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Abstract. — We prove that for any convex probability measure on a linear space the set of its

non-singular shifts is convex and the set of its equivalent shifts is a linear subspace.
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We study the sets of non-singular and equivalent shifts for convex measures on
locally convex spaces. It is well known that for a Radon Gaussian measure
(see [1]) these sets are linear and coincide with the Cameron–Martin space, for
example, for the countable power of the standard Gaussian measure on the real
line this is the usual l2. For a general measure, these sets need not be convex. We
prove that for a Radon convex measure, the set of its equivalent shifts is always
a linear space and the set of its non-singular shifts is always convex.

Let us recall some concepts and notation. A Borel probability measure m
on a locally convex space X is called Radon if for every Borel set A and for
every e > 0 there is a compact set KHA such that mðAnKÞ < e. In addition to
the Borel s-field BðX Þ we shall also need the cylindric s-field sðX Þ of X , i.e.,
the smallest s-field with respect to which all continuous linear functionals
on X are measurable. In the case of a separable Banach space the two s-fields
coincide.

Let m and n be two probability measures absolutely continuous with respect to
a positive measure l, i.e. m ¼ j � l, n ¼ c � l. The number

Hðm; nÞ ¼
Z ffiffiffiffiffiffi

jc
p

dl

is called the Hellinger integral of this pair of measures. It is independent of our
choice of a measure l and the following estimate is true (see [2, Theorem 4.7.37]):

2ð1�Hðm; nÞÞa
Z

jj� cj dl ¼ km� nka 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�H 2ðm; nÞ

q
;

where k � k denotes the total variation norm. The latter estimate shows that m ? n
is equivalent to Hðm; nÞ ¼ 0, where ? denotes the mutual singularity relation be-
tween measures. The equivalence of m and n is denoted by mP n.



A probability measure m on the s-field sðX Þ is called convex (or logarithmi-
cally concave) if

mðtAþ ð1� tÞBÞb ðmðAÞÞ tðmðBÞÞ1�t

for all t a ½0; 1� and A;B a sðXÞ. The convexity of a Radon probability measure
is defined as the convexity of its restriction to the s-field sðXÞ. It is easily seen
from the definition that the topological support of a Radon convex measure,
i.e., the smallest closed set of full measure, is convex.

Another equivalent definition can be formulated in terms of finite-dimensional
projections (see [5]). A probability measure on Rn is called convex if it is defined
by a density of the form e�V with respect to Lebesgue measure on some a‰ne
subspace L, where V : L ! ð�l;l� is a convex function on this subspace. A
Radon probability measure m on a locally convex space X is convex if and only
if for every continuous linear operator P : X ! Rn the measure m � P�1 is convex
on Rn, where m � P�1ðAÞ ¼ mðP�1ðAÞÞ.

Let m be a Borel measure on a locally convex space. Let mh be the shift of the
measure m by the vector h, i.e., the measure defined by the formula

mhðAÞ ¼ mðA� hÞ; A a BðX Þ:

Let MðmÞ denote the set of all its non-singular shifts and let ~MMðmÞHMðmÞ be the
set of all its equivalent shifts, i.e.,

MðmÞ ¼ fh : m 6? mhg;
~MMðmÞ ¼ fh : mP mhg:

In relation to these sets let us also mention the subspace of continuity CðmÞ of m
consisting of all vectors h such that limt!0km� mthk ¼ 0. The subspace of qua-
siinvariance QðmÞ is the set of all vectors h such that mth P m for all t. Clearly,
QðmÞH ~MMðmÞ, but the inclusion may be strict. An important di¤erence is that
QðmÞ is always a linear subspace, moreover, QðmÞHCðmÞ and CðmÞ is also linear
(see [3, Chapter 5], [4]). Some di¤erence between these sets occurs already in the
one-dimensional case: if m ¼

P
n 2

�jnj�1dn, where summation is taken over all
integer numbers n and dn is Dirac’s measure at n, then CðmÞ ¼ QðmÞ ¼ f0g,
MðmÞ ¼ ~MMðmÞ ¼ Z, for Lebesgue measure l on the interval ½0; 1� regarded as a
measure on R we have CðlÞ ¼ R, QðlÞ ¼ ~MMðlÞ ¼ f0g, MðlÞ ¼ ð�1; 1Þ.

In infinite dimensions, some more subtle phenomena take place (see [7], [12]).
Another important set is the set DCðmÞ of all vectors h such that the measure

m has a Skorohod derivative dhm along h. The latter is defined by means of the
integration by parts formula

Z
X

qh f ðxÞmðdxÞ ¼ �
Z
X

f ðxÞ dhmðdxÞ

for all functions f of the form f ðxÞ ¼ jðl1ðxÞ; . . . ; lnðxÞÞ, where j a Cl
b ðRnÞ and

li a X �. The Skorohod derivative dhm can be equivalently defined as a limit of
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ðmth � mÞ=t in the weak topology as t ! 0; its existence is equivalent to the esti-
mate kmth � mkaCjtj with some constant C. The set DCðmÞ is a linear subspace
of CðmÞ. For a convex measure m given by a density on Rn, the sets CðmÞ and
DCðmÞ coincide with Rn (for DCðmÞ this is not trivial and was first shown by
Krugova [8]). For any convex measure m (in finite or infinite dimensions) there
is the following useful inequality due Krugova [9]:

kmth � mkb 2� 2e�
1
2kdhmk;

which in the case where dhm does not exist asserts that m and mh are mutually
singular. Therefore, for any convex measure m we have

MðmÞHCðmÞ ¼ DCðmÞ:

However, it can happen that MðmÞ is not linear: for example, for Lebesgue mea-
sure l on ½0; 1� regarded as a measure on the real line we have MðlÞ ¼ ð�1; 1Þ.
More generally, if m is an absolutely continuous convex measure on Rd , then
its topological support is a convex set U with a nonempty interior W and then
MðmÞ ¼ W �W . Our result says that MðmÞ is a convex subset in CðmÞ and that
~MMðmÞ ¼ QðmÞ.
It is worth noting that in the general case CðmÞ is complete with respect to the

distance dða; bÞ ¼ supjtja1kmta � mtbk that is consistent with the vector structure,
but a similar distance d0ða; bÞ ¼ kma � mbk may fail to be consistent with the
vector structure even on QðmÞ (see [12]). However, it follows by the Krugova
inequality that for a convex measure m the distance d0 defines the same topology
as the distance d. Indeed, if d0ðhn; hÞ ! 0, then by this inequality kdh�hnmk ! 0,
whence it follows that

kmth � mthnka jtj kdh�hnmka kdh�hnmk ! 0

uniformly in t a ½�1; 1�.
It is readily verified that for any Radon measure m the sets introduced above

do not change if we consider m on sðXÞ in place of BðXÞ.
It is unknown whether MðmÞA f0g for any non Dirac convex measure.

Theorem 1. Let m be a convex Radon measure on a locally convex space X.
Then the function HðhÞ ¼ Hðm; mhÞ is logarithmically concave, i.e.,

Hðthþ ð1� tÞqÞbHtðhÞH 1�tðqÞ Et a ½0; 1�:

It follows that MðmÞ is a convex set.

Proof. We first consider the case of a finite-dimensional space. In this case, the
measure m is absolutely continuous with respect to the standard Lebesgue mea-
sure on some a‰ne subspace Lþ v, where L is a linear subspace and v is a vector.
If h is not in L, then HðhÞ ¼ 0 and the inequality is obvious. So, we assume that
h a L and, passing to the subspace L, we can assume that m has a density with
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respect to Lebesgue measure on the whole space, i.e., m ¼ e�V dx, where V is a
convex function. In this case we have

HðhÞ ¼
Z

e�ðVðxÞþVðxþhÞÞ=2 dx:

Let us recall the following Prékopa–Leindler inequality (see, e.g., [10], [11] or [2,
Theorem 3.10.21]): if

f ðtxþ ð1� tÞyÞb ðjðxÞÞ tðcðyÞÞ1�t;

then

Z
f ðxÞ dxb

�Z
jðxÞ dx

�t�Z
cðxÞ dx

�1�t

:

Applying this inequality to the functions

f ðxÞ ¼ jðxÞ ¼ cðxÞ ¼ e�ðVðxÞþVðxþhÞÞ=2;

we immediately obtain the desired assertion.
Let us proceed to the infinite-dimensional case. Let l be a Radon probability

measure such that m ¼ % � l, mh ¼ %h � l, e.g., l ¼ ðmþ mhÞ=2. Note that the func-
tions % and %h can be chosen measurable with respect to the s-field sðX Þ (see
[1, Corollary A.3.13]). Then, there exists a s-field generated by countably many
continuous linear functionals flig such that %h and % are measurable with respect
to it (see [1, Lemma 2.1.2]). Let %n and %n

h be the conditional expectations of the
functions % and %h, correspondingly, with respect to the measure l and the s-field
generated by the functionals flign

i¼1. Then the functions %n and %n
h converge

in L1ðlÞ to the functions % and %h, respectively. Therefore, we have conver-
gence

ffiffiffiffiffi
%n

p ! ffiffiffi
%

p
,

ffiffiffiffiffi
%n
h

p
! ffiffiffiffiffi

%h
p

in L2ðlÞ. Let us define continuous linear opera-
tors Pn : X ! Rn by the formula x 7! ðl1ðxÞ; . . . ; lnðxÞÞ. Obviously,

HðhÞ ¼ lim
n!l

Z ffiffiffiffiffiffiffiffiffiffi
%n%n

h

p
dl:

On the other hand,

Z ffiffiffiffiffiffiffiffiffiffi
%n%n

h

p
dl ¼ Hðm � P�1

n ; mh � P�1
n Þ:

It follows from the finite-dimensional case that the function

Hðm � P�1
n ; mh � P�1

n Þ ¼ Hðm � P�1
n ; ðm � P�1

n ÞPnðhÞÞ

is logarithmically concave. Hence the same is true for the function HðhÞ that is a
limit of logarithmically concave functions. r
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Let m be a Radon measure on a locally convex space X , h a X , l a X �,
lðhÞ ¼ 1 and S ¼ ker l. Then any vector x can be uniquely represented in the
form ahþ z, z a S. Let us consider the sections of the set A by the lines parallel
to h:

Az ¼ fa a R : zþ ah a Ag; A a BðXÞ:

Let mfzg denote the conditional measures of the measure m associated with l (see
[2, Chapter 10]), i.e.,

mðAÞ ¼
Z
S

mfzgðAzÞm � p�1ðdzÞ;

where pðxÞ ¼ x� lðxÞh.

Theorem 2. If m is a convex Radon measure on a locally convex space X, then
~MMðmÞ is a linear subspace in X, hence ~MMðmÞ ¼ QðmÞ.

Proof. It is known that for m � p�1-a.e. z the measure mfzg is convex (see [6] or
[3, Theorem 4.3.6]). Let h a ~MMðmÞ. Let us show that for m � p�1-a.e. point z in
the subspace S, the measure mfzg on the real line has full support. Suppose the
opposite, i.e., there is a compact set B such that m � p�1ðBÞ > 0 and for every
z a B we have

mfzgð½az; bz�Þ ¼ 1;

where the interval ½az; bz� is the support of the measure mfzg (possibly unbounded
or degenerate, i.e., az ¼ bz). Let us note that for every z a B

mfzgððbz � 1; bz�Þ > 0:

Let us consider the set

A ¼ fx : x ¼ ahþ z; z a B; bz < aa bz þ 1g:

It is easy to see that mðAÞ ¼ 0 and mhðAÞ > 0. Indeed, for almost every z we
have ðmhÞ

fzg ¼ ðmfzgÞ1, which is an easy consequence of the a.e. uniqueness of
conditional measures. Therefore, this contradicts the equivalence of the measures
m and mh and shows that the supports ½az; bz� are unbounded from above; the
unboundedness from below is proved similarly. So, mP mth for every t, because

ðmthÞ
fzg ¼ ðmfzgÞt P mfzg;

i.e., th a ~MMðmÞ for every t a R and every h a ~MMðmÞ. The fact that hþ q a ~MMðmÞ
for all h; q a ~MMðmÞ follows immediately from the definition of the equivalence
of measures. r
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