
Rend. Lincei Mat. Appl. 26 (2015), 83–92
DOI 10.4171/RLM/694

Probability Theory — A coupling approach to Doob’s theorem, by Alexei Kulik

and Michael Scheutzow, communicated on 14 November 2014.

Abstract. — We provide a coupling proof of Doob’s theorem which says that the transition

probabilities of a regular Markov process which has an invariant probability measure m converge
to m in the total variation distance. In addition we show that non-singularity (rather than equiva-

lence) of the transition probabilities su‰ces to ensure convergence of the transition probabilities for
m-almost all initial conditions.
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1. Introduction

Doob’s theorem, as formulated in [1], p. 43, states that if the stochastically con-
tinuous Markov semigroup Pt, tb 0 with Polish state space ðE; dÞ has an invari-
ant probability measure (ipm) m and is t0-regular for some t0 > 0, then m is unique
and all transition probabilities converge to m in the total variation distance. Here,
t0-regular means that all transition probabilities Pt0ðx; :Þ are mutually equivalent.
One common way to check t0-regularity is to show that the Markov semigroup is
irreducible and strong Feller, see [1], Proposition 4.1.1 (known as Khas’minskii’s
theorem).

In fact, Da Prato and Zabczyk formulate and prove Doob’s theorem with
respect to strong convergence (which is weaker than total variation convergence)
and refer the reader to [4] and [3] for di¤erent proofs of total variation conver-
gence. Neither of the proofs is short and elementary. In particular, neither of the
proofs uses coupling which has been a powerful tool to prove convergence of
transition probabilities in the past decades. The aim of this article is to provide
a coupling proof of Doob’s theorem. At the same time we generalize the result
in various directions: instead of a Polish state space, we just require a mild condi-
tion on the measurable space ðE;EÞ. Further, we allow the infimum of the times
t > 0 for which Ptðx; :Þ and Ptðy; :Þ are equivalent to depend on the pair ðx; yÞ
without being uniformly bounded from above. We also show that we can replace
equivalance of the transition probabilities by the much weaker property of non-
singularity but in this case convergence of the transition probabilities only holds
for m-almost all initial conditions x. In the next section, we formulate the main
results in the discrete time setting (in Remark 2 we say why the continuous time



claim follows) and provide an example showing that the weaker assumption in
Corollary 1 does not guarantee the conclusion of Theorem 1.

2. Main results

Let Xn, n a Zþ be a Markov chain with the state space ðE;EÞ. The measurable
space ðE;EÞ is assumed to be countably generated. We also assume that the
diagonal D ¼ fðx; xÞ; x a Eg belongs to EnE. A typical example of such a
space is a Borel measurable space, e.g. a Polish space E endowed with the Borel
s-algebra E.

Transition probabilities and n-step transition probabilities for X are de-
noted respectively by Pðx; dyÞ and Pnðx; dyÞ. The law of the sequence fXng in
ðEl;EnlÞ with initial distribution LawðX0Þ ¼ m is denoted by Pm, the respective
expectation is denoted by Em; in case m ¼ dx we write simply Px, Ex.

Recall that an invariant probability measure for X is a probability measure m
on ðE;EÞ such that

mðdyÞ ¼
Z
E

Pðx; dyÞmðdxÞ:ð1Þ

Equivalently, a probability measure m is invariant if the sequence fXn; n a Zþg is
strictly stationary under Pm.

We use the usual relations for probability measures m, n on ðE;EÞ: m and n
are equivalent (notation mP n) if each of them is absolutely continuous w.r.t.
the other; m and n are singular (notation m ? n) if there exists A a E such that
mðAÞ ¼ 1, nðAÞ ¼ 0; otherwise m and n are non-singular (notation m 6? n). The
total variation distance between probability measures m, n on ðE;EÞ is the total
variation of the signed measure m� n (notation km� nk).

Theorem 1. Assume that for each x; y a E there exists n ¼ nx;y such that

Pnðx; �ÞPPnðy; �Þ:ð2Þ

Then there exists at most one ipm for the chain X. If an ipm m exists, then for
every x a E

kPnðx; �Þ � mk ! 0; n ! l:ð3Þ

The proof of Theorem 1 is given in Section 3 below. The following theorem
shows to what extent the basic assumption (2) can be relaxed.

Theorem 2. Let X be a Markov chain which has an ipm m. Assume further that
for mn m-almost all ðx; yÞ a E � E there exists n ¼ nx;y such that

Pnðx; �Þ 6? Pnðy; �Þ:ð4Þ

Then (3) holds true for m-almost all x a E.
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The following corollary is simple and straightforward.

Corollary 1. Assume that for each x; y a E there exists n ¼ nx;y such that (4)
holds true.

Then there exists at most one ipm for the chain X. If an ipm m exists, then (3)
holds true for m-a.a. x a E.

To prove uniqueness of an ipm (which is the only addition to Theorem 2), let
us assume that there exist two di¤erent ipm’s m1, m2, and consider the averaged
ipm m ¼ ð1=2Þðm1 þ m2Þ. Applying Theorem 2 first to m1 and then to m, we get a
contradiction: because m1 is absolutely continuous w.r.t. m, we get that for m1-a.a.
x a E the transition probabilities Pnðx; �Þ converge both to m1 and to m, but
m1Am. r

Remark 1. Note that the condition of Theorem 2 alone does not yield unique-
ness of the ipm for X : a simple counter-example is given by a chain with a finite
state space with at least two mutually disconnected classes of states.

Remark 2. Note that the results of Theorem 1, Theorem 2, and Corollary 1 are
also true in the continuous time case when Pt, tb 0 is a Markov semigroup
(no regularity in t is required). To see this, note that uniqueness of an ipm m for
the discretized chain Pn, n a N0 implies uniqueness of an ipm for Pt, tb 0 and
that for any (discrete or continuous time) Markov semigroup ðPrÞ with ipm m,
the function r 7! kPrðx; :Þ � mk is non-increasing.

Example 1. The following example shows that the assumptions of Corollary 1
do not imply the conclusion of Theorem 1. Equip E ¼ Zþ with the discrete s-
algebra E and define the transition probabilities by p0;0 ¼ 1, pi; i�1 ¼ 1=3 and
pi; iþ1 ¼ 2=3 for ib 1. Then m ¼ d0 is the unique invariant probability measure,
the assumptions of Corollary 1 hold but Pnði; :Þ does not converge to m for any
iA 0.

Remark 3. Note that in the discrete case (i.e. E is finite or countably infinite)
the assumptions in Theorem 2 and in Corollary 1 are also necessary for the
respective conclusion to hold. This is not true for Theorem 1 however as the
example E ¼ Zþ with p0;0 ¼ p0;1 ¼ 1=2, pi; i�1 ¼ 2=3 and pi; iþ1 ¼ 1=3 for ib 1
shows.

3. Proofs of Theorem 1 and Theorem 2

An auxiliary construction. Denote for N a N, p a ð0; 1Þ

CN;p ¼ fðx; yÞ : kPNðx; �Þ � PNðy; �Þka 2ð1� pÞg:

Note that CN;p a EnE by Lemma 1(i) below. Since

n 6? n , kn� nk < 2;
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the assumption of Theorem 2 (and therefore the stronger assumption of Theorem
1, as well) yield that there exist N a N, p a ð0; 1Þ such that

ðmn mÞðCN;pÞ > 0:

In the sequel we fix these values N, p and write simply C instead of CN;p. In ad-
dition we assume that N ¼ 1. Remark 2 shows that this is no loss of generality.

An outline of the method. Our aim, in fact, is to prove the convergence

kPnðx1; �Þ � Pnðx2; �Þk ! 0; n ! lð5Þ

either for all ðx1; x2Þ a E � E in the case considered in Theorem 1, or for mn m-
a.a. ðx1; x2Þ a E � E in the case considered in Theorem 2. Once (5) is proved, the
required convergence (3) follows using the representation (1) and the triangle
inequality. The following fact is well-known ([5], p. 14): for any two random
elements x1, x2, defined on a same probability space ðW;F;PÞ, valued in ðE;EÞ,
and such that LawðxiÞ ¼ ni, i ¼ 1; 2, one has

kn1 � n2ka 2Pðx1A x2Þ:ð6Þ

Hence for any sequence fZn ¼ ðZ1
n ;Z

2
n Þ; n a Zþg such that the laws of

fZi
n; n a Zþg, i ¼ 1; 2 equal respectively Pxi , i ¼ 1; 2, one has a bound

kPnðx1; �Þ � Pnðx2; �Þka 2PðZ1
n AZ2

n Þ:

This is the essence of the famous coupling approach which dates back to W.
Döblin [2]: to prove (5) one should construct a sequence Z which verifies the
above assumption (such a sequence is usually called a coupling for X ) in such
a way that

PðZ1
n AZ2

n Þ ! 0; n ! l:ð7Þ

Construction of the coupling. The sequence Z will be taken as a Markov chain on
E � E with suitably constructed transition probability. The first part of this con-
struction is based on the fact that a proper choice of the pair ðx1; x2Þ may turn
inequality (6) into an identity. This fact, sometimes called the Coupling Lemma,
is well known; the law of any such pair ðx1; x2Þ is called a maximal coupling. We
refer to [5] Section 1.4, where the construction of a maximal coupling based on
the splitting representation of a random variable is given. In our framework we
use essentially the same construction, but with modifications which are caused
by the necessity (a) to deal with transition probabilities instead of measures, and
therefore to take care of measurability issues; (b) to manage properly the law
of the pair ‘‘outside of the diagonal’’. Namely, we have the following statement
(the proof is given in the Appendix).

Lemma 1 (The Coupling Lemma for transition probabilities). Let ðE;EÞ be a
countably generated measurable space.
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Then for any Markov kernel Pðx; dyÞ on ðE;EÞ there exists a Markov kernel
Qððx1; x2Þ; dy1dy2Þ on ðE � E;EnEÞ such that for every ðx1; x2Þ a E � E:

(i) Qððx1; x2Þ;DÞ ¼ 1� ð1=2ÞkPðx1; �Þ � Pðx2; �Þk;
(ii) the measure Qððx1; x2Þ; dy1dy2Þ restricted to ðE � EÞnD is absolutely continu-

ous w.r.t. Pðx1; dy1ÞnPðx2; dy2Þ.

Remark 4. We refer a reader to [6] for another version of the Coupling Lemma
which takes into account measurability issues; the measurable space ðE;EÞ
therein is assumed to be a Borel one.

Denote

Rððx1; x2Þ; dy1dy2Þ ¼ Pðx1; dy1ÞnPðx2; dy2Þ;

which is just the transition probability of the Markov chain in E � E whose
components are independent and each of the components is a Markov chain
with the transition probability Pðx; dyÞ. Such a chain is usually called an indepen-
dent coupling, and below we denote it by W ¼ fWn; n a Zþg:

Finally, we define the transition probability for Z by

Sððx1; x2Þ; :Þ :¼
Qððx1; x2Þ; :Þ if ðx1; x2Þ a C

Rððx1; x2Þ; :Þ otherwise;

�

with the set C defined at the beginning of the proof. By construction, Z is a cou-
pling for X , and our aim is to prove (7) with Z0 ¼ ðx1; x2Þ either for all ðx1; x2Þ in
the case of Theorem 1, or for mn m-a.a. ðx1; x2Þ in the case of Theorem 2.

Proof of (7). Note that DHC, and for any point ðx; xÞ a D

Qððx; xÞ;DÞ ¼ 1:

Hence, by the construction the following property holds: once Z hits D, all the
subsequent values of Z a.s. stay in D (‘‘once the components are coupled they
stay coupled’’). Therefore

PðZ1
n AZ2

n Þ ¼ PðT > nÞ; T ¼ inffm : Z1
m ¼ Z2

mg;

with the usual convention inf j ¼ l.
Consider the sequence of stopping times

t0 ¼ 0; tk ¼ inffn > tk�1 : Zn a Cg; kb 1;

and assume for a moment that we know that

tk < l; kb 1ð8Þ
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with probability 1. Clearly, for any kb 1

fT > tkg ¼
[l
n¼1

ftk ¼ n;Z1 B D; . . . ;Zn B Dg a Ftk ;

here fFng denotes the natural filtration of the sequence Z. By the construction
of Z,

PðZtkþ1 a D jFtkÞ
b p; T > tk;

¼ 1; otherwise:

�

Hence for the sequence pk ¼ PðT a tkÞ, kb 1 one has

pkþ1 b pð1� pkÞ þ pk; kb 1;

and therefore pk ! 1, k ! l, which together with (8) yields (7).

Proof of (8): the Recurrence Lemma. We have reached the last and the
crucial step in the proof: we need to prove that the set C, which in a sense is
‘‘favorable for the subsequent coupling attempt’’, is a.s. visited by Z infinitely
often. We use the following lemma, whose proof is given in the Appendix.

Lemma 2 (The Recurrence Lemma). Assume that the Markov chain X satisfies
the condition of Theorem 2.

Then for any B a E with mðBÞ > 0, for m-a.a. x a E

PxðXn a B infinitely oftenÞ ¼ 1:ð9Þ

If, in addition, the condition of Theorem 1 holds true, then (9) holds true for
every x a E.

Now we can finish the whole proof; consider first the case of Theorem 1. The
independent coupling W verifies the assumptions of Lemma 2 with E � E instead
of E and mn m instead of m. Because ðmn mÞðCÞ > 0, this yields

PðWn a C infinitely oftenÞ ¼ 1ð10Þ

for all initial values W0 ¼ ðx1; x2Þ a E � E.
Observe that up to t1 the law of Z coincides with the law of the independent

coupling W up to its first visit to C, hence by (10)

Pðt1 < lÞ ¼ 1

for all initial values Z0 ¼ ðx1; x2Þ a E � E. Hence Z a.s. performs at least one
‘‘coupling attempt’’. If this attempt is successful, i.e. T a t1 þ 1, then a.s.
t2 ¼ t1 þ 1; t3 ¼ t2 þ 1; . . . because DHC and, once the components of Z
are coupled, they stay coupled. In that case (8) holds true. If ‘‘the first coupling

88 a. kulik and m. scheutzow



attempt is not successful’’, the chain Z afterwards again performs as the inde-
pendent coupling W up to the time moment t2. Applying Lemma 2 once again
and the strong Markov property of Z, we get

Pðt2 < lÞ ¼ 1:

Iterating this argument, we get (8) for all initial values Z0 ¼ ðx1; x2Þ a E � E,
which completes the proof of Theorem 1.

Let us proceed with Theorem 2; in that case it is convenient to prove (8) for
a version of Z with LawðZ0Þ ¼ mn m. The argument, completely the same as
above, proves that t1 < l a.s., and if ‘‘the first coupling attempt is successful’’
then (8) holds true. Consider the law of Zt1þ1 conditioned by the event that
‘‘the first coupling attempt is not successful’’; that is, fZt1þ1 B Dg. By the choice
of the law of Z0 and the construction of the kernel Q, this law is absolutely
continuous w.r.t. mn m. Using this and the strong Markov property of Z at the
stopping time t1 þ 1, we apply Lemma 2 once again and get

Pðt2 < lÞ ¼ 1:

Iterating this argument, we get (8) for Z with LawðZ0Þ ¼ mn m, which completes
the proof of Theorem 2. r

A. Proofs of the auxiliary lemmas

A.1. Proof of Lemma 1

Denote

Lðx1; x2; dyÞ ¼ ð1=2ÞðPðx1; dyÞ þ Pðx2; dyÞÞ:

Then for every x1, x2 Piðxi; dyÞfLðx1; x2; dyÞ, i ¼ 1; 2. Let us show that respec-
tive Radon-Nikodym derivatives can be chosen in a jointly measurable way; that
is, there exist measurable functions fi : E � E � E ! Rþ, i ¼ 1; 2 such that

Pðxi;AÞ ¼
Z
A

fiðx1; x2; yÞLðx1; x2; dyÞ; i ¼ 1; 2; x1; x2 a E; A a E:

Let E0 be a countable algebra which generates E, then the countable class
H, which consists of all functions representable in the form of a finite sumP

k ck1Ak
, fckgHQ, fAkgHE0, is dense in L1ðE; lÞ for any probability measure

l on ðE;EÞ.
Consider a Radon-Nikodym derivative

r1x1;x2ðyÞ ¼
Pðx1; dyÞ

Lðx1; x2; dyÞ
;
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then for every e > 0 there exists h a H such that

sup
A AE0

Z
A

ðr1x1;x2ðyÞ � hðyÞÞLðx1; x2; dyÞ <
e

2
:

Observe that this relation is equivalent to

sup
A AE0

�
Pðx1;AÞ �

Z
A

hðyÞLðx1; x2; dyÞ
�
<

e

2
;ð11Þ

and yields Z
E

jrx1;x2ðyÞ � hðyÞjLðx1; x2; dyÞ < e:

Fix some enumeration of the class H ¼ fhm;m a Ng, and denote for nb 1 by
mðx1; x2; nÞ the minimal mb 1 such that (11) holds true for h ¼ hm with
e ¼ 2�n�1. Then mð�; nÞ : E � E ! N is measurable, and therefore

f n
1 ðx1; x2; yÞ ¼ hmðx1;x2;nÞðyÞ

is measurable as a function E � E � E ! R. When x1, x2 are fixed, the sequence
f f n

1 ðx1; x2; yÞ; nb 1g converges to r1x1;x2ðyÞ for Lðx1; x2; �Þ-a.a. y: this follows
from the Borel-Cantelli lemma because, by the construction,

k f n
1 ðx1; x2; �Þ � r1x1;x2kL1ðE;Lðx1;x2; �ÞÞ a 2�n:

Therefore the function

f1ðx1; x2; yÞ ¼
limn!l f n

1 ðx1; x2; yÞ; if the limit exists

0; otherwise

�

gives the required measurable version of the Radon-Nikodym derivative for
Pðx1; dyÞ (the construction for Pðx2; dyÞ is the same).

We finish the proof by repeating essentially the construction from [5] Section
1.4, based on the splitting representation for probability laws. Write

gðx1; x2; yÞ ¼ minð f1ðx1; x2; yÞ; f2ðx1; x2; yÞÞ;

pðx1; x2Þ ¼
Z
E

gðx1; x2; yÞLðx1; x2; dyÞ;

Yðx1; x2; dyÞ ¼
gðx1; x2; yÞ
pðx1; x2Þ

Lðx1; x2; dyÞ

with the convention that (anything)=0 ¼ 1. Then we have representations

Pðxi; dyÞ ¼ pðx1; x2ÞYðx1; x2; dyÞ þ ð1� pðx1; x2ÞÞSiðx1; x2; dyÞ; i ¼ 1; 2

with probability kernels Y, S1, S2 and measurable p : E � E ! ½0; 1�.
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Note that the mapping E C x 7! ðx; xÞ a E � E is E� EnE measurable, and
denote by Q1ððx1; x2Þ; dy1dy2Þ the image of Yðx1; x2; dyÞ under this mapping.
Denote also by Q2ððx1; x2Þ; dy1dy2Þ the product of the measures Siðx1; x2; dyiÞ,
i ¼ 1; 2. Then

Qððx1; x2Þ; �Þ ¼ pðx1; x2ÞQ1ððx1; x2Þ; �Þ þ ð1� pðx1; x2ÞÞQ2ððx1; x2Þ; �Þ

is the required kernel; observe that the assertion (ii) now holds true because
Q2ððx1; x2Þ; �Þ is chosen to be a product measure with the components
Siðx1; x2; �ÞfPðxi; �Þ, i ¼ 1; 2. r

A.2. Proof of Lemma 2

Denote

cðxÞ ¼ PxðXn a B infinitely oftenÞ;

and consider a stationary version of X with LawðX0Þ ¼ m. Then the sequence
fcðXnÞg is stationary. But, in addition, this sequence is a Lévy martingale: by
the Markov property of X , we have with probability 1

cðXnÞ ¼ EXn
1Xk AB i:o: ¼ E½1Xk AB i:o:;kbn jFn� ¼ E½1Xk AB i:o:;kb0 jFn�:

Then with probability 1

cðXnÞ ! 1Xk AB i:o:;kb0; n ! l;

and hence by stationarity of fcðXnÞg we have cðxÞ ¼ 0 or 1 for m-a.a. x a E.
Denote

C0 ¼ fx : cðxÞ ¼ 0g; C1 ¼ fx : cðxÞ ¼ 1g;

and observe that because cðxÞ a ½0; 1� in any case, by the martingale property of
fcðXnÞg one has for any nb 1

Pnðx;C0Þ ¼ 1 for m-a:a: x a C0 and Pnðx;C1Þ ¼ 1 for m-a:a: x a C1:

Because of the assumption of the lemma (or Theorem 2), it is impossible that
both C0 and C1 have positive measure m. The identity mðC1Þ ¼ 0 contradicts
Birkho¤ ’s ergodic theorem: with probability 1 we have

1

N

XN
n¼1

1BðXnÞ ! h; N ! l

where Eh ¼ mðBÞ > 0. Therefore mðC0Þ ¼ 0; which implies the required identity
mðC1Þ ¼ 1.
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If, in addition, the condition of Theorem 1 holds true, then it follows from
what we have just proved that for any x a E there exists n ¼ nx such that
Pnðx;C1Þ ¼ 1. By the Markov property of X and the definition of c, this implies
cðxÞ ¼ 1. r
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