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Abstract. — The first nontrivial eigenfunction of the Neumann eigenvalue problem for the

p-Laplacian, suitably normalized, converges to a viscosity solution of an eigenvalue problem for
the l-Laplacian as p ! l. We show among other things that the limiting eigenvalue, at least

for convex sets, is in fact the first nonzero eigenvalue of the limiting problem. We then derive a
number of consequences, which are nonlinear analogues of well-known inequalities for the linear

(2-)Laplacian.
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1. Introduction and statements

In this paper we study the l-Laplacian eigenvalue problem under Neumann
boundary conditions

minfj‘uj �Lu;�Dlug ¼ 0 in fu > 0gBW

maxf�j‘uj �Lu;�Dlug ¼ 0 in fu < 0gBW

�Dlu ¼ �
Pn
i; j¼1

uxixj uxiuxj ¼ 0 in fu ¼ 0gBW

qu

qn
¼ 0 on qW:

8>>>>>>><
>>>>>>>:

ð1Þ

A solution u to this problem has to be understood in the viscosity sense, and the
Neumann eigenvalue L is some nonnegative real constant. For L ¼ 0 problem
(1) has constant solutions. We consider those as trivial. Our main result is

Theorem 1. Let W be a smooth bounded open convex set in Rn then a necessary
condition for the existence of nonconstant continuous solutions u to (1) is

LbLl :¼ 2

diamðWÞ :ð2Þ

Moreover problem (1) admits a Lipschitz solution when L ¼ 2
diamðWÞ .

The results of this paper were presented on Sept. 09, 2014 by the second author in a seminar with
the same title at Accademia Nazionale dei Lincei.



If W is merely bounded, connected and has Lipschitz boundary, then the
notion of diameter can be generalized as in Definition 1. In that case solutions
of (1) exist, see Section 2 or [16]. However, it is still unclear whether Ll is always
the first eigenvalue.

Theorem 1 has a number of interesting consequences, one of which we list
right here. By the isodiametric inequality we may conclude

Corollary 1. If W� denotes the ball of same volume as W, then the Szegö-
Weinberger inequality LlðWÞaLlðW�Þ holds.

For the case of the ordinary Laplacian ðp ¼ 2Þ this result was shown in [17]
and [19]. For the 1-Laplacian case and convex plane W we refer to [9]. While the
Faber-Krahn inequality lpðW�Þa lpðWÞ holds for any p, the Szegö-Weinberger
inequality has resisted attempts to be generalized to general p, and for general p
we are unaware of any results in this direction. The reason why we call problem
(1) l-Laplacian eigenvalue problem under Neumann boundary conditions is
that (1) can be derived as the limit p ! l of Neumann eigenvalue problems for
the p-Laplacian

�Dpu ¼ L p
p juj

p�2
u in W

j‘uj p�2 qu

qn
¼ 0 on qW;

8><
>:ð3Þ

whenever W is a bounded open Lipschitz set of Rn.
For the Dirichlet p-Laplacian eigenvalue problem on open bounded sets

WHRn

�Dpv ¼ l p
p jvj

p�2
v in W

v ¼ 0 on qW;

�
ð4Þ

the same limit was studied by Juutinen, Lindqvist and Manfredi in [12, 13]. They
formulate and fully investigate the so-called Dirichlet l-Laplacian eigenvalue
problem employing the notion of viscosity solutions. Recall for instance that,
when lp denotes for all pb 1 the first nontrivial eigenvalue of (4), the limit
yields

lim
p!l

lp ¼ ll :¼ 1

RðWÞ ;

where RðWÞ denotes inradius, i.e. the radius of the largest ball contained in W.
Moreover, they identify the limiting eigenvalue problem as

minfj‘vj � lv;�Dlvg ¼ 0 in W

v ¼ 0 on qW;

�
ð5Þ
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in the sense that nonnegative normalized eigenfunctions of (4) converge, up to a
subsequence, to a positive Lipschitz function vl which solves (5) in the viscosity
sense with lðWÞ ¼ llðWÞ. Finally they also show that the infinity Laplacian
eigenvalue problem (5) admits nontrivial solutions if and only if lb ll and
positive solutions if and only if l ¼ ll. Therefore they call ll the principal
eigenvalue of the l-Laplacian eigenvalue problem under Dirichlet boundary
condition.

In the Neumann case (see [16]) and for any bounded connected W with
Lipschitz boundary the limiting problem p ! l for (3) is given by (1).

In analogy to the Dirichlet case, the first nontrivial eigenvalues of (3) satisfy

lim
p!l

Lp ¼ Ll:ð6Þ

Our result proves that on the class of convex sets the first nontrivial Neumann
p-Laplacian eigenvalues converge to the first nontrivial Neumann l-Laplacian
eigenvalue, namely L ¼ Ll is in fact the first nontrivial eigenvalue in (1).

Therefore we can point out some consequences.

Corollary 2. For convex W the first positive Neumann eigenvalue LlðWÞ is
never larger than the first Dirichlet eigenvalue llðWÞ. Moreover llðWÞ ¼ LlðWÞ
if and only if W is a ball.

The inequality L2ðWÞ < l2ðWÞ follows from a combination of the Szegö-
Weinberger and the Faber-Krahn inequalities, see e.g. the books by Bandle
or Kesavan [3, 14]. The strict inequality LpðWÞ < lpðWÞ for general p and any
convex W has been recently proved in [2].

Corollary 3. For convex W any Neumann eigenfunction associated with
LlðWÞ cannot have a closed nodal domain inside W.

Since a Neumann eigenfunction u for the l-Laplacian is in general just
continuous, a closed nodal line inside W means that there exists an open subset
W 0HW such that u > 0 in W 0 (or < 0 in W 0) and u ¼ 0 on qW 0. Assuming that
such a nodal line exists, we can use standard arguments. We observe that u is
also a Dirichlet eigenfunction on W 0 with same eigenvalue. We get 2

diamðWÞ ¼
LlðWÞ ¼ llðW 0Þ ¼ 1

RðW 0Þ b
2

diamðWÞ and notice that the last inequality is strict for

all sets other than balls. This proves the Corollary.
Next we recall that the Payne-Weinberger inequality states that on any convex

subset WHRn the first nontrivial Neumann eigenvalue for the Laplacian is
bounded from below by the quantity p2

diamðWÞ2
. Recently such an estimate has

been generalized to the first nontrivial Neumann p-Laplacian eigenvalues in
[7, 8, 18] to get

Lp b ðp� 1Þ1=p
� 2p

p diamðWÞ sin p
p

�
:ð7Þ
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As p ! l the right hand side in this Payne-Weinberger inequality (7) converges

lim
p!l

ðp� 1Þ1=p
� 2p

p diamðWÞ sin p
p

�
¼ 2

diamðWÞ ;

and in view of (6) we may therefore conclude that

Corollary 4. The Payne-Weinberger inequality (7) for the first Neumann
eigenvalue of the p-Laplacian becomes an identity for p ¼ l.

As a byproduct of our proofs we obtain also the following result, which is
related to the hot-spot conjecture. The hot spot conjecture, see [4], says that a first
nontrivial Neumann eigenfunction for the linear Laplace operator on a convex
domain W should attain its maximum or minimum on the boundary qW and the
proof of Lemma 1 will show that ul has this property as well. But there may be
more than one eigenfunction associated to Ll.

Corollary 5. If W is convex and smooth, then any first nontrivial Neumann
eigenfunction, i.e. any viscosity solution to (1) for L ¼ Ll attains both its max-
imum and minimum only on the boundary qW. Moreover the extrema of u are
located at points that have maximal distance in W.

The proof of our main result, Theorem 1, will be a combination of Theorem 2
in Section 2 on the limiting problem as p ! l and Proposition 1 in Section 3.
Corollary 5 will be derived at the very end of this paper.

2. The limiting problem as p ! l

Definition 1. Let W be a bounded open connected domain in Rn. The intrinsic
diameter of W, denoted by diamðWÞ, is defined as

diamðWÞ :¼ sup
x;y AW

dWðx; yÞð8Þ

whith dW denoting geodetic distance in W.

Consider the eigenvalue problem

L p
p ¼ min

R
W j‘vj p dxR
W jvj p dx : v a W 1;pðWÞ;

Z
W

jvj p�2
v dx ¼ 0

� �
:ð9Þ

Let up be a minimizer of (9) such that kupkp ¼ 1, where k f k p
p ¼ 1

jWj

Z
W

j f j p dx.
For every p > 1 up satisfies the Euler equation

�divðj‘upj p�2‘upÞ ¼ L p
p jupj

p�2
up in W

j‘upj p�2 qup
qn

¼ 0 on qW;

(
ð10Þ

and
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Lemma 1. Let W be a connected bounded open set in Rn with Lipschitz boundary,
then

lim
p!þl

Lp ¼ Ll :¼ 2

diamðWÞ :ð11Þ

Here diamðWÞ denotes the intrinsic diameter as defined in (8).

Proof. Step 1 lim supp!l Lp a
2

diamðWÞ .

We start proving that Lla 2=diamðWÞ. Let x0 a W. We choose cp a R such
that wðxÞ ¼ dWðx; x0Þ � cp is a good test function in (9), that isZ

W

jwj p�2
wdx ¼ 0:

Using this test function in (9) we get (recalling that j‘dWðx; x0Þja 1 a.e. in W)

Lp a
1�

1
jWj

R
W jdWðx; x0Þ � cpj p

�1=p :ð12Þ

Now we observe that 0a cp a diamðWÞ and thus up to a subsequence cp ! c,
with 0a ca diamðWÞ, then we obtain

lim inf
p!l

� 1

jWj

Z
W

jdðx; x0Þ � cpj p
�1=p

¼ sup
x AW

jdWðx; x0Þ � cjb diamðWÞ=2

and then from (12) the Step 1 is proved.

Step 2 lim infp!l Lp b
2

diamðWÞ.

By definition we get � 1

jWj

Z
W

j‘upðxÞj p dx
�1=p

¼ Lp:

Let us fix m > n. For p > m by Hölder inequality we have� 1

jWj

Z
W

j‘upðxÞjmdx
�1=m

aLp:

We can deduce that fupgpbm is uniformly bounded in W 1;mðWÞ and then assume
that, up to a subsequence, up converges weakly in W 1;mðWÞ and in C0ðWÞ to a
function ul a W 1;mðWÞ. For q > m, by semicontinuity and Hölder inequality,
we get

k‘ulkq
kulkq

a lim inf
p!l

�
1
jWj

R
W j‘upðxÞjq dx

�1=q
�

1
jWj

R
W
jupðxÞjq dx

�1=q a lim inf
p!l

�
1
jWj

R
W j‘upðxÞj p dx

�1=p
�

1
jWj

R
W
jupðxÞjq dx

�1=q :
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Thus

k‘ulkq
kulkq

a
kulkl
kulkq

lim inf
p!l

Lp;ð13Þ

and letting q ! l we get

k‘ulkl
kulkl

a lim inf
p!l

Lp:ð14Þ

Now we observe that condition

Z
W

jupj p�2
up ¼ 0 leads to

sup ul ¼ �inf ul;ð15Þ

infact we have

0a j kðulÞþkp�1 � kðulÞ�kp�1jð16Þ
¼ j kðulÞþkp�1 � kðupÞþkp�1 þ kðupÞ�kp�1 � kðulÞ�kp�1j
a j kðulÞþkp�1 � kðupÞþkp�1j þ j kðulÞ�kp�1 � kðupÞ�kp�1j
a kðulÞþ � ðupÞþkp�1 þ kðulÞ� � ðupÞ�kp�1:

Letting p ! l we obtain (15). Using the following inequality (see for instance
[5], p. 269)

julðxÞ � ulðyÞja dWðx; yÞk‘ulkla diamðWÞk‘ulkl;

we can conclude the proof by (14) observing that

2kukl ¼ sup ul � inf ul a diamðWÞk‘ulkl: r

Remark 1. Our proof shows that ul increases with constant slope Llkulkl
along the geodesic between two points spanning diamðWÞ. In a rectangle this
would be a diagonal.

Before proving Theorem 2 we recall the definition of viscosity super (sub)
solution to

Fðu;‘u;‘2uÞ ¼ minfj‘uj �Ljuj;�Dlug ¼ 0 in fu > 0gBW

Gðu;‘u;‘2uÞ ¼ maxfLjuj � j‘uj;�Dlug ¼ 0 in fu < 0gBW

Hð‘2uÞ ¼ �Dlu ¼ 0; in fu ¼ 0gBW

qu

qn
¼ 0 on qW:

8>>>>><
>>>>>:

ð17Þ
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Definition 2. An upper semicontinuous function u is a viscosity subsolution to
(17) if whenever x0 a W and f a C2ðWÞ are such that

uðx0Þ ¼ fðx0Þ; and uðxÞ < fðxÞ if xAx0; then

F ðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞa 0 if uðx0Þ > 0ð18Þ
Gðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞa 0 if uðx0Þ < 0ð19Þ

Hð‘2fðx0ÞÞa 0 if uðx0Þ ¼ 0;ð20Þ

while if x0 a qW and f a C2ðWÞ are such that

uðx0Þ ¼ fðx0Þ; and uðxÞ < fðxÞ if xAx0; then

min Fðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
a 0 if uðx0Þ > 0ð21Þ

min Gðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
a 0 if uðx0Þ < 0ð22Þ

min Hð‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
a 0 if uðx0Þ ¼ 0:ð23Þ

Definition 3. A lower semicontinuous function u is a viscosity supersolution
to (17) if whenever x0 a W and f a C2ðWÞ are such that

uðx0Þ ¼ fðx0Þ; and uðxÞ > fðxÞ if xAx0; then

F ðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞb 0 if uðx0Þ > 0ð24Þ
Gðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞb 0 if uðx0Þ < 0ð25Þ

Hð‘2fðx0ÞÞb 0 if uðx0Þ ¼ 0;ð26Þ

while if x0 a qW and f a C2ðWÞ are such that

uðx0Þ ¼ fðx0Þ; and uðxÞ > fðxÞ if xAx0;

then

max F ðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
b 0 if uðx0Þ > 0ð27Þ

max Gðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
b 0 if uðx0Þ < 0ð28Þ

max Hð‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
b 0 if uðx0Þ ¼ 0:ð29Þ

Definition 4. A continuous function u is a solution to (17) i¤ it is both a
supersolution and a subsolution to (17).
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Remark 2. It is instructive to use the definition for checking that the one-
dimensional function uðxÞ ¼ x1 on the square W ¼ ð�1; 1Þ � ð�1; 1Þ is a viscosity
solution of (17). In fact, u a C2ðWÞ, and �Dlu ¼ 0 in W.

So the first PDE in (17) is satisfied if also 1 ¼ j‘ujbLu on fu > 0g, and that
implies La 1.

The Neumann boundary condition is satisfied in classical sense on horizontal
parts of qW. However, for Neumann condition to hold in the viscosity sense on
the right part, we must verify

minfminfj‘fj �Lf;�Dlfg; qf=qngðx0Þa 0

for any C2 test function f touching u in x0 a qW from above, and

maxfminfj‘cj �Lc;�Dlcg; qc=qngðx0Þb 0

for any smooth test function c touching u from below.
Recall j‘uj ¼ qu=qn ¼ 1 everywhere. Therefore only the very first constraint is

active on the boundary and implies

Lb 1:

This shows that uðxÞ ¼ x1 is a viscosity solution to (17) with eigenvalue L ¼ 1,
but

L ¼ 1 >
1ffiffiffi
2

p ¼ 2

diamðWÞ ¼ Ll:

In what follows we will use the notation

Fpðu;‘u;‘2uÞ ¼ �ðp� 2Þj‘uj p�4Dlu� j‘uj p�2Du�L p
p juj

p�2
u

with

Dlu ¼
Xn

i; j¼1

uxiuxixj uxj :

Lemma 2. Let u a W 1;pðWÞ be a weak solution to

�divðj‘uj p�2‘uÞ ¼ L p
p juj

p�2
u in W

j‘uj p�2 qu
qn
¼ 0 on qW;

(
ð30Þ

then u is a viscosity solution to

Fpðu;‘u;‘2uÞ ¼ 0 in W

j‘uj p�2 qu
qn
¼ 0 on qW:

(
ð31Þ
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Proof. That u is a viscosity solution to the di¤erential equation Fp ¼ 0 in W
was shown in [13], Lemma 1.8. It remains to show that the Neumann boundary
condition is satisfied in the viscosity sense as defined for instance in [10]. Let
x0 a qW, f a C2ðWÞ such that uðx0Þ ¼ fðx0Þ and fðxÞ < uðxÞ when xAx0. As-
sume by contradiction that

max j‘fðx0Þj p�2 qf

qn
ðx0Þ;Fpðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ

� �
< 0:ð32Þ

Then there exists a ball Brðx0Þ, centered at x0 with radius r > 0, such that (32)
holds true Ex a WBBðx0; rÞ. Denote by 0 < m ¼ inf

WBBrðx0ÞðuðxÞ � fðxÞÞ and

by cðxÞ ¼ fðxÞ þm

2
. Using ðc� uÞþ as test function in the weak formulation we

have both Z
c>u

j‘cj p�2‘c‘ðc� uÞ dx < L p
p

Z
c>u

jfj p�2fðc� uÞ dx

and Z
c>u

j‘uj p�2‘u‘ðc� uÞ dx ¼ L p
p

Z
c>u

juj p�2
uðc� uÞ dx:

Subtraction yields the contradiction

C

Z
c>u

j‘ðc� uÞj p dxa
Z
c>u

ðj‘cj p�2‘c� j‘uj p�2‘u;‘ðc� uÞÞ dxð33Þ

< L p
p

Z
c>u

ðjfj p�2
f� juj p�2

uÞðc� uÞ dx < 0: r

Theorem 2. Let W be a bounded open connected set of Rn. If ul and Ll are
defined as above then ul satisfies (17) in the viscosity sense with L ¼ Ll.

Proof. First we observe that in fact there exists a subsequence upi uniformly
converging to ul in W. Now let us prove that ul is a viscosity supersolution
to (17) in W. Let x0 a W and let f a C2ðWÞ be such that fðx0Þ ¼ ulðx0Þ and
fðxÞ < ulðxÞ for x a Wnfx0g. Since upi ! ul uniformly in Brðx0Þ one can prove
that upi � f has a local minimum in xi, with limi xi ¼ x0. Recalling that upi is a
viscosity solution to (31), choosing cðxÞ ¼ fðxÞ � fðxiÞ þ upiðxiÞ as test function
we obtain

�½ðpi � 2Þj‘fðxiÞj pi�4DlfðxiÞ þ j‘fðxiÞj pi�2DfðxiÞ�ð34Þ
bL pi

pi
jupiðxiÞj

pi�2
upiðxiÞ:

Three cases can occur.
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• ulðx0Þ > 0: In this case (34) implies that j‘fðxiÞj > 0, hence dividing (34) by
j‘fðxiÞj pi�4ðpi � 2Þ we have

� j‘fðxiÞj2DfðxiÞ
pi � 2

� DlfðxiÞb
�LpiupiðxiÞ

j‘fðxiÞj

� pi�4 L4
pi
u3piðxiÞ

pi � 2
:ð35Þ

Letting pi go to þl we have
Llfðx0Þ
j‘fðx0Þj

a 1 and �Dlfðx0Þb 0 hence

minfj‘fðx0Þj �Lljfðx0Þj;�Dlfðx0Þgb 0:

• ulðx0Þ < 0: Also in this case (34) implies that j‘fðxiÞj > 0, and dividing by

j‘fðxiÞj pi�4ðpi � 2Þ we have again (35). If
Llfðx0Þ
j‘fðx0Þj

< 1, letting pi go to l,

we have �Dlfðx0Þb 0, otherwise
Llfðx0Þ
j‘fðx0Þj

b 1. In both cases we have

maxfLljfðx0Þj � j‘fðx0Þj;�Dlfðx0Þgb 0:

• ulðx0Þ ¼ 0: If j‘fðx0Þj ¼ 0 then, by definition, we have �Dlfðx0Þ ¼ 0. If

j‘fðx0Þj > 0 then limi

Lpi jupiðxiÞj
j‘fðxiÞj

¼ 0 hence (35) implies

�Dlfðx0Þb 0:

It remains to prove that ul satisfies the boundary conditions in the viscosity
sense.

Assume that x0 a qW and let f a C2ðWÞ be such that fðx0Þ ¼ ulðx0Þ and
fðxÞ < ulðxÞ for x a Wnfx0g. Using again the uniform convergence of upi to ul
we obtain that upi � f has a minimum point xi a W, with limi xi ¼ x0.

If xi a W for infinitely many i arguing as before we get

minfj‘fðx0Þj �Lljfðx0Þj;�Dlfðx0Þgb 0 if uðx0Þ > 0

maxfLljfðx0Þj � j‘fðx0Þj;�Dlfðx0Þgb 0 if uðx0Þ < 0

�Dlfðx0Þb 0; if uðx0Þ ¼ 0:

If xi a qW, since upi is viscosity solution to (31), for infinitely many i we have

j‘fðxiÞj pi�2 qf

qn
ðxiÞb 0

which concludes the proof.
Arguing in the same way we can prove that ul is a viscosity subsolution to

(17) in W. r
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3. Ll is the first non trivial eigenvalue

Proposition 1. Let W be a smooth bounded open convex set in Rn. If for some
L > 0 problem (17) admits a nontrivial eigenfunction u, then LbLl.

The main idea is to use a test function involving the distance from a suitable
point x0 a W. This function is smooth everywhere except x0. For the nonconvex
case one may want to use intrinsic distance instead, which however is not of class
C2, as pointed out in [1].

Lemma 3. Let W, L and u be as in the statement of Proposition 1. Let W1 be an
open connected subset of W such that ubm in W1 for some positive constant m.
Then u > m in W1.

Proof. Let x0 be any point in W1. Our aim is to show that uðx0Þ > m.
Obviously, for any given R > 0 such that BRðx0ÞHW1 we have u2m in BRðx0Þ
otherwise we have in BRðx0Þ that j‘uj �Ljuj < 0 (in the viscosity sense) which
violates the first equation in (17). This means that for any R > 0 such that
BRðx0ÞHW1 it is possible to find x1 a BR=4ðx0Þ such that uðx1Þ > m. The conti-
nuity of u implies that for some e > 0 small enough, there exists ra distðx0; x1Þ
such that u > mþ e on qBrðx1Þ. Therefore the function

vðxÞ ¼ mþ e
R
2 � r

�R

2
� jx� x1j

�
in BR=2ðx1ÞnBrðx1Þ

is such that

�Dlv ¼ 0 in BR=2ðx1ÞnBrðx1Þ:

Since

�Dlub 0 in BR=2ðx1ÞnBrðx1Þ

in the viscosity sense, and

ub v on qBR=2ðx1ÞA qBrðx1Þ

the comparison principle, see Theorem 2.1 in [11], implies that ub v > m in
BR=2ðx1ÞnBrðx1Þ and therefore uðx0Þ > m. r

Lemma 4. Let W, L and u be as in the statement of Proposition 1. Then u cer-
tainly changes sign.

Proof. Since u is a nontrivial solution to (17), we can always assume, possibly
changing the sign of the eigenfunction u, that it is positive somewhere. We shall
prove that the minimum of u in W is negative. We argue by contradiction and
we assume that the minimum m is nonnegative. In view of Lemma 3 a positive
minimum can not be attained in W. On the other hand zero as well can not
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be attained as minimum in W. If so, since u2 0, there would exist a point
x0 a W and a ball BRðx0ÞHW such that uðx0Þ ¼ 0 and maxBR=4ðx0Þ u > 0. Let
x1 a BR=4ðx0Þ be such that uðx1Þ > 0. The continuity of u implies that there exists
ra distðx0; x1Þ such that u > uðx1Þ=2 on qBrðx1Þ. Therefore the function

vðxÞ ¼ uðx1Þ
R� 2r

�R

2
� jx� x1j

�
in BR=2ðx1ÞnBrðx1Þ

is such that

�Dlv ¼ 0 in BR=2ðx1ÞnBrðx1Þ:

Since

�Dlub 0 in BR=2ðx1ÞnBrðx1Þ

in the viscosity sense, and

ub v on qBR=2ðx1ÞA qBrðx1Þ

the comparison principle, see Theorem 2.1 in [11], implies that ub v > 0 in
BR=2ðx1ÞnBrðx1Þ and therefore uðx0Þ > 0.

Therefore the only possibility is that there exists x0 a qW nonnegative mini-
mum point of u. We shall prove that qu

qn
ðx0Þ < 0 in the viscosity sense in con-

tradiction to (24)–(26). Indeed there certainly exist x a W and r > 0 such that
the ball BrðxÞHW is inner tangential to qW at x0 and qBrðxÞB qW ¼ fx0g. Then
the function

vðxÞ ¼ uðxÞ �
� uðxÞ � uðx0Þ

r

�
ðjx� xjÞ in BrðxÞnfxg

satisfies

�Dlv ¼ 0 in BrðxÞnfxg

since

�Dlub 0 in BrðxÞnfxg

in the viscosity sense, and

ub v on qBrðxÞA fxg:

Using again the comparison principle, see Theorem 2.1 in [11], we get ub v in W.
Therefore the function

f ¼ uðxÞ � ðuðxÞ � uðx0ÞÞ
� jx� xj

r

�1
2
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is such that f a C2ðW� fxgÞ;

f < va u in BrðxÞ � fxg;
fðxÞ < uðx0Þa uðxÞ in WnBrðxÞ;

and

uðx0Þ ¼ fðx0Þ:

However

max F ðfðx0Þ;‘fðx0Þ;‘2fðx0ÞÞ;
qf

qn
ðx0Þ

� �
< 0ð36Þ

contradicts (24)–(26). r

Proof of Proposition 1. Let u be a non trivial eigenfunction of (17) and let
us denote by Wþ ¼ fx a W : uðxÞ > 0g and by W� ¼ fx a W : uðxÞ < 0g. Lemma
4 ensures that they are both nonempty sets. Let us normalize the eigenfunction u
such that

max
W

u ¼ 1

L
:

Then Lua 1 which implies that

minfj‘uj � 1;�Dluga 0 in Wþð37Þ

in the viscosity sense.
For every x0 a WnWþ and for every � > 0 and g > 0 the function g�; gðxÞ ¼

ð1þ �Þjx� x0j � gjx� x0j2 belongs to C2ðWnBrðx0ÞÞ for every r > 0. If g is small
enough compared to �, it verifies

minfj‘g�; gj � 1;�Dlg�; ggb 0 in Wþ:ð38Þ

Therefore (a comparison) Theorem 2.1 in [11] ensures that

m ¼ inf
x AWþ

ðg�; gðxÞ � uðxÞÞ ¼ inf
x A qWþ

ðg�; gðxÞ � uðxÞÞ:ð39Þ

Now qWþ contains certainly points in W and possibly on qW. To rule out that the
infimum in the right hand side of (39) is attained on qW, assume that there exists
x a qWB qWþ such that g�; gðxÞ � uðxÞ ¼ m and choose g�; g �m as test function
in (21). By construction for every x a qWB qWþ and g < �

2 diamðWÞ it results that

j‘g�; gjðxÞ ¼ 1þ �� 2gjx� x0j > 1;

qg�; g

qn
ðxÞ ¼ ðð1þ �Þ � 2gjx� x0jÞ

� x� x0

jx� x0j
; nðxÞ

�
> 0;
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and

�Dlg�; g ¼ 2gj‘g�; gj2 > 0

which give a contradiction to (21). Together with (39) this implies that

m ¼ inf
x AWþ

ðg�; gðxÞ � uðxÞÞ ¼ inf
x A qWþBW

ðg�; gðxÞ � uðxÞÞb 0:

Letting � and g go to zero we have that

jx� x0jb uðxÞ Ex a fy : uðyÞb 0g; Ex0 a fy : uðyÞa 0gð40Þ

hence

dþ ¼ sup
x AWþ

distðx; fu ¼ 0gÞb 1

L
:

Arguing in the same way we obtain

d� ¼ sup
x AW�

distðx; fu ¼ 0gÞb 1

L

hence

diamðWÞb dþ þ d�
b

2

L
;

which concludes the proof of our proposition. r

Corollary 5 follows now easily. Returning to (40) pick x ¼ x as the point
in which u attains its maximum and correspondingly x ¼ x as the point in
which u attains its minimum. Then dðx;W�Þb 1

L
and dðx;WþÞb 1

L
, so that

diamðWÞb jx� xjb 2
L
. Since L ¼ Ll, equality holds and the max and min

of u are attained in boundary points which have farthest distance from each
other.
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the p-Laplacian, (manuscript) arXiv:1407.7422.

[3] C. Bandle, Isoperimetric inequalities and applications, Monographs and Studies
in Mathematics, 7. Pitman (Advanced Publishing Program), Boston, Mass.-London,
1980.

132 l. esposito, b. kawohl, c. nitsch and c. trombetti



[4] K. Burdzy, Neumann eigenfunctions and Brownian couplings, Potential theory in
Matsue, Adv. Stud. Pure Math. 44 Math. Soc. Japan, Tokyo, (2006), 11–23.

[5] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Di¤erential Equations,
Springer Universitext 223 Heidelberg (2010).

[6] M. G. Crandall - H. Ishii - P. L. Lions, User’s guide to viscosity solutions of second

order partial di¤erential equations, Bullettin of the AMS. 27 (1992), 1–67.

[7] L. Esposito - C. Nitsch - C. Trombetti, Best constants in Poincaré inequalities
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