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ABSTRACT. — We prove that for any convex probability measure on a linear space the set of its
non-singular shifts is convex and the set of its equivalent shifts is a linear subspace.
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We study the sets of non-singular and equivalent shifts for convex measures on
locally convex spaces. It is well known that for a Radon Gaussian measure
(see [1]) these sets are linear and coincide with the Cameron—Martin space, for
example, for the countable power of the standard Gaussian measure on the real
line this is the usual /2. For a general measure, these sets need not be convex. We
prove that for a Radon convex measure, the set of its equivalent shifts is always
a linear space and the set of its non-singular shifts is always convex.

Let us recall some concepts and notation. A Borel probability measure u
on a locally convex space X is called Radon if for every Borel set 4 and for
every ¢ > 0 there is a compact set K = 4 such that u(4\K) < &. In addition to
the Borel o-field #(X) we shall also need the cylindric o-field o(X) of X, i.e.,
the smallest o-field with respect to which all continuous linear functionals
on X are measurable. In the case of a separable Banach space the two o-fields
coincide.

Let x and v be two probability measures absolutely continuous with respect to
a positive measure A, i.e. u = ¢ - A, v =1 - A. The number

Hwn) = [ Vodi

is called the Hellinger integral of this pair of measures. It is independent of our
choice of a measure 4 and the following estimate is true (see [2, Theorem 4.7.37)):

21 - H(uw) < [ o= dldi= -] <21 H2u),

where || - || denotes the total variation norm. The latter estimate shows that x L v
is equivalent to H(u,v) = 0, where L denotes the mutual singularity relation be-
tween measures. The equivalence of x and v is denoted by u ~ v.
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A probability measure # on the o-field o(X) is called convex (or logarithmi-
cally concave) if

w(tA + (1 = 0)B) = (u(4))" (u(B)™

for all 7 € [0,1] and 4, B € o(X). The convexity of a Radon probability measure
is defined as the convexity of its restriction to the o-field o(X). It is easily seen
from the definition that the topological support of a Radon convex measure,
1.e., the smallest closed set of full measure, is convex.

Another equivalent definition can be formulated in terms of finite-dimensional
projections (see [5]). A probability measure on R” is called convex if it is defined
by a density of the form e~" with respect to Lebesgue measure on some affine
subspace L, where V' : L — (—o0, 00] is a convex function on this subspace. A
Radon probability measure ¢ on a locally convex space X is convex if and only
if for every continuous linear operator P : X — R" the measure xo P~! is convex
on R", where uo P~1(A) = u(P~'(A)).

Let u be a Borel measure on a locally convex space. Let u, be the shift of the
measure u by the vector 4, i.e., the measure defined by the formula

w(A) = w(A—h), AeBX).

Let M (u) denote the set of all its non-singular shifts and let M (x) < M () be the
set of all its equivalent shifts, i.e.,

M(p) ={h:p L wt,

M(p) =A{h:p~w}

In relation to these sets let us also mention the subspace of continuity C(u) of u
consisting of all vectors . such that lim,_||x — 1,|| = 0. The subspace of qua-
siinvariance Q(u) is the set of all vectors / such that y,, ~ u for all . Clearly,
O(1) € M(p), but the inclusion may be strict. An important difference is that
Q(u) is always a linear subspace, moreover, Q(u) = C(u) and C(u) is also linear
(see [3, Chapter 5], [4]). Some difference between these sets occurs already in the
one-dimensional case: if u =Y, 27"~15, where summation is taken over all
integer numbers 7 and J, is Dirac’s measure at n, then C(u) = Q(u) = {0},
M(u) = M(u) = Z, for Lebesgue measure A on the interval [0, 1] regarded as a
measure on R we have C(1) = R, Q(4) = M(1) = {0}, M(1) = (—1,1).

In infinite dimensions, some more subtle phenomena take place (see [7], [12]).

Another important set is the set D¢ (u) of all vectors & such that the measure
1 has a Skorohod derivative dj,u along h. The latter is defined by means of the
integration by parts formula

/6hf(x)u(dx) = —/f(x) dpu(dx)
e X

for all functions f of the form f(x) = ¢(/i(x),...,l,(x)), where p € C;*(R") and
l; € X*. The Skorohod derivative dyu can be equivalently defined as a limit of
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(1, — 1)/t in the weak topology as ¢ — 0; its existence is equivalent to the esti-
mate ||u,;, — u|| < C|7| with some constant C. The set D¢ () is a linear subspace
of C(u). For a convex measure x given by a density on R”, the sets C(u) and
D¢(p) coincide with R” (for D¢ (u) this is not trivial and was first shown by
Krugova [8]). For any convex measure x (in finite or infinite dimensions) there
is the following useful inequality due Krugova [9]:

i = il = 2 = 2e7H1,

which in the case where dju does not exist asserts that 4 and g, are mutually
singular. Therefore, for any convex measure x we have

M(u) = C(1) = Dc(p).

However, it can happen that M (u) is not linear: for example, for Lebesgue mea-
sure 4 on [0, 1] regarded as a measure on the real line we have M (1) = (—1,1).
More generally, if x is an absolutely continuous convex measure on R?, then
its topological support is a convex set U with a nonempty interior W and then
M(u) = W — W. Our result says that M (u) is a convex subset in C(u) and that
M(p) = O(w).

It is worth noting that in the general case C(u) is complete with respect to the
distance d(a,b) = supj, <y ||t — 1yl that is consistent with the vector structure,
but a similar distance dy(a,b) = ||u, — 1|| may fail to be consistent with the
vector structure even on Q(u) (see [12]). However, it follows by the Krugova
inequality that for a convex measure u the distance dy defines the same topology
as the distance d. Indeed, if dy(h,,h) — 0, then by this inequality ||dj_p,u| — O,
whence it follows that

et = taan, || < N2l |-, l| < ||, l] — O

uniformly in 7 € [—1, 1].

It is readily verified that for any Radon measure u the sets introduced above
do not change if we consider x on ¢(X) in place of Z(X).

It is unknown whether M (u) # {0} for any non Dirac convex measure.

THEOREM 1. Let u be a convex Radon measure on a locally convex space X.
Then the function H(h) = H(u,w,) is logarithmically concave, i.e.,

H(th+ (1 —1t)q) = H'(hH''(q) Vtel0,1].
It follows that M (u) is a convex set.

ProOF. We first consider the case of a finite-dimensional space. In this case, the
measure 4 is absolutely continuous with respect to the standard Lebesgue mea-
sure on some affine subspace L + v, where L is a linear subspace and v is a vector.
If  is not in L, then H(h) = 0 and the inequality is obvious. So, we assume that
h € L and, passing to the subspace L, we can assume that x has a density with
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respect to Lebesgue measure on the whole space, i.e., £ = e~ " dx, where V is a
convex function. In this case we have

Hh) = /e(V(x)+V(x+h))/2 dx.

Let us recall the following Prékopa—Leindler inequality (see, e.g., [10], [11] or [2,
Theorem 3.10.21]): if

flx+ (1 =10)y) = (o)) W)™,

/ fe)dx = ( / p(x)dx) ( / Wxyds)

Applying this inequality to the functions

then

F60 = 9l) = (x) = e VO,

we immediately obtain the desired assertion.

Let us proceed to the infinite-dimensional case. Let A be a Radon probability
measure such that u = o- 4, 1, = o5 - 2, e.g., L = (u + y,,) /2. Note that the func-
tions ¢ and g, can be chosen measurable with respect to the o-field o(X) (see
[1, Corollary A.3.13]). Then, there exists a g-field generated by countably many
continuous linear functionals {/;} such that g, and p are measurable with respect
to it (see [1, Lemma 2.1.2]). Let ¢" and g} be the conditional expectations of the
functions p and gy, correspondingly, with respect to the measure A and the o-field
generated by the functionals {/;},. Then the functions ¢"” and g converge
in L'(2) to the functions ¢ and g, respectively. Therefore, we have conver-

gence /0" — /0, /o) — /o in L?(4). Let us define continuous linear opera-
tors P, : X — R” by the formula x — (/;(x),...,/,(x)). Obviously,

H(h) = hm \Vo"oj da.

On the other hand,

/\/Q”Q}Zdi= (o P o P
It follows from the finite-dimensional case that the function

H(uo Pt 0 Pl = H(uo Pl (0 P p )

is logarithmically concave. Hence the same is true for the function H (%) that is a
limit of logarithmically concave functions. O
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Let # be a Radon measure on a locally convex space X, he X, /€ X7,
/(h) =1 and S = ker/. Then any vector x can be uniquely represented in the
form ah + z, z € S. Let us consider the sections of the set 4 by the lines parallel
to h:

A ={aeR:z+ahe A}, AeBX).

Let 4{*} denote the conditional measures of the measure u associated with / (see
[2, Chapter 10]), i.e.,

() = [ ) (oo ),
where 7(x) = x — /(x)h.

THEOREM 2. If u is a convex Radon measure on a locally convex space X, then
M(n) is a linear subspace in X, hence M (1) = Q(w).

PRrOOF. It is known that for o 7 '-a.e. z the measure u!*! is convex (see [6] or

[3, Theorem 4.3.6]). Let i € M(u). Let us show that for u oz '-a.e. point z in
the subspace S, the measure x!?} on the real line has full support. Suppose the
opposite, i.e., there is a compact set B such that oz~ !'(B) > 0 and for every
z € B we have

/‘{Z}([am b.]) =1,

where the interval [a., b.] is the support of the measure x{*} (possibly unbounded
or degenerate, i.e., a. = b.). Let us note that for every z € B

uH((b. —1,b.]) > 0.
Let us consider the set
A={x:x=0h+zzeBb. <a<b.+1}.

It is easy to see that u(A4) =0 and g,(4) > 0. Indeed, for almost every z we
have (uh){z} = (u#1),, which is an easy consequence of the a.e. uniqueness of
conditional measures. Therefore, this contradicts the equivalence of the measures
w and u;, and shows that the supports [a., b.] are unbounded from above; the
unboundedness from below is proved similarly. So, ¢ ~ y,, for every ¢, because

()" = (), ~

le, the ANJ(,u)Nfor every t € R and every 1 € M(u). The fact that 4+ q € M(u)
for all h,q € M(p) follows immediately from the definition of the equivalence
of measures. O
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