ðf4Þ can evidently be re-
placed by suitable functions belonging to LlðWÞ. In particular, we might have
a1; a2; a4 a LlðWÞnfl1g with 0a a1 a l1 aminfa2; a4g.
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Write X :¼ W
1;p
0 ðWÞ and Cþ :¼ C1

0 ðWÞþ. The energy functional j : X ! R
stemming from Problem (1.1) is

jðuÞ :¼ 1

p
kuk p

1;p �
Z
W

F ðx; uðxÞÞ dx Eu a X ;ð3:3Þ

with F as in (3.1). Obviously, j a C1ðXÞ. Moreover, if

fþðx; tÞ :¼ f ðx; tþÞ; Fþðx; zÞ :¼
Z z

0

fþðx; tÞ dt

then Fþðx; zÞ ¼ Fðx; zþÞ and the corresponding truncated function

jþðuÞ :¼
1

p
kuk p

1;p �
Z
W

Fþðx; uðxÞÞ dx; u a X ;

turns out to be C1 as well.

Lemma 3.1. Under hypotheses ðf0Þ–ðf1Þ, the functional jþ is weakly sequentially
lower semi-continuous and coercive.

Proof. The space X compactly embeds in LpðWÞ while the Nemitskii operator
Nfþ turns out to be continuous on LpðWÞ. Thus, a standard argument ensures that
jþ is weakly sequentially lower semi-continuous.

Pick e a ð0; l1 � a1Þ. By ðf0Þ–ðf1Þ there exists c0 > 0 fulfilling

F ðx; zÞ < a1 þ e

p
z p þ c0 Eðx; zÞ a W� Rþ

0 :

Consequently, on account of ðp2Þ,

jþðuÞb
1

p
½kuk p

1;p � ða1 þ eÞkuþk p

L pðWÞ� � c0mðWÞ

b
1

p
½kuk p

1;p � ða1 þ eÞkuk p

L pðWÞ� � c0mðWÞ

b
1

p

�
1� a1 þ e

l1

�
kuk p

1;p � c0mðWÞ

for any u a X . Since a1 þ e < l1, the conclusion follows. r

Theorem 3.1. Let ðf0Þ, ðf1Þ, and ðf3Þ be satisfied. Then Problem (1.1) admits a
solution u0 a intðCþÞ, which is a local minimizer of j.

Proof. Thanks to Lemma 3.1 we can find u0 a X such that

jþðu0Þ ¼ inf
u AX

jþðuÞ:ð3:4Þ
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Bearing in mind ðp1Þ, fix e a ð0; a3 � l1Þ. By ðf3Þ one has

F ðx; zÞb a3 � e

p
jzj p in W� ½�d; d�ð3:5Þ

for appropriate d > 0. If t > 0 is so small that

0a tf1ðxÞa d Ex a W;

where f1 comes from ðp3Þ, then (3.5) yields

jþðtf1Þa
t p

p
½e� ða3 � l1Þ�kf1k

p

L pðWÞ < 0:ð3:6Þ

Hence,

jþðu0Þ < 0 ¼ jþð0Þ;ð3:7Þ

which clearly means u0A 0. Now, through (3.4) we get j0þðu0Þ ¼ 0, namely

3Apðu0Þ; v4 ¼
Z
W

fþðx; u0ðxÞÞvðxÞ dx; v a X :

Choosing v :¼ �u�0 leads to ku�0 k
p
1;p ¼ 0. Thus, u0 b 0 and, a fortiori, the func-

tion u0 solves (1.1). Standard regularity results [5, Theorems 1.5.5–1.5.6] ensure
that u0 a Cþnf0g. Let r :¼ ku0kLlðWÞ. Due to (3.2) one has

�Dpu0ðxÞ þ mru0ðxÞ
p�1 ¼ f ðx; u0ðxÞÞ þ mru0ðxÞ

p�1
b 0 a:e: in W:

Therefore, by Theorem 5 in [18], u0 a intðCþÞ. This also implies that u0 is a local
C1

0 ðWÞ-minimizer of j, because jjCþ
¼ jþjCþ

. Finally, owing to [2, Theorem 1.1],
the same holds true with C1

0 ðWÞ replaced by X . r

Lemma 3.2. Under hypotheses ðf0Þ–ðf2Þ, the functional j fulfills condition (C).

Proof. Since X compactly embeds in LpðWÞ, the Nemitskii operator Nf is
continuous on LpðWÞ, and Ap enjoys property ðp5Þ, it su‰ces to show that every
sequence fungJX satisfying

jjðunÞja c1 En a N;ð3:8Þ
lim

n!þl
ð1þ kunk1;pÞj 0ðunÞ ¼ 0ð3:9Þ

turns out to be bounded. Obviously, this happens once the same holds for both
fuþn g and fu�n g. We are thus reduced to verifying two claims.

Claim 1. The sequence fuþn g is bounded in X .
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If the assertion were false then, up to subsequences, kuþn k1;p ! þl. Write
vn :¼ uþn =kuþn k1;p. From kvnk1;pC 1 it follows, along a subsequence when neces-
sary,

vn * v in X ; vn ! v in LpðWÞ; vn ! vb 0 a:e: in W:ð3:10Þ

Through (3.9) one has 3j 0ðunÞ; uþn 4 ! 0, which, dividing by kuþn k
p
1;p, easily

entails

kvnk p
1;p a en þ

Z
W

f ðx; uþn ðxÞÞ
kuþn k

p�1
1;p

vnðxÞ dx En a N;ð3:11Þ

where en ! 0þ. Because of ðf0Þ the sequence fkuþn k
�pþ1
1;p Nf ðuþn ÞgJLp 0 ðWÞ is

bounded. Via the same reasoning made in [14, pp. 302–303] we thus get a func-
tion a a LlðWÞ such that 0a aa a1 and

1

kuþn k
p�1
1;p

Nf ðuþn Þ * av p�1 in Lp 0 ðWÞ:

Thanks to (3.10)–(3.11) this produces, as n ! þl,

kvk p
1;p a

Z
W

aðxÞvðxÞ p dxa l1kvk p

L pðWÞ:ð3:12Þ

Consequently, v ¼ tf1 for some tb 0. If t ¼ 0 then, by (3.10)–(3.11) again,
vn ! 0 in X , which contradicts kvnk1;p ¼ 1 for all n a N. Otherwise, on account
of (3.12) and ðf1Þ,

kf1k
p
1;p ¼

1

t p
kvk p

1;p a
1

t p

Z
W

aðxÞvðxÞ p dx <

Z
W

l1f1ðxÞ
p
dx ¼ l1kf1k

p

L pðWÞ;

but this is impossible; cf. ðp3Þ.

Claim 2. The sequence fu�n g is bounded in X .

If the assertion were false then, up to subsequences, ku�n k1;p ! þl. Write, like
before, wn :¼ u�n =ku�n k1;p. From kwnk1;pC 1 it follows, along a subsequence
when necessary,

wn * w in X ; wn ! w in LpðWÞ; wn ! wb 0 a:e: in W:ð3:13Þ

Through (3.9) one has

3ApðunÞ; v4�
Z
W

f ðx; unðxÞÞvðxÞ dx
����

����a enkvk1;p Ev a X ;ð3:14Þ

where en ! 0þ. Assumption ðf0Þ and the boundedness of fuþn g readily lead to

3Apðuþn Þ; v4�
Z
W

f ðx; uþn ðxÞÞvðxÞ dx
����

����a c2kvk1;pð3:15Þ
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for appropriate c2 > 0. Since un ¼ uþn � u�n , inequalities (3.14)–(3.15) produce,
after dividing by ku�n k

p�1
1;p ,

3Apð�wnÞ; v4� 1

ku�n k
p�1
1;p

Z
W

f ðx;�u�n ðxÞÞvðxÞ dx
�����

�����a e 0nkvk1;p; v a X ;ð3:16Þ

with e 0n ! 0þ. Observe next that, by ðf0Þ besides (3.13),

lim
n!þl

1

ku�n k
p�1
1;p

Z
W

f ðx;�u�n ðxÞÞðwnðxÞ � wðxÞÞ dx ¼ 0:

So, (3.16) written for v :¼ wn � w and (3.13) again provide

lim
n!þl

3ApðwnÞ;wn � w4 ¼ 0;

namely, because of ðp5Þ,

lim
n!þl

wn ¼ w in X ;ð3:17Þ

whence kwk1;p ¼ 1. Thanks to ðf0Þ the sequence fku�n k
�pþ1
1;p Nf ð�u�n ÞgJLp 0 ðWÞ

is bounded. Using the arguments made in [14, pp. 302–303] we thus obtain a
function a a LlðWÞ such that a2 a aa b2 and

1

ku�n k
p�1
1;p

Nf ð�u�n Þ * �awp�1 in Lp 0 ðWÞ:

On account of (3.16)–(3.17) this implies, as n ! þl,

3ApðwÞ; v4 ¼
Z
W

aðxÞwðxÞ p�1
dx Ev a X ;

i.e., w turns out to be a weak positive solution of the problem

�Dpu ¼ aðxÞjuj p�2
u in W; u ¼ 0 on qW:

Now, recalling ðf1Þ, from ðp7Þ it follows

l1ðaÞ < l1ðl1Þ ¼ 1 ¼ l2ðl2Þ < l2ðaÞ:

Therefore w ¼ 0, which contradicts kwk1;p ¼ 1. r

A further nontrivial smooth solution to (1.1) can now be found.

Theorem 3.2. Let ðf0Þ–ðf4Þ be satisfied. Then Problem (1.1) possesses a non-

trivial solution u1 a C1
0 ðWÞnfu0g.
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Proof. We may evidently assume that the local minimizer u0 of j given by
Theorem 3.1 is proper. Thus, for su‰ciently small r > 0 one has

jðu0Þ < cr :¼ inf
u A qBrðu0Þ

jðuÞ:ð3:18Þ

Since, due to ðf2Þ,

lim
t!�l

jðtf1Þ ¼ �l;

there exists t1 > 0 such that

kt1f1 þ u0k1;p > r; jð�t1f1Þ < cr:

On account of Lemma 3.2, the Mountain-Pass Theorem can be applied, which
yields a point u1 a X complying with j 0ðu1Þ ¼ 0 and

cr a jðu1Þ ¼ inf
g AG

max
t A ½0;1�

jðgðtÞÞ;ð3:19Þ

where

G :¼ fg a C0ð½0; 1�;X Þ : gð0Þ ¼ �t1f1; gð1Þ ¼ u0g:

Obviously, the function u1 solves (1.1). Through (3.18)–(3.19) we get u1A u0,
while standard regularity arguments ensure that u1 a C1

0 ðWÞ. The proof is thus
completed once one verifies that u1A 0. This will follow from the inequality

jðu1Þ < 0;ð3:20Þ

which, in view of (3.19), can be shown by constructing a path ĝg a G such that

jðĝgðtÞÞ < 0 Et a ½0; 1�:ð3:21Þ

By (f3) to every h > 0 small there corresponds d > 0 such that

l2 þ h

p
jzj p aFðx; zÞ; ðx; zÞ a W� ½�d; d�:ð3:22Þ

Combining (p4) with Lemma 2.2 entails

max
t A ½�1;1�

kghðtÞk
p
1;p < l2 þ hð3:23Þ

for appropriate gh a GC . Since ghð½�1; 1�Þ is compact in C1
0 ðWÞ and t1f1; u0 a

intðCþÞ we can find e > 0 so small that

�t1f1ðxÞa eghðtÞðxÞa u0ðxÞ; jeghðtÞðxÞja d

68 s. a. marano and n. s. papageorgiou



whenever x a W, t a ½�1; 1�. Thanks to (3.22)–(3.23) one has

jðeghðtÞÞ ¼
e p

p
kghðtÞk

p
1;p �

Z
W

Fðx; eghðtÞðxÞÞ dx

<
e p

p
ðl2 þ hÞ � e p

p
ðl2 þ hÞ

Z
W

jghðtÞðxÞj
p
dx ¼ 0 Et a ½�1; 1�;

because ghðtÞ a UC . Consequently,

jjeghð½�1;1�Þ < 0:ð3:24Þ

Next, write a :¼ jþðu0Þ. From (3.7) it follows a < 0. We may suppose

KðjþÞ ¼ f0; u0g;

otherwise the conclusion is straightforward. Hence, no critical value of jþ lies in
ða; 0Þ while

KaðjþÞ ¼ fu0g:

Due to the second deformation lemma [4, Theorem 5.1.33], there exists a con-
tinuous function h : ½0; 1� � ðj0

þnf0gÞ ! j0
þ satisfying

hð0; uÞ ¼ u; hð1; uÞ ¼ u0; and jþðhðt; uÞÞa jþðuÞ

for all ðt; uÞ a ½0; 1� � ðj0
þnf0gÞ. Let gþðtÞ :¼ hðt; ef1Þ

þ, t a ½0; 1�. Then gþð0Þ ¼
ef1, gþð1Þ ¼ u0, as well as

jðgþðtÞÞ ¼ jþðgþðtÞÞa jþðhðt; ef1ÞÞa jþðef1Þ ¼ jðeghð1ÞÞ < 0;ð3:25Þ

cf. (3.24). Finally, define

g�ðtÞ :¼ �ðt1tþ eð1� tÞÞf1; t a ½0; 1�:

By ðf4Þ and ðp2Þ–ðp3Þ we easily have

jðg�ðtÞÞa
ðt1tþ eð1� tÞÞ p

p
ðl1 � a4Þkf1k

p

L pðWÞ < 0:ð3:26Þ

Concatenating g�, egh, and gþ one obtains a path ĝg a G which, in view of (3.24)–
(3.26), fulfills (3.21). This shows (3.20), whence u1A 0. r

The next multiplicity result directly stems from Theorems 3.1–3.2.

Theorem 3.3. Let ðf0Þ–ðf4Þ be satisfied. Then Problem (1.1) possesses at least
two nontrivial solutions u0 a intðCþÞ and u1 a C1

0 ðWÞ.
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4. The case p ¼ 2

Suppose f : W� R ! R is a function such that f ðx; 0ÞC 0 and f ðx; �Þ belongs
to C1ðRÞ for every x a W, while f ð�; tÞ and f 0

t ð�; tÞ are measurable for all t a R.
The following assumptions will be made in the sequel, where ai and bj denote
appropriate nonnegative constants.

ðf5Þ j f 0
t ðx; tÞja a0ð1þ jtjr�2Þ for every ðx; tÞ a W� R, being 2a r < 2�.

ðf6Þ lim
t!þl

f ðx; tÞ
t

¼ a1 < l1 uniformly with respect to x a W.

ðf7Þ l1 < a2 a lim inf
t!�l

f ðx; tÞ
t

a lim sup
t!�l

f ðx; tÞ
t

a b2 uniformly in x a W.

ðf8Þ f 0
t ðx; 0Þ ¼ lim

t!0

f ðx; tÞ
t

uniformly with respect to x a W. Moreover, for some

mb 2 one has lm < a3 a f 0
t ðx; 0Þa b3 < lmþ1 in W.

ðf9Þ There exists a4 > l1 fulfilling
a4

2
z2 aF ðx; zÞ for all ðx; zÞ a W� R�

0 .

A comment analogous to that made in Remark 3.1 is true here.
Consider the semi-linear problem

�Du ¼ f ðx; uÞ in W;

u ¼ 0 on qW:

�
ð4:1Þ

If X :¼ H 1
0 ðWÞ and, to simplify notation, k � k :¼ k � k1;2 then the energy func-

tional j : X ! R stemming from (4.1) is

jðuÞ :¼ 1

2
kuk2 �

Z
W

F ðx; uðxÞÞ dx Eu a X ;ð4:2Þ

with F as in (3.1). Obviously, j a C2ðXÞ.
Adapting the arguments of Section 3 we see that j satisfies condition (C) and

the following result holds.

Theorem 4.1. Let ðf5Þ–ðf9Þ be satisfied. Then (4.1) admits at least two nontrivial
solutions u0 a intðCþÞ and u1 a C1

0 ðWÞ.

A further nontrivial smooth solution to (4.1) will be found via Morse’s theory.

Lemma 4.1. Under hypotheses ðf5Þ–ðf7Þ one has Cqðj;lÞ ¼ 0 for all q a N0.

Proof. Pick any b a LlðWÞnf0g such that bb 0. Define, provided u a X ,
t a ½0; 1�,

cðuÞ :¼ 1

2
kuk2 � a2

2
ku�k2L2ðWÞ þ

Z
W

bðxÞuðxÞ dx;

hðt; uÞ :¼ tjðuÞ þ ð1� tÞcðuÞ:
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On account of ðf5Þ the function h : ½0; 1� � X ! R maps bounded sets into
bounded sets, while hð0; �Þ and hð1; �Þ evidently comply with condition (C). Since
u 7! h 0

tðt; uÞ and u 7! h 0
uðt; uÞ are locally Lipschitz continuous, as a simple com-

putation shows, Proposition 3.2 in [7] can be applied once we prove that there
exist c a R, d > 0 fulfilling

hðt; uÞa c ) ð1þ kukÞkh 0
uðt; uÞkX � b dkuk2:

If the assertion were false then one might construct two sequences ftngJ ½0; 1�,
fungJX such that tn ! t, hðtn; unÞ ! �l, and

ð1þ kunkÞkh 0
uðtn; unÞkX � <

1

n
kunk2; n a N:ð4:3Þ

By the properties of h, from hðtn; unÞ ! �l it follows

lim
n!þl

kunk ¼ þl:ð4:4Þ

Set wn :¼
un

kunk
, n a N. Passing to a subsequence when necessary, we may

suppose

wn * w in X ; wn ! w in L2ðWÞ; wnðxÞ ! wðxÞ a:e: in W;

because kwnk ¼ 1 for all n a N. Inequality (4.3) yields

����3A2ðwnÞ; v4� tn

Z
W

f ðx; unÞ
kunk

v dxþ ð1� tnÞa2
Z
W

u�n
kunk

v dxð4:5Þ

þ ð1� tnÞ
Z
W

b

kunk
v dx

����a 1

n
kvk Ev a X :

Now observe that, on account of ðf5Þ–ðf7Þ, the sequence fkunk�1
Nf ðunÞg is

bounded in L2ðWÞ. Choosing v :¼ wn � w and letting n ! þl in (4.5) easily
leads to

lim
n!þl

3A2ðwnÞ;wn � w4 ¼ 0;

whence wn ! w in X by ðp5Þ. Through ðf6Þ–ðf7Þ we get

Nf ðunÞ
kunk

* a1w
þ � aw� in L2ðWÞ

for appropriate a a L2ðWÞ such that a2 a aa b2; see [6, pp. 1377–1378] or [14,
pp. 302–303]. By (4.5) this implies, as n ! þl,

3A2ðwÞ; v4 ¼
Z
W

fta1wþðxÞ � ½taðxÞ þ ð1� tÞa2�w�ðxÞgvðxÞ dx; v a X ;
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namely w turns out to be a weak solution of the problem

�Du ¼ ta1u
þ � atðxÞu� in W; u ¼ 0 on qW;

where atðxÞ :¼ taðxÞ þ ð1� tÞa2. Since ta1 < l1 while

lm < a2 a atðxÞa b2 < lmþ1;

one has w ¼ 0, which however contradicts kwk ¼ 1. Hence, Proposition 3.2 in
[7] provides

Cqðj;lÞ ¼ Cqðc;lÞ Eq a N0:ð4:6Þ

The conclusion is achieved once we show that Cqðc;lÞ ¼ 0. If u a KðcÞ then

3A2ðuÞ; v4 ¼ �
Z
W

½a2u�ðxÞ þ bðxÞ�vðxÞ dx; v a X :

Letting v :¼ uþ immediately leads to ua 0. So, u solves the problem

�Du ¼ a2u� bðxÞ in W; u ¼ 0 on qW:ð4:7Þ

Since b a LlðWÞnf0g and bb 0, standard regularity results [5, Theorems 1.5.5–
1.5.6], besides [18, Theorem 5], yield �u a intðCþÞ. Define, for every v a intðCþÞ,

Rðv;�uÞ :¼ j‘vj2 � ‘ð�uÞ � ‘
� v2

�u

�
:

From the classical Picone identity (see, e.g., [14, Proposition 9.60]), (4.7), the sign
properties of u and b, as well as ðf7Þ it follows

0a

Z
W

Rðv;�uÞðxÞ dx ¼ kvk2 �
Z
W

ð�DuÞ v
2

u
dx

¼ kvk2 � a2kvk2L2ðWÞ þ
Z
W

v2

u
b dx

a kvk2 � a2kvk2L2ðWÞ < kvk2 � lmkvk2L2ðWÞ:

Bearing in mind ðp3Þ this entails, for v :¼ f1,

0 < l1 � lm a 0;

which is clearly impossible. So, KðcÞ ¼ j and, a fortiori, Cqðc;lÞ ¼ 0. r

Lemma 4.2. Suppose ðf5Þ and ðf8Þ hold true. Then Cqðj; 0Þ ¼ dq;dmZ for all
q a N0, where dm :¼ dim0m

i¼1
EðliÞ.
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Proof. Recall that j a C2ðXÞ and one has

3j 00ðuÞðvÞ;w4 ¼
Z
W

‘vðxÞ � ‘wðxÞ dxð4:8Þ

�
Z
W

f 0
t ðx; uðxÞÞvðxÞwðxÞ dx Eu; v;w a X :

Thanks to ðf8Þ, Lemma 2.1 can be applied. Thus, u ¼ 0 is a non-degenerate crit-
ical point of j with Morse index dm. Now, the conclusion follows from (2.2). r

Theorem 4.2. Let ðf5Þ–ðf9Þ be satisfied. Then Problem (4.1) possesses at least
three nontrivial solutions u0 a intðCþÞ and u1; u2 a C1

0 ðWÞ.

Proof. Theorem 4.1 directly gives the solutions u0 a intðCþÞ, u1 a C1
0 ðWÞnf0g.

Through Theorem 3.1 we next infer

Cqðj; u0Þ ¼ dq;0Z; q a N0;ð4:9Þ

see [14, Example 6.45]. The proof of Theorem 3.2 ensures that u1 is a Mountain-
Pass type critical point for j. Hence, taking into account (4.8), Corollary 6.102 in
[14] yields

Cqðj; u1Þ ¼ dq;1Z; q a N0:ð4:10Þ

If the assertion were false then KðjÞ ¼ f0; u0; u1g. Lemmas 4.1–4.2, (4.9), (4.10),
and Morse’s relation (2.1) written for t ¼ �1 would imply

ð�1Þdm þ ð�1Þ0 þ ð�1Þ1 ¼ 0;

which is absurd. Therefore, there exists a further point u2 a KðjÞnf0; u0; u1g.
Standard regularity arguments lead to the conclusion. r
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