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Abstract. — In this Note we present new multiplicity results for the solutions of nonlinear elliptic

problems of the form �Duþ aðxÞu ¼ jujp�1
u in RN , u a H 1ðRNÞ, where Nb 2, p > 1, p < Nþ2

N�2 if
Nb 3, a a L

N=2
loc ðRNÞ, infRN a > 0. In particular, we have infinitely many positive solutions when

there exists al > 0 such that limjxj!l aðxÞ ¼ al and limjxj!l½aðxÞ � al�ehjxj ¼ þl Eh > 0.
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1. Introduction and statement of the main result

In this Note we are concerned with existence and multiplicity of nontrivial solu-
tions for nonlinear elliptic problems of the form

�Duþ aðxÞu ¼ jujp�1
u in RN ; u a H 1ðRNÞ;ð1:1Þ

where Nb 2, p > 1, p < Nþ2
N�2 if Nb 3, a a L

N=2
loc ðRNÞ, infRN a > 0.

Because of the unboundedness of the domain, problem (1.1) lacks of compact-
ness, the corresponding energy functional does not satisfy the well known Palais-
Smale compactness condition and the classical variational methods cannot be
applied in the usual way. A nonexistence result is proved in [4]: problem (1.1)
has only the trivial solution uC 0 when the potential aðxÞ is increasing along a
direction (see Theorem 1.1 in [4]).

If aðxÞ has radial symmetry, the compactness is restored when we look for
solutions in the subspace consisting of the functions having radial symmetry (or
some other symmetric configuration). In particular, if aðxÞ is a constant function,
there exists a positive ground state solution, which is unique (up to translation)
and has radial symmetry (see [3]).

If limjxj!l aðxÞ ¼ al > 0, the Palais-Smale sequences may be described using
the concentration-compactness principle (see [10]): if a Palais-Smale sequence
is not relatively compact, then it di¤ers from its weak limit by sequences of
functions which, after translations, converge to a solution of the limit equation
�Duþ alu ¼ jujp�1

u in RN . This description of the Palais-Smale sequences has
been used in several papers in order to avoid energy levels where the Palais-Smale



condition fails and to obtain ground state solutions or solutions corresponding to
higher critical values, under suitable assumptions on the behaviour of the poten-
tial aðxÞ at infinity (see, for example, [1–3]).

More recently, the following result has been proved in [6]: if there exists
h <

ffiffiffiffiffiffi
al

p
such that limjxj!l½aðxÞ � al�ehjxj ¼ þl, then problem (1.1) has infi-

nitely many solutions provided supx ARNkaðxÞ � alkLN=2ðBðx;1ÞÞ is small enough;

more precisely, there exists a positive constant c (depending only on al) such
that, if supx ARNkaðxÞ � alkLN=2ðBðx;1ÞÞ < c, then Ek a N problem (1.1) has a k-

bumps positive solution uk. In [7] it is proved that, as k ! l, uk converges to a
positive solution of the equation �Duþ aðxÞu ¼ jujp�1

u in RN , having infinitely
many bumps.

Multibump solutions are obtained also in [8, 9] without any smallness assump-
tion on the oscillation aðxÞ � al: if aðxÞ has a suitable polinomial decay and sat-
isfies a suitable symmetry assumption, in [8] it is proved by variational methods
that there exist infinitely many multibump positive solutions (with a su‰ciently
large number of bumps); in [9] a similar result is proved in the case N ¼ 2 whitout
requiring any symmetry assumption on aðxÞ.

Notice that the smallness condition on aðxÞ � al used in [6, 7], the symmetry
condition on aðxÞ exploited in [8] and the assumption N ¼ 2 in [9] play all the
same role to localize the bumps in regions where aðxÞ � al is small. In [5] we
obtain infinitely many positive and nodal multibump solutions using (in place
of these conditions) suitable arbitrarily small perturbations of the potential
aðxÞ, which have the double role to localize all the bumps in far regions (where
aðxÞ � al is small) and to control the interactions between positive and negative
bumps (which would tend to collapse).

We refer to [5–9] for a more detailed description of these problems, of their
interest in Mathematical Physics and for more complete bibliographical refer-
ences, concerning also some singularly perturbed problems and other related
results obtained by di¤erent techniques (as Lyapunov-Schmidt reductions) under
more restrictive assumptions on the behaviour of aðxÞ as jxj ! l.

The main result presented in this Note allows us to remove the restriction on
the dimension N, the symmetry assumption on aðxÞ and the smallness condition
on aðxÞ � al, still obtaining infinitely many positive solutions. In fact, using a
variational method developed in [11–14] for the study of elliptic problems with
jumping nonlinearities (and already applied in [5–7]), we can prove the following
theorem.

Theorem 1.1. Let Nb 2 and assume that there exists al > 0 such that
limjxj!l aðxÞ ¼ al and limjxj!l½aðxÞ � al�ehjxj ¼ þl Eh > 0. Then problem
(1.1) has infinitely many positive solutions. More precisely, there exists k a N
such that for all kb k there exists a positive k-bumps solution uk of (1.1); more-
over, for all kb k there exist k points xk;1; . . . ; xk;k in RN such that

lim
k!l

minfjxk; ij : i ¼ 1; . . . ; kg ¼ l;ð1:2Þ
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lim
k!l

minfjxk; i � xk; jj : i; j ¼ 1; . . . ; k; iA jg ¼ l;ð1:3Þ

lim
k!l

supfjukðxþ xk; iÞ � wðxÞj : jxjaR; i ¼ 1; . . . ; kg ¼ 0 ER > 0;ð1:4Þ

where w is the positive radial solution of the equation �Duþ alu ¼ jujp�1
u in RN.

Furthermore, there exists R > 0 such that, for all RbR and kb k,

sup ukðxÞ : x a RN

�[k
i¼1

Bðxk; i;RÞ
( )

ð1:5Þ

¼ sup ukðxÞ : x a q
�[k

i¼1

Bðxk; i;RÞ
�( )

(so uk ! 0, as k ! l, uniformly on the compact subsets of RN ).

In next session we describe the main steps of the proof of this theorem, which
will appear in a paper in preparation, presented and proved in a more complete
and detailed way.

2. Sketch of the proof of Theorem 1.1 and final remarks

The solutions are obtained as critical points of the energy functional
E : H 1ðRNÞ ! R defined by

EðuÞ ¼ 1

2

Z
RN

ðjDuj2 þ aðxÞu2Þ dx� 1

pþ 1

Z
RN

jujpþ1
dx:ð2:1Þ

Let us consider a positive number d, choose Rd > 0 (large enough) so that
wðxÞ < d Ex a RNnBð0;Rd=2Þ and for all kb 2 consider the set

Dk ¼ fðx1; . . . ; xkÞ a ðRNÞk : jxi � xjjb 3Rd for iA j; i; j ¼ 1; . . . ; kg:ð2:2Þ

For all ðx1; . . . ; xkÞ a Dk, let us consider the set S
d
x1;...;xk

consisting of all the func-

tions u a H 1ðRNÞ satisfying the following conditions: ub 0 in RN , u� ubd ¼Pk
i¼1 vi where, for all i a f1; . . . ; kg, vi a H 1ðRNÞ, vi 2 0, viðxÞ ¼ 0 Ex B Bðxi;RdÞ,

E 0ðuÞ½vi� ¼ 0 and
�Z

RN

v2i dx
��1

Z
RN

xv2i ðxÞ dx ¼ xi.

In [6] it is proved that (since infRN a > 0 and p > 1) there exists d > 0, small
enough, such that S d

x1;...;xk
A j Eðx1; . . . ; xkÞ a Dk, and Ekb 2; moreover,

inffEðuÞ : u a S d
x1;...;xk

g > 0 and the infimum is achieved. If u is a minimizing
function, then u > 0 in RN , u < d in RNn

Sk
i¼1 Bðxi;RdÞ, �DuðxÞ þ aðxÞuðxÞ ¼

upðxÞ Ex a RN such that uðxÞ < d and there exist Lagrange multipliers li a RN ,
for i a f1; . . . ; kg, such that

E 0ðuÞ½c� ¼
Z
Bðxi ;R dÞ

ðu� ubdÞðxÞcðxÞ½li � ðx� xiÞ� dx Ec a H 1
0 ðBðxi;RdÞÞ;ð2:3Þ
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namely, u is a weak solution of the equation

�DuðxÞ þ aðxÞuðxÞ ¼ juðxÞjp�1
uðxÞ þ viðxÞ½li � ðx� xiÞ�ð2:4Þ

Ex a Bðxi;RdÞ; Ei a f1; . . . ; kg:

Thus, we can fix d > 0, Rd > 0 and then define f : Dk ! Rþ by

f ðx1; . . . ; xkÞ ¼ minfEðuÞ : u a S d
x1;...;xk

g Eðx1; . . . ; xkÞ a Dk; Ekb 2:ð2:5Þ

One can verify that f is a continuous function and that the maximum

gðr1; . . . ; rkÞ ¼ maxf f ðx1; . . . ; xkÞ : ðx1; . . . ; xkÞ a Dk;ð2:6Þ
jxij ¼ ri for i ¼ 1; . . . ; kg

is achieved for all the k-tuples ðr1; . . . ; rkÞ in Rk such that the set fðx1; . . . ; xkÞ a
Dk : jxij ¼ ri for i ¼ 1; . . . ; kg (which is a bounded closed subset of ðRNÞk) is
non empty. Thus, if we denote by Ck the set of all these k-tuples ðr1; . . . ; rkÞ,
we can consider the function g : Ck ! R defined by the maximum (2.6)
Eðr1; . . . ; rkÞ a Ck (notice that Ck is a closed unbounded subset of RN , as one
can easily verify).

Now, for suitable s > 0 that we fix later, let us set

rs
k ¼ inf

(
r > 0 :

Xk
i¼1

r2i ¼ kr2 for some k-tuple ðr1; . . . ; rkÞ a Ckð2:7Þ

and
r

1þ 2s
a ri a ð1þ 2sÞr for i ¼ 1; . . . ; k

)
:

Then, one can verify that rs
k > 0, that for every rb rs

k the set(
ðr1; . . . ; rkÞ a Ck :

Xk
i¼1

r2i ¼ kr2 and
r

1þ 2s
a ri a ð1þ 2sÞrð2:8Þ

for i ¼ 1; . . . ; k

)

(which is a bounded closed subset of RN) is non empty and that the minimum

hs
k ðrÞ ¼ min

(
gðr1; . . . ; rkÞ : ðr1; . . . ; rkÞ a Ck;

Xk
i¼1

r2i ¼ kr2;ð2:9Þ

r

1þ 2s
a ri a ð1þ 2sÞr

)
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is achieved Erb rs
k . Thus, we can consider the function hs

k : ½rs
k ;þlÞ ! R

defined by the minimum (2.9) Erb rs
k .

Taking into account the behaviour of aðxÞ as jxj ! l, it follows that
hs
k ðrÞ > limr!þl hs

k ðrÞ for r > 0 large enough, so hs
k achieves its maximum.

Thus, for all kb 2, there exists ðxk;1; . . . ; xk;kÞ a Dk and uk a S d
xk; 1;...;xk; k

such

that rk
1þ2s a rk; i a ð1þ 2sÞrk, where rk; i ¼ jxk; ij for i ¼ 1; . . . ; k and rk ¼�

1
k

Pk
i¼1 r

2
k; i

�1
2, EðukÞ ¼ f ðxk;1; . . . ; xk;kÞ ¼ gðrk;1; . . . ; rk;kÞ ¼ hs

k ðrkÞ and hs
k ðrkÞ

is the maximum of hs
k .

We say that there exists k a N such that �Duk þ aðxÞuk ¼ u
p
k in RN Ekb k.

The proof is based on the following steps.
Step 1. Since the balls Bðxk; i;RdÞ, for i ¼ 1; . . . ; k, are pairwise disjoint, we

have limk!l rk ¼ þl (which obviously implies (1.2)). Moreover, (1.3), (1.4)
and (1.5) may be proved arguing as in [6] and [7].

Step 2. We have lim supk!l supfukðxÞ : x a RNn
Sk

i¼1 Bðxk; i;Rd=2Þg < d.
Therefore (as the condition ub 0) the unilateral constraint uðxÞa d Ex a
RNn

Sk
i¼1 Bðxk; i;RdÞ, we used to define the set S d

x1;...;xk
, does not give rise to

any variational inequality. A similar argument holds for the unilateral constraint
r

1þ2s a jxija ð1þ 2sÞr, we used to define hs
k ðrÞ. In fact, there exists s > 0 (small

enough) such that

1

1þ s
a lim inf

k!l

1

rk
minfjxk; ij : i ¼ 1; . . . ; kgð2:10Þ

lim sup
k!l

1

rk
maxfjxk; ij : i ¼ 1; . . . ; kga 1þ s:ð2:11Þ

The formulas (2.10) and (2.11) play a crucial role in the proof of Theorem 1.1.
Roughly speaking, they are true because the interaction between the bumps of
uk is attractive and the function hs

k is defined by the minimum (2.9) (so we have
a contradiction if we assume that (2.10) or (2.11) are not true for s small).

Notice that, exploiting again the attractive interaction between the bumps
of uk, we obtain also hs

k ðrs
k Þ < maxfhs

k ðrÞ : rb rs
kg, for k large enough, which

implies rk > rs
k .

Step 3. Let us denote by lk;1; . . . ; lk;k the Lagrange multipliers corresponding
to the minimizing function uk in S d

xk; 1;...;xk; k
. It remains to show that, for k large

enough, lk; i ¼ 0 Ei a f1; . . . ; kg. Arguing as in [6], from f ðxk;1; . . . ; xk;kÞ ¼
gðrk;1; . . . ; rk;kÞ it follows that, for k large enough, lk; i � ðlk; i � xk; iÞ xk; i

jxk; i j2
¼ 0

Ei a f1; . . . ; kg; since gðrk;1; . . . ; rk;kÞ ¼ hs
k ðrkÞ, we infer that there exists a

Lagrange multiplier mk a R such that lk; i ¼ mkxk; i Ei a f1; . . . ; kg; finally, we
obtain mk ¼ 0 because hs

k ðrkÞ is the maximum of hs
k and rk > rs

k . Thus, we get
E 0ðukÞ ¼ 0 for k large enough and all the other assertions of Theorem 1.1 follow
now by standard arguments.

Remark 2.1. If in Theorem 1.1 we assume in addition that aðxÞ has radial sym-
metry, it is natural to expect that the k-bumps of the solution uk are distributed
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near ðN � 1Þ-dimensional spheres. However, our method can be adapted to
construct also infinitely many positive solutions with bumps distributed on
circles. In fact, for all kb 2 and for r > 0 large enough, consider the point
ðxk;1ðrÞ; . . . ; xk;kðrÞÞ a Dk such that xk; iðrÞ ¼ ðr cos 2pi

k
; r sin 2pi

k
; 0; . . . ; 0Þ for

i ¼ 1; . . . ; k and set wkðrÞ ¼ f ðxk;1ðrÞ; . . . ; xk;kðrÞÞ. Then, as in the proof of
Theorem 1.1, there exists rk > 0 such that wkðrkÞ is the maximum of wk and, for
k large enough, every minimizing function for the energy functional E in
S d
xk; 1ðrkÞ;...;xk; kðrkÞ is a positive k-bumps solution of problem (1.1).

More in general, we can construct infinitely many solutions with bumps
distributed near d-dimensional spheres for every integer d such that 1a da
N � 1. In fact, consider the sphere Sd ¼ fx ¼ ðx1; . . . ; xNÞ a RN : jxj ¼ 1; xi ¼ 0
Eib d þ 2g. Then, arguing as in the proof of Theorem 1.1, we infer that
Ekb 2 there exist yk;1; . . . ; yk;k in Sd and rk1 ; . . . ; rkk in Rþ such that
limk!lminfrki : i ¼ 1; . . . ; kg ¼ þl, limk!lðmaxfrki : i ¼ 1; . . . ; kg=minfrki :
i ¼ 1; . . . ; kgÞ ¼ 1 and, for k large enough, every minimizing function for E
in S d

rk1
yk1 ;...;rkk

ykk
is a positive k-bumps solution of problem (1.1).

Remark 2.2. Notice that the method used to prove Theorem 1.1 may be also
applied to construct a sequence ðûunÞn of positive solutions of problem (1.1) which,
unlike the sequence ðukÞkbk

given by Theorem 1.1, converges in H 1
locðRNÞ to a

positive solution ûu of the equation �Duþ aðxÞu ¼ jujp�1
u in RN , having infinitely

many bumps (while the sequence ðukÞkbk
converges to the trivial solution uC 0).

The solution ûu obtained in this way presents k1 bumps localized near a sphere
qBð0; r1Þ, k2 bumps near a sphere qBð0; r2Þ and so on, where ðknÞn and ðrnÞn are
suitable increasing sequences in N and Rþ respectively, with limn!þlðkn � kn�1Þ
¼ limn!þlðrn � rn�1Þ ¼ þl.

In fact, arguing as in the proof of Theorem 1.1, one obtain a solution ûu1 with
k1 bumps near a sphere qBð0; r1Þ then, using similar arguments, one can construct
a solution ûu2 with k1 bumps near qBð0; r1Þ and k2 bumps near qBð0; r2Þ, for suit-
able k2 a N, r2 > 0 large enough, and then one can iterate this procedure. Thus
we obtain a sequence ðûunÞn with the desired properties.

Notice that, at every step, we can choose the positive numbers kn in a quite
arbitrary way (provided large enough). Therefore, we can say also that there exist
infinitely many positive solutions of the equation �Duþ aðxÞu ¼ jujp�1

u in RN

having infinitely many bumps (while the result obtained in [7] guarantees only
the existence of one solution with this property under the additional assumption
that the oscillation of aðxÞ � al is small enough in RN).

Remark 2.3. Unlike the results proved in [6, 7], Theorem 1.1 does not require
supx ARNkaðxÞ � alkLN=2ðBðx;1ÞÞ to be small and, indeed, it may be arbitrarily

large. For example, let W be a bounded domain of RN and anðxÞ ¼ naðxÞ þ aðxÞ
Ex a RN , with aðxÞ as in Theorem 1.1 and aðxÞ such that aðxÞ > 0 Ex a W,

aðxÞ ¼ 0 Ex B W,

Z
W

aðxÞN=2
dx < þl; then, there exists k, independent of n,

such that Ekb k and En a N there exists a positive k-bumps solution uk;n of the
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equation �Duþ anðxÞu ¼ up in RN ; moreover, as n ! l, uk;n ! ~uuk in H 1ðRNÞ
where ~uuk C 0 in W while it is a positive k-bumps solution of the equation
�Duþ aðxÞu ¼ up in the exterior domain ~WW :¼ RNn�WW, with zero Dirichlet
boundary condition (on the other hand, the solutions ~uuk in ~WW may be also
obtained directly since our method may be easily adapted to deal with Dirichlet
problems in exterior domains).

Remark 2.4. Let us point out that the method we use to prove Theorem 1.1
may be adapted to deal also with the case of potentials aðxÞ non regular at
infinity: for example, when the limit alðyÞ ¼ limr!þl aðryÞ exists for all

y a SN�1 ¼ fx a RN : jxj ¼ 1g but it depends on y.
Notice that if alðyÞ is allowed to be a nonconstant function of y, the Palais-

Smale condition may even fail at every level where there exist Palais-Smale se-
quences; moreover, we may have qa

qy
> 0 in RN for a suitable y a SN�1 and, in

this case, uC 0 is the unique solution of problem (1.1) because of Theorem 1.1
in [4]. But, if we assume that supfalðyÞ : y a SN�1g < þl, and

lim
jxj!l

aðxÞ � al

� x

jxj

�� �
¼ 0;ð2:12Þ

lim
jxj!l

aðxÞ � al

� x

jxj

�� �
ehjxj ¼ þl Eh > 0;

then our method still works and allows us to obtain infinitely many positive
solutions as in Theorem 1.1. More precisely, for every integer k large enough,
we obtain a k-bumps positive solution uk, having the same properties as in Theo-
rem 1.1. In addition, our method gives more information about the asymptotic
behaviour, as k ! þl, of the centers xk;1; . . . ; xk;k of the bumps. For example,
if alðyÞ depends continuously on y, we obtain

lim
k!l

min al

� xk; i

jxk; ij

�
: i ¼ 1; . . . ; k

	 

¼ maxfalðyÞ : y a SN�1g;ð2:13Þ

moreover if the set Ml ¼ fy a SN�1 : alðyÞ ¼ maxSN�1 alg has more than one
connected component, then for k large enough we can construct k-bumps solu-
tions uk, with

xk; 1
jxk; 1j

; . . . ;
xk; k
jxk; k j

localized near prescribed connected components of

Ml. Finally, let us point out that, even if the potential aðxÞ is non regular at
infinity, arguing as in Remark 2.2 we can construct sequences ðûunÞn of positive
solutions of problem (1.1) that converge in H 1

locðRNÞ to positive solutions of
the equation �Duþ aðxÞu ¼ jujp�1

u in RN having infinitely many bumps. More-
over, we can say also that there exists infinitely many positive solutions having
infinitely many bumps.
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