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1. Introduction

The aim of this short survey is to discuss the most recent results on the existence
of isoperimetric sets in the space RN with density. The problem is very easy to
state: for a given L1

loc and l.s.c. function f : RN ! Rþ, one defines the generalized
volume and the generalized perimeter of a Borel set WJRN as

jWj ¼
Z
W

f ðxÞ dx; PðWÞ ¼
Z
q�W

f ðyÞ dHN�1ðyÞ;

where the reduced boundary q�W of W coincides with the usual topological
boundary if the set W is smooth enough. To read this survey there is no need to
know what exactly the reduced boundary is, however the interested reader can
find all the definitions and main properties for instance in [1].

The isoperimetric problem consists then, as always, in trying to minimize the
perimeter of sets with a fixed volume. Of course, this coincides with the classical
(or ‘‘Euclidean’’) isoperimetric problem when f C 1, but otherwise a number of
di¤erent possibilities arise. This problem is estremely well-known and deeply
studied for a number of reasons; the interested reader can find some history,
explanations and a large bibliography for instance in the papers [4, 3]. Let us
now start by discussing, in a very informal way, what should happen about this
problem, and which are the most interesting questions.



First of all, it is very simple to understand that, in general, one should not
expect existence of isoperimetric sets (i.e., sets minimizing the perimeter for their
volume). Indeed, starting with any positive density f , and with any sequence of
sets with constant volume, it is possible to lower the value of f on the boundaries
of these sets: this will not a¤ect the volumes of the sets, but then the perimeters
can be made arbitrarily small. Notice that, in this way, the function f remains
lower semi-continuous (actually, if one wants only to consider continuous den-
sities, then the same argument applies with minor modifications).

As a consequence, it is clear that the first important task is to obtain con-
ditions under which the existence of isoperimetric sets is ensured, and the goal
of this survey is to discuss precisely this question. Of course, other interesting
questions concern the regularity and other geometrical properties of the isoperi-
metric sets. In the remaining of the introduction, we will explain some simple but
fundamental properties of the problem, and then we will give the claim of the
main result that we are going to present.

1.1. Preliminaries on the problem: the mass which escapes at infinity

Let us immediately recall a very basic lower semi-continuity result, which directly
comes from the analogous result for BV functions (see for instance [1]).

Lemma 1.1. Let fWjgj AN JRN be a sequence of sets such that the characteristic
functions wWj

weakly converge in the BVloc sense to wW for some WJRN. Then,

PðWÞa lim inf PðWjÞ.

Since standard compactness results ensure that, from any sequence fWjg of
sets, it is possible to extract a subsequence such that the sets wWj

converge to
some characteristic function wW, the above lemma could seem to give immedi-
ately a general existence result: indeed, for any given volume V one can always
find a sequence which tends to minimize the perimeter (such a sequence is called
‘‘isoperimetric sequence’’), and extract a converging subsequence, hoping that
the limit will be an isoperimetric set. Unfortunately, this does not work so eas-
ily, becuase the limiting set W could happen to have a strictly smaller volume,
hence it would be not a competitor for the isoperimetric problem with volume
V . Actually, for any given bounded domain DJRN one has that the volume of
W in D coincides with the limit of the volumes of Wj in D; in other words, the
only risk is that the sequence Wj ‘‘loses some mass at infinity’’. For instance, if
the sets Wj are all balls of unit volume whose centers go to infinity, then the
limit is the empty set, which clearly does not have unit volume. As a conse-
quence of the above observations, the following results are straightforward to
prove.

Theorem 1.2. If the volume of the whole RN is finite, say jRN j ¼ M, then there
exists an isoperimetric set for every volume V aM. If the volume of RN is infinite,
but for some volume V > 0 there exists a bounded isoperimetric sequence relative
to volume V, then an isoperimetric set for volume V exists.
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The idea of proof is extremely simple: if RN has only a finite volume, then it
is not possible that some mass escapes at infinity, because ‘‘there is no space at
infinity’’. More precisely, for any positive e > 0 one can find a big domain D
such that, out of D, there is only a volume smaller than e. As a consequence,
taking an isoperimetric sequence Wj and calling W a limiting set of (a suitable
subsequence of ) fWjg, then the volume of W is bigger than V � e for any positive
e, and then jWj ¼ V and so W is isoperimetric, as said above. In RN has infinite
volume, but there is an isoperimetric sequence completely contained in some big
bounded domain D, then again the volume of W is exactly V , because the mass is
not escaping at infinity, being confined in D.

These simple facts already allow us to do some interesting observations. A first
one concerns the cases when the volume of RN is finite: in all these cases, the
study of existence is useless because existence is always automatically true. This
does not mean that the isoperimetric problem is not interesting (for instance, the
Gaussian density f ðxÞ ¼ e�jxj2=2 is extremely studied), but only that the interest-
ing questions are not the existence. A second, deeper, one concerns the general
case when RN has infinite volume: to show the existence of isoperimetric sets of
a given volume, one could try to show that isoperimetric sequences do not have
any reason to escape at infinity. Even though this is a basic and obvious observa-
tion, a good strategy for showing the existence is precisely this one.

1.2. Preliminaries on the problem: the regions with high or low density

Let us now discuss what we should expect to happen in zones where the density
f is high, or low. To start with, let us imagine that f is constantly C in a large
region of RN , and seek for an isoperimetric set, say of volume 1, in that region.
Since the density is constant, then of course the problem coincides with the usual
Euclidean problem, up to a multiplicative constant, and then an isoperimetric set
is simply a ball Br of radius r and volume 1. Its volume and perimeter are then
given by

1 ¼ jBj ¼ CoNr
N ; PðBÞ ¼ CNoNr

N�1;

which just by substituting gives

PðBÞ ¼ C1=NNo
1=N
N :

As a consequence, the perimeter of a ball of unit volume is higher when the con-
stant C is higher. Notice that this is a consequence of the fact that volume scales
with power N, and perimeter only with power N � 1; in other words, to obtain a
unit volume in a region where the constant C is small, one needs a much ‘‘bigger’’
ball (that is, a ball with a big radius), and of course a larger radius goes in the
direction of a larger perimeter: however, the positive e¤ect of the density being
low is stronger than the negative e¤ect of the radius being large. This is a simple
but quite interesting information; suppose, indeed, that there are two big regions
where the density is constant, and that the two constants are di¤erent: the above
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calculation suggests that, for the isoperimetric problem, placing a ball in the zone
with low density is the better idea.

From this observation, one can get a general ‘‘rule’’, that is, isoperimetric sets
tend to privilege zones with lower density. Of course, this is absolutely not a rule,
and in fact it is in general false: the very best for a set would clearly be that the
density is big inside the set (so the set can have a small dimension still reaching
the desired volume) and small on the boundary of the set (so the set has a smaller
perimeter); hence, if the density is rapidly changing then nothing can be easily
said. However, keeping in mind the above ‘‘rule’’ is still useful, because in many
cases this actually suggests the correct answer to the questions of existence or non
existence, as we are going to see in a moment.

1.3. The main result of this survey

We are now going to present the main result of this survey, Theorem 1.4 below,
which says that whenever a density is converging from below in the sense of
Definition 1.3, isoperimetric sets exist for every volume. Before stating this result,
we list some known existence or non-existence results, which are either trivial or
can be found for instance in [4, 3]; basically, all these results should convince the
reader that the case of densities converging from below treated here, is the only
interesting one.

• A density which diverges at infinity: in this case, the ‘‘rule’’ would suggest that
an isoperimetric sequence remains bounded, because there should be no gain
for the isoperimetric problem in going where the density is big; since Theorem
1.2 ensures the existence of isoperimetric sets when isoperimetric sequences re-
main bounded, we can guess that existence should be true in this case. Actually,
the existence is true only if the density is also radial: for a general diverging
density it is still possible that existence fails.

• A density which goes to zero at infinity: in this case, the existence is auto-
matically true if the volume of RN is finite, thanks to Theorem 1.2; on the other
hand, if the volume of RN is infinite, the ‘‘rule’’ would suggests that any
isoperimetric sequence goes to infinity, hence that no existence holds. And
actually, it is true that existence always fails for densities which go to zero at
infinity, of course under the assumption jRN j ¼ l.

• A density for which lim inf f ðxÞ < lim sup f ðxÞ at infinity: in this case, the
density is ‘‘oscillating’’, hence one can expect that an isoperimetric sequence
could either stay bounded or go to infinity, depending on how fast the density
oscillates. And in fact, this intuition is correct: it is very easy to build examples
of oscillating densities both with existence and with non-existence of isoperi-
metric sets, thus in this case one cannot find any general result.

• A density with a strictly positive and finite limit at infinity: this is the last
possible case, and by the above discussion it is the only interesting one which
is left, since in all the other cases either no result is true, or the true result is
already known. Actually, it is immediately seen that this case should be divided
in two subcases; indeed, if the density converges to the limit from above, then
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the ‘‘rule’’ would suggest that isoperimetric sequences might go to infinity, pre-
venting the existence; on the other hand, if the density converges to its limit
from below, then the suggestion would be that isoperimetric sequences are
bounded, and then the existence should hold. To say this more formally, let us
introduce the following notation.

Definition 1.3. We say that the density f : RN ! Rþ is converging from
below to a limit 0 < l < þl if f converges to l at infinity, and f a l out of a
su‰ciently big ball.

The above intuition can then be rephrased as follows: one could expect exis-
tence of isoperimetric sets for densities converging from below, and no general
result for other densities (which are then either converging from above, or oscil-
lating around the limit). The second guess is easily seen to be correct: it is simple
to construct examples of densities which are converging to a limit 0 < l < l, but
not from below, both such that existence is true, and such that existence fails.
Also the first guess is true, but the proof is quite more complicate, and the goal
of this survey is precisely to describe it in good detail.

Theorem 1.4. Let f be a density converging from below to 0 < l < l. Then,
for every volume V > 0, there exist isoperimetric sets of volume V.

The proof of the above theorem is contained in the very recent paper [3]; the
result was conjectured, and some particular cases were already proven, in the
paper [4]. The plan of this survey is very simple: we collect some technical known
facts and a basic definition in Section 2, and then Section 3 is devoted to describe
in detail the proof of Theorem 1.4; our goal is not to give the completely formal
proof, which is already contained in the above-cited paper, but to explain all the
steps of the construction, proving almost formally most of them, in order to give
a precise idea both to the initiated and to the non-initiated reader.

2. Some basic known facts and a definition

In this section we present a couple of known technical facts, and we give a useful
definition. The first result shows that if an isoperimetric sequence weakly con-
verges to a set, then this set is an isoperimetric set. Notice carefully that this
seems in contrast with what we said right after Lemma 1.1, but it is not so: we
are not saying that a weak limit W of an isoperimetric sequence correspond-
ing to volume V is an isoperimetric set for the volume V , but that it is an
isoperimetric set for the volume jWjaV ! In particular, we have noticed that an
isoperimetric sequence could also vanish at infinity: in this case the lemma below
just says that the empty set is an isoperimetric set for the problem with volume 0,
which is of course emptily true.

Lemma 2.1. Assume that f a L1
loc and that f is bounded from above and below

far from the origin. Assume also that an isoperimetric sequence fWjg of volume
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V weakly converges in L1 to a set W. Then W is an isoperimetric set with
volume jWj.

Proof. If jWj ¼ 0 there is nothing to prove, while if jWj ¼ V then the claim is a
direct consequence of Lemma 1.1; we can then assume without loss of generality
that 0 < jWj < V .

Suppose now that W is not an isoperimetric set of volume jWj: then, there
exists F so that

jF j ¼ jWj; PðF Þ ¼ PðWÞ � e;

for some e > 0. By continuity, there exist a small constant d > 0 and a big radius
R > 0 such that, for every �da ta d, there exists a set Ft satisfying

Ft JBð0;RÞ; jFtj ¼ jWj � t; PðFtÞaPðWÞ � e

2
:ð2:1Þ

Up to increase R if necessary, we can also assume that

jWBBð0;RÞjb jWj � d

2
; HN�1

f ðqWBBð0;RÞÞbPðWÞ � e

8
;ð2:2Þ

where for any k > 0 we define the measure Hk
f as Hk

f ðAÞ ¼
Z
A

f ðxÞ dHkðxÞ for
every Borel set A.

Let us now consider the set Wj; recalling that

HN�1
f ðqWBBð0;RÞÞa lim inf

j!l
HN�1

f ðqWj BBð0;RÞÞ;

by (2.2) we immediately get that, if j is big enough, then

jWjja jWj þ d; jWj BBð0;RÞjb jWj � d;ð2:3Þ

HN�1
f ðqWj BBð0;RÞÞbPðWÞ � e

6
:

It is now possible to select some Rj > R such that

HN�1
f ðWj BSRj

Þa e

8
;

where for every r > 0 we denote by Sr ¼ qBð0; rÞ the sphere centered at the origin
with radius r. We have then, calling W�

j ¼ Wj BBð0;RjÞ and Wþ
j ¼ WjnBð0;RjÞ,

PðWþ
j Þ þ PðW�

j Þ ¼ PðWjÞ þ 2HN�1
f ðWj BSRj

ÞaPðWjÞ þ
e

4
:ð2:4Þ
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Notice now that, since Rj > R and by (2.3), then

tj :¼ jWj � jW�
j j a ½�d; d�;

thus we can define the competitor ~WWj ¼ Wþ
j AFtj , being the sets Ft as above. By

construction, we have that j~WWjj ¼ V for any jg 1, hence we have now to esti-
mate the perimeters of ~WWj . Using that R < Rj and (2.1), (2.4) and (2.3), we find
that

Pð~WWjÞ ¼ PðFtjÞ þ PðWþ
j ÞaPðWÞ � e

2
þ PðWþ

j Þ þ PðW�
j Þ � PðW�

j Þ

aPðWÞ � e

2
þ PðWjÞ þ

e

4
�HN�1

f ðqWj BBð0;RÞÞaPðWjÞ �
e

12
:

Since this is in contrast with the fact that the original sequence fWjg is isoperi-
metric, we have found an absurd, and this concludes the proof. r

The second result is a refinement of the first one, valid in the case when the
density f converges to a limit at infinity. Here, and in the following, we will
denote by JðVÞ the infimum of the perimeters of sets of volume V (hence, if
fWjg is an isoperimetric sequence relative to volume V , then PðWjÞ ! JðVÞ).

Lemma 2.2. In the same assumptions as in Lemma 2.1, if we further assume that
f ! 1 at infinity, then

JðVÞ ¼ PðWÞ þNo
1=N
N ðV � jWjÞ

N�1
N :ð2:5Þ

Proof. First of all, by approximation we can find a bounded set ~WW with

j~WWj ¼ jWj; Pð~WWÞaPðWÞ þ e:

Then, consider a ball B of volume V � jWj very far from the origin, so that it does
not intersect ~WW: since f ! 1, we can assume that PðBÞ is as close as we wish to
the perimeter of a ball of volume V � jWj in the standard Euclidean space, which
is No

1=N
N ðV � jWjÞ

N�1
N : then, the set ~WWAB has exactly volume V and its perimeter

is less than

PðWÞ þNo
1=N
N ðV � jWjÞ

N�1
N þ 2e;

since e is arbitrary, this implies the first inequality in (2.5).
To obtain the other one, we can argue more or less as in the proof of the

preceding lemma: having fixed a small constant e > 0, for every jg 1 we select
Rj very big and such that

HN�1
f ðWj BSRj

Þa e;

j jWj BBð0;RjÞj � jWj j < e;

PðWj BBð0;RjÞÞ > PðWÞ � e:

8><
>:
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Since f ! 1, if Rj is big enough then the perimeter of WjnBð0;RjÞ is arbitrarily
close to the Euclidean perimeter of the same set, which is bigger than the Eucli-
dean perimeter of the ball with the same volume: we deduce that

PðWjnBð0;RjÞÞbNo
1=N
N ðV � jWjÞ

N�1
N � ~ee;

for some ~ee which depends on e and goes to 0 when e goes to 0. As a consequence,
we get

PðWjÞ ¼ PðWj BBð0;RjÞÞ þ PðWjnBð0;RjÞÞ � 2HN�1
f ðWj BSRj

Þ

bPðWÞ þNo
1=N
N ðV � jWjÞ

N�1
N � 3e� ~ee:

Again recalling the e is arbitrary, we obtain the other inequality and the proof is
concluded. r

Let us now give a simple definition; to introduce it, consider a ball B in a
region where f is constantly C. As already noticed at the beginning of Section
1.2, we can immediately observe that

PðBÞ ¼ C1=NNo
1=N
N jBj

N�1
N :

We give then the following definition.

Definition 2.3. We say that the mean density of the set W is the (unique)
number r such that

PðWÞ ¼ r1=NNo
1=N
N jWj

N�1
N :

Basically, the mean density of a set is the constant r such that, in a region
where the density is constantly r, balls with the same volume as W have also the
same perimeter. This definition, which first appeared in [4], could seem strange at
first glance; nevertheless, for densities which converge to a limit, this turns out to
be extremely useful thanks to the following result.

Lemma 2.4. Let f be a density which converges to 1 at infinity. Assume that all
isoperimetric sets are bounded, and that there exist sets of any volume arbitrarily
far from the origin and with mean density less than 1. Then, for every V > 0 there
exists an isoperimetric set of volume V.

Proof. Let fWjg be an isoperimetric sequence corresponding to the volume V ,
and assume that Wj weakly converges to some W (this is always true, up to a
subsequence). By Lemma 2.1 and Lemma 2.2 we know that W is an isoperimetric
set for volume jWj, and that (2.5) holds. By assumption, W is bounded. Again
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by assumption, there exists a set F with volume V � jWj which has mean density
less than 1; since F can be taken arbitrarily far from the origin, we can assume
that WBF ¼ j.

The set WAF is then a set with volume exactly V , and recalling that W is
isoperimetric and that the mean density of F is less than 1, we get

PðWAF ÞaPðWÞ þ PðFÞaPðWÞ þNo
1=N
N jF j

N�1
N ¼ JðVÞ:

Since this implies that WAF is an isoperimetric set of volume V , we have
concluded the proof. r

One of the assumptions of the above lemma is the a priori boundedness of
isoperimetric sets, which has been recently well studied. In fact, it is always
true under our assumptions, thanks to the following result, which concludes this
section.

Lemma 2.5. Assume that the density f is either continuous and bounded above
and below far from the origin, or it converges to a positive limit at infinity. Then,
all the isoperimetric sets are bounded.

We do not give the proof of this result here, since it is quite involved. The
proof of the continuous case can be found in [2], while the proof of the second
case comes from an observation by F. Morgan, and can be found in [3].

3. Proof of our main result

This section is devoted to describe in detail the proof of Theorem 1.4, with a big
emphasis on the underlying ideas.

Let us start by considering the claim of Lemma 2.4: thanks to Lemma 2.5, it
tells us that to prove our Theorem 1.4 we can limit ourselves in finding sets with
any volume and mean density less than 1 arbitrarily far from the origin (up to a
trivial rescaling of f , we can of course assume without loss of generality that
l ¼ 1).

Observe that, in order to have a small mean density, a set should be suitably
placed with respect to the density (the best would be if the density is big inside the
set and small on its boudary), but it should also have a small perimeter in the
Euclidean sense: if the density on the boundary is small, but the boundary has a
huge extension, then this is not convenient . . . In particular, since we are looking
for sets which are far from the origin, and the density converges to 1, the volume
and perimeter are very close to the Euclidean volume and to the Euclidean perim-
eter; hence, a set with a mean density smaller than 1 must be very similar to a
ball. For this reason, we start (in the first step) to search a ball with mean density
smaller than one, and for simplicity we work in the simpler radial case. Then, in
the second step we conclude the thesis of Theorem 1.4, still in the radial case.
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Having the strategy in mind, in steps 3 and 4 we do the same thing in the more
complicated general case.

3.1. Step 1: A ‘‘good’’ ball of given radius when f is radial

In this first step, we assume that f is radial (at least far from the origin), and we
look for a ball of mean density less than 1 arbitrarily far from the origin. Notice
that we must find such balls for any given volume. Up to a dilation, we can
clearly reduce ourselves to consider only a particular value of the volume; how-
ever, it is important to underline immediately that we must choose this value in
advance. In other words, just finding a ball with mean density less than 1 and a
random volume is not su‰cient! Even if this might seem not such a big problem,
at first glance, this will nevertheless give some di‰culties later: indeed, it is much
easier (and this is what we will do) to search for a ‘‘good’’ ball (that is, a ball with
mean density less than 1) having fixed its radius, not its perimeter. But then, we
have to take care of adjusting the volume (in principle, it would be possible that
there exist balls with mean density less than one with any possible radius, but not
with any possible volume!).

For simplicity, let us then search for a good ball with radius 1: the goal of this
first step is to prove the following result.

Lemma 3.1. Under the assumptions of Theorem 1.4, if in addition f is radial then
there exist balls of radius 1 and mean density less than 1 arbitrarily far from the
origin.

Notice that a ball very far from the origin and with unit radius has volume
very close to oN , and perimeter very close to NoN , since f ! 1; hence, by the
definition, the mean density is very close to 1, so to check that some particular
ball has mean density less than 1 we need a careful analysis of the di¤erence be-
tween f and 1. Hence, it is useful to define the auxiliary density g ¼ 1� f , which
by assumption is radial and positive far from the origin, and to evaluate volumes
and perimeters also in terms of g: to avoid confusion, let us write then PgðEÞ and
jEjg to denote the perimeter and volume of the set E with respect to the density g.
Of course, any ball BðRÞ of radius 1 and centered at distance R from the origin
has volume and perimeter

jBðRÞj ¼ oN � jBðRÞjg; PðBðxÞÞ ¼ NoN � PgðBðRÞÞ:ð3:1Þ

In order to prove Lemma 3.1, we first need a couple of simple elementary
properties.

Lemma 3.2. Let g : Rþ ! R be definitively positive and converging to 0, and let
a : ð�1; 1Þ ! R be an L1 function such that

Z 1

�1

aðtÞ dt ¼ 0;

Z s

�1

aðtÞ dt > 0 Es a ð�1; 1Þ:ð3:2Þ
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Then, there exists R arbitrarily big such that

Z 1

�1

aðtÞgðtþ RÞ dtb 0;

with strict inequality unless gC 0 in ðR� 1;Rþ 1Þ.

Proof. Let us assume that the claim is false. Hence, for any Rþ gR� g 1 we
have

0b

Z Rþ

R¼R�

Z 1

t¼�1

aðtÞgðtþ RÞ dt dR ¼
Z Rþþ1

x¼R��1

gðxÞ
Z
Ax

aðtÞ dt dx;

where Ax is defined by

Ax ¼ ft a ð�1; 1Þ : x� Rþ < t < x� R�g:

Notice now that, if R� þ 1 < x < Rþ � 1, then Ax ¼ ð�1; 1Þ; as a consequence,

by (3.2), for those x one has

Z
Ax

aðtÞ dt ¼ 0. So, the estimate above can be re-
written as

0b

Z R�þ1

x¼R��1

gðxÞ
Z
Ax

aðtÞ dt dxþ
Z Rþþ1

x¼Rþ�1

gðxÞ
Z
Ax

aðtÞ dt dx

¼
Z R�þ1

x¼R��1

gðxÞ
Z x�R�

�1

aðtÞ dt dxþ
Z Rþþ1

x¼Rþ�1

gðxÞ
Z x�Rþ

�1

aðtÞ dt dx:

Again by (3.2) we know that the first integral is positive and the second one is
negative; moreover, if we keep R� fixed and we send Rþ ! l, then the second
integral converges to 0. We have to divide now two possibilities: if gC 0 in
ðR� � 1;R� þ 1Þ, then we have already the claim with R ¼ R�; otherwise, the
first integral is strictly positive, hence for Rþ big enough we find a contradiction.
In both cases, the proof is concluded. r

Lemma 3.3. Let g : Rþ ! R be definitively positive and converging to 0, and

let a : ð�1; 1Þ ! R be an L1 function such that ~aaðtÞ :¼
Z t

�1

aðsÞ ds satisfies the

assumption of Lemma 3.2 as well as ~aað1Þ ¼ 0. Then there exists R arbitrarily
big such that

Z 1

�1

aðtÞgðtþ RÞ dtb 0:

Proof. We can argue exactly as in the previous Lemma. In fact, Let Rþ g
R� g 1 and assume that the claim is false for every R� aRaRþ: since
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~aað1Þ ¼ 0 means that

Z 1

�1

aðsÞ ds ¼ 0, with the same calculation as in the

previous proof we can evaluate

0 >

Z Rþ

R¼R�

Z 1

t¼�1

aðtÞgðtþ RÞ dt dR

¼
Z R�þ1

x¼R��1

gðxÞ
Z x�R�

�1

aðtÞ dt dxþ
Z Rþþ1

x¼Rþ�1

gðxÞ
Z x�Rþ

�1

aðtÞ dt dx:

Since second term is again going to 0 for Rþ ! l, to conclude we just need to
prove that the first term is strictly positive. Let us rewrite it as

Z R�þ1

x¼R��1

gðxÞ
Z x�R�

�1

aðtÞ dt dx ¼
Z R�þ1

x¼R��1

gðxÞ~aaðx� R�Þ dx

¼
Z 1

t¼�1

gðtþ R�Þ~aaðtÞ dt:

Applying Lemma 3.2 to the function ~aa, we precisely obtain a suitable choice of
R� such that the above integral is strictly positive (our assumption reules out the
possibility that gC 0 in ðR� � 1;R� þ 1Þ), hence this proof is concluded. r

We are now in position to prove Lemma 3.1; as said above, it is notationally
simpler to use the perimeters and volumes with respect to g, and then deduce the
desired results for f .

Lemma 3.4. Under the assumptions of Theorem 1.4, if in addition f is radial then
for every e > 0 there exists a ball BðRÞ of radius 1 arbitrarily far from the origin
such that

PgðBðRÞÞb ðN � eÞjBðRÞjg:ð3:3Þ

Proof of Lemma 3.1. The claim of Lemma 3.1 is a straightforward conse-
quence of Lemma 3.4. Indeed, keeping in mind formulas (3.1), we know that
the ball BðRÞ has mean density less than 1 if and only if

NoN � PgðBðRÞÞ < No
1=N
N ðoN � jBðRÞjgÞ

N�1
N ;

and since g ! 0 at infinity the previous inequality reduces to

PgðBðRÞÞ > ðN � 1þ oð1ÞÞjBðRÞjg;

where oð1Þ is a quantity which goes to 0 when jBðRÞjg goes to 0, hence when
R ! l. Thus, the claim of Lemma 3.4 is stronger than what we need. r
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Proof of Lemma 3.4. Since the density is radial, we can express the perimeter
and volume of BðRÞ as

PgðBðRÞÞ ¼
Z Rþ1

x¼R�1

j1ðx� R;RÞgðxÞ dx;

jBðRÞj ¼
Z Rþ1

x¼R�1

j2ðx� R;RÞgðxÞ dx;
ð3:4Þ

and the functions j1;2 : ð�1; 1Þ � Rþ ! Rþ clearly converge, for R ! l, to the
functions

j1ðtÞ ¼ ðN � 1ÞoN�1ð1� t2Þ
N�3
2 ; j2ðtÞ ¼ oN�1ð1� t2Þ

N�1
2 ;

which depend only on t. Notice that the convergence is quite strong, namely the
ratio j1;2=j1;2 converge uniformly to one: as a consequence, the claim follows
if we can find balls of radius 1 arbitrarily far from the origin such that

PgðBðRÞÞbNVgðBðRÞÞ;ð3:5Þ

where the modified perimeter and volume Pg and Vg are defined as

PgðBðRÞÞ ¼
Z 1

t¼�1

j1ðtÞgðtþ RÞ dx; VgðBðRÞÞ ¼
Z 1

t¼�1

j2ðtÞgðtþ RÞ dx;

compare with (3.4). A trivial check ensures that the function aðtÞ ¼ j1ðtÞ �Nj2ðtÞ
satisfies the assumptions of Lemma 3.3, and then the existence of some arbitrarily
big R satisfying (3.5) follows, thus the proof is concluded. r

3.2. Step 2: Conclusion when f radial

As described above, the proof of Theorem 1.4 follows as soon as we find a set of
any given volume arbitrarily far from the origin. Since the density converges to 1,
let us look for a set of volume oN , which is the volume of a ball of radius 1
at infinity. Lemma 3.1 of Step 1 already gives us balls arbitrarily far from the
origin with radius 1 and mean density smaller than 1; however, since f is con-
verging to 1 from below, the volume of these balls is slightly smaller than 1. As
a consequence, we need to enlarge these balls a little. Notice that enlarging the
radius would not be a good idea: indeed, since f is not even continuous, also a
small movement of the boundary would possibly increase the perimeter too
much, destroying the information about the mean density. Let us give here the
construction.

Lemma 3.5. Under the assumptions of Theorem 1.4, if in addition f is radial then
there exists a set of volume oN and mean density smaller than 1 arbitrarily far from
the origin.
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Proof. Thanks to the first step, in particular by (3.3) of Lemma 3.4, we get a
ball of radius 1 and such that

PgðBðRÞÞb ðN � eÞjBðRÞjg:ð3:6Þ

Since f a 1, we know that jBðRÞjaoN , in particular by definition

jBðRÞj ¼ oN � jBðRÞjg:ð3:7Þ

Hence, we enlarge the ball as shown in Figure 1. More precisely, we divide the
ball BðRÞ into two half-balls, the ‘‘upper one’’ and the ‘‘lower one’’, which are
the two parts divided by an hyperplane passing trough the origin and the center
of BðRÞ. Then, we ‘‘rotate down’’ the lower part of the boundary qBðRÞ, call it
S�, in such a way that it becomes a half-sphere ~SS� whose center is below the
original one of a distance d. Finally, we define the new set ~BB as the set whose
boundary is the union of the upper half-sphere qBðRÞnS�, plus the new half-
sphere ~SS�, plus the union G of all the arcs of circle centered at the origin and
connecting each point of S� with the corresponding point of ~SS� (for the case
of dimension N ¼ 2, G is actually made only by two arcs of circle). In Figure 1
the new boundary q ~BBnqBðRÞ is made in dash.

The quantity d is chosen in such a way that j ~BBj ¼ oN : as a consequence, we
deduce that df 1 and that ~BBKBðRÞ. Moreover, since the Euclidean volume of
~BBnBðRÞ is of course

j ~BBnBðRÞjeucl ¼ oN�1dð1þ oð1ÞÞ;

where oð1Þ is a quantity which goes to 0 when R ! l, since f Q1, and since
by construction—just keeping in mind (3.7)—we have j ~BBnBðRÞj ¼ jBðRÞjg, we
obtain

d ¼
jBðRÞjg
oN�1

ð1þ oð1ÞÞ:

O

BðRÞ

d S�

G

~SS�

Figure 1. Ball expansion in Step 2.
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We are now in position to calculate Pð ~BBÞ: since by construction, and thanks to
the fact that f is radial, we have that HN�1

f ðS�Þ ¼ HN�1
f ð~SS�Þ, recalling (3.6)

we directly have

Pð ~BBÞ ¼ PðBðRÞÞ þHN�1
f ðGÞaPðBðRÞÞ þHN�1ðGÞ

¼ PðBðRÞÞ þ ðN � 1ÞoN�1dð1þ oð1ÞÞ
¼ PðBðRÞÞ þ ðN � 1ÞjBðRÞjgð1þ oð1ÞÞaPðBðRÞÞ þ PgðBðRÞÞ ¼ NoN ;

where the last equality comes from the fact that f þ g ¼ 1 and so PðBðRÞÞþ
PgðBðRÞÞ is the Euclidean volume of BðRÞ, which is a ball of radius 1. We con-
clude by noticing that the set ~BB has volume oN by construction, and then having
perimeter less than NoN is equivalent to have mean density less than one, which
concludes the proof. r

3.3. Step 3: A ‘‘good’’ ball of given radius for a generic f

In this and in the next step we are going to obtain the very same results as in
Steps 1 and 2, but for a generic density f instead of a radial one. The result of
this step is then the following result, which is analogous to Lemma 3.4: the
idea of the proof is simply to use an auxiliary radial density, obtained by radially
averaging f .

Lemma 3.6. Under the assumptions of Theorem 1.4, there exists a ball BbðRÞ of
radius 1 arbitrarily far from the origin such that

PgðBbðRÞÞb ðN � eÞjBbðRÞjg:ð3:8Þ

Proof. Let us use polar coordinates, denoting every point x a RN as xC ðr; yÞ,
where rb 0, y a SN�1. Let us then define the radial density ~ggðr; yÞ ¼ ~ggðrÞ, where

~ggðrÞ ¼
Z
SN�1

gðr; yÞ dHN�1ðyÞ;

that is, ~gg is the radial average of g. Now, fix a large Rg 1: in the previous steps
we simply called BðRÞ any ball of unit radius with center at distance R from the
origin, because all such balls were equivalent due to the radial assumption on the
density. Since now f (thus g ¼ 1� f ) is generic, all the balls of unit radius and
distance R from the origin may have di¤erent perimeters and di¤erent volumes,
hence it is more convenient to call each of these balls BbðRÞ for b a SN�1, with
the obvious meaning that we fix arbitrarily one of these balls and then BbðRÞ is
the ball obtained after a rotation of angle b. A trivial calculation then gives that,
if we define GðR; rÞJSN�1, for every r a ðR� 1;Rþ 1Þ, as the set

GðR; rÞ ¼ fy a SN�1 : xC ðr; yÞ a B0ðRÞg;
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then the g-volume of each ball BbðRÞ is

jBbðRÞjg ¼
Z Rþ1

r¼R�1

Z
y AGðR;rÞ

gðr; yþ bÞ dHN�1ðyÞ dr:

As a consequence, we simply haveZ
b ASN�1

jBbðRÞjg dHN�1ðbÞ

¼
Z
b ASN�1

Z Rþ1

r¼R�1

Z
y AGðR;rÞ

gðr; yþ bÞ dHN�1ðyÞ dr dHN�1ðbÞ

¼
Z
y AGðR;rÞ

Z Rþ1

r¼R�1

Z
b ASN�1

gðr; yþ bÞ dHN�1ðbÞ dr dHN�1ðyÞ

¼
Z
y AGðR;rÞ

Z Rþ1

r¼R�1

~ggðrÞ dHN�1ðbÞ dr ¼ jBðRÞj~gg;

where BðRÞ is again the generic ball with distance R from the origin, since ~gg is
radial. The very same calculation of course gives

Z
b ASN�1

PgðBbðRÞÞ db ¼ P~ggðBðRÞÞ:ð3:9Þ

Putting together the last two estimates we obtain that
Z
b ASN�1

PgðBbðRÞÞ � ðN � eÞjBbðRÞjg db ¼ P~ggðBðRÞÞ � ðN � eÞjBðRÞj~gg;

thus there exists some b a SN�1 such that

PgðBbðRÞÞ � ðN � eÞjBbðRÞjg bP~ggðBðRÞÞ � ðN � eÞjBðRÞj~gg:ð3:10Þ

We can now apply Lemma 3.4 to the density ~ff ¼ 1� ~gg, finding an arbitrarily
big R such that

P~ggðBðRÞÞb ðN � eÞjBðRÞj~gg;

hence by (3.10) the ball BbðRÞ satisfies (3.8). r

3.4. Step 4: Conclusion for a generic f

In this last step we need then to generalize Lemma 3.5 removing the radial as-
sumption on f . Keep in mind that the proof of Lemma 3.5 used this assumption
twice; once, to apply Lemma 3.4, which was valid only for radial f but which has
been generalized to non necessarily radial densities in Lemma 3.6. And once, in a
crucial way, to know that HN�1

f ðS�Þ ¼ HN�1
f ð~SS�Þ, that is, all the half-spheres

having the same distance from the origin have the same HN�1 measure. Since
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this last fact is clearly in general false for a non-radial density, we cannot simply
take the ball BbðRÞ provided by Lemma 3.6 and modify it: indeed, it may happen
that g is much bigger in the boundary of BbðRÞ than in the points nearby, and as
a consequence the mean densities of even small adjustments of BbðRÞ could be
strictly bigger than one. And in fact, in the argument of this last step we will not
use the claim of Lemma 3.6, but a modification of its proof. The goal of this last
step is to prove the following lemma, which as discussed above will conclude the
proof of Theorem 1.4.

Lemma 3.7. Under the assumptions of Theorem 1.4, there exists a set of volume
oN and mean density smaller than 1 arbitrarily far from the origin.

Proof. Let us present the proof for the planar case N ¼ 2; in fact, it is much
simpler to follow the construction, and to obtain the complete proof then just a
simple linear algebra argument is needed, but no new idea.

First of all, let us define ~ff and ~gg the radial averages of f and g, as in the proof
of Lemma 3.6; applying Lemma 3.4 to ~ff , then, we find an arbitrarily large R
such that

P~ggðBÞb ð2� eÞjBj~gg;ð3:11Þ

where for the sake of shortness we write B instead of BðRÞ, since R has been fixed
once for the whole proof. Now, for every b a S1, we call again Bb the ball of unit
radius and centered at the point of polar coordinates xC ðR; bÞ. Moreover, as
in Figure 2 we decompose qBb ¼ qþBb A q�Bb, where each point ðx; yÞ in qBb

belongs to qþBb (resp., q�Bb) if yb b (resp., ya b). Notice that since Rg 1
then for every ðx; yÞ a qBb one has yQb, thus the above definition makes sense.
Notice also that, arguing exactly as in (3.9), we get

P~ggðBÞ ¼
Z
b ASN�1

PgðBbÞ db ¼ 2

Z
b ASN�1

H1
g ðqþBbÞ dbð3:12Þ

¼ 2

Z
b ASN�1

H1
g ðq�BbÞ db:

O

b

g

qþBg

G�

q�Bb

Gþ

Figure 2. Situation in Step 4 and ball expansion.
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Now, since f a 1, we have that jBbja 1, hence we have again to enlarge the ball;
to do so, let us fix an angle b, and let g ¼ tðbÞ to be specified in a moment. Then,
let us call ~BBb the set whose boundary is the union of q�Bb, q

þBg, and two arcs of
circle G� and Gþ centered at the origin, with radii R� 1 and Rþ 1, and ranging
from the direction b to the direction g: see Figure 2 for a sketch of this set, where
the dashed curves are q ~BBbnqBb. The choice of g is simple: we let g ¼ tðbÞ be the
angle such that j ~BBbj ¼ oN . Notice that, since f Q1 because we are very far from
the origin, there exists a unique such tðbÞ, and tðbÞ � bf 1.

Let us now take an angle b, and a very small df 1: since jBbj ¼ jBbþdj, then of
course the volume of the ‘‘added part’’ Aþ

tðbÞ; tðbþdÞ between qþBtðbÞ and qþBtðbþdÞ
coincides with the volume of the ‘‘removed part’’ A�

b;bþd between q�Bb and
q�Bbþd. Since, up to take R big enough, we have 1� ea f a 1, then an immedi-
ate integration in polar coordinates ensures us that

2ð1� eÞdðR� 1Þa jA�
b;bþdja 2dðRþ 1Þ;

and in the very same way

2ð1� eÞðtðb þ dÞ � tðbÞÞðR� 1Þa jAþ
tðbÞ; tðbþdÞjð3:13Þ

a 2ðtðb þ dÞ � tðbÞÞðRþ 1Þ:

Therefore, we deduce

ð1� eÞR� 1

Rþ 1
a

tðb þ dÞ � tðbÞ
d

a
Rþ 1

ðR� 1Þð1� eÞ ;

hence we obtain that t : S1 ! S1 is a Lipschitz function, and t 0ðbÞ a ð1� 2e;
1þ 2eÞ, up to further increase R if necessary. We can then write, keeping in
mind (3.12)

Z 2p

b¼0

H1
g ðqþðBtðbÞÞ db ¼

Z 2p

y¼0

H1
g ðqþðByÞÞ
t 0ðt�1ðyÞÞ dy

b ð1� 2eÞ
Z 2p

y¼0

H1
g ðqþðByÞÞ dy ¼ 1� 2e

2
P~ggðBÞ:

As a consequence,

Z 2p

b¼0

H1
g ðqþðBtðbÞÞ þH1

g ðq�ðBbÞÞ dbb ð1� eÞP~ggðBÞ:

Hence we can calculate, with the aid of (3.11),

Z 2p

b¼0

jBbjg db ¼ jBj~gg a
P~ggðBÞ
2� e

a
1

ð2� eÞð1� eÞ

Z 2p

b¼0

H1
g ðqþðBtðbÞÞ þH1

g ðq�ðBbÞÞ db;
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and this implies the existence of some b a S1 such that

H1
g ðqþðBtðbÞÞ þH1

g ðq�ðBbÞÞb ð2� 3eÞjBbjg:ð3:14Þ

We finally claim that the set ~BBb has mean density less than 1: since j ~BBbj ¼
p ¼ o2 by construction, this will conclude the proof. To start, notice that the
ball Bb has of course Euclidean volume equal to p, so its volume with respect
to f is p� jBbjg; on the other hand, p is the volume with respect to f of the

enlarged set ~BBb, which coincides with the union of Bb with the ‘‘added part’’
Aþ

b; tðbÞ. This implies that jAþ
b; tðbÞj ¼ jBbjg, which with the same argument as in

(3.13) gives

tðbÞ � ba
jBbjg

2ð1� eÞðR� 1Þ :ð3:15Þ

Notice now that the perimeter of ~BBb is the sum of the lengths of the two half-
circles q�Bb and qþBtðbÞ, plus the two arcs G� and Gþ in Figure 2. And in turn,
the lenghts of those two arcs are smaller than the Euclidean lengths (since f a 1),
and the Euclidean lengths are ðR� 1ÞðtðbÞ � bÞ and ðRþ 1ÞðtðbÞ � bÞ respec-
tively. Summarizing, by (3.15) and (3.14) one has

Pð ~BByÞaH1
f ðq�BbÞ þH1

f ðqþBtðbÞÞ þ 2RðtðbÞ � bÞ

a 2p� ðH1
g ðq�BbÞ þH1

g ðqþBtðbÞÞÞ þ
RjBbjg

ð1� eÞðR� 1Þ

a 2p� ð2� 3eÞjBbjg þ
RjBbjg

ð1� eÞðR� 1Þ a 2p;

where the last inequality is true as soon as e and R have been chosen su‰ciently
small and su‰ciently big respectively.

We have finally concluded, because the last inequality is equivalent to the fact
that the mean density of j ~BBbj) is smaller than one. r
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