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Abstract. — We study a class of elliptic operators L that degenerate at the boundary of a

bounded open set OHRd and possess a symmetrizing invariant measure m. Such operators are
associated with di¤usion processes in O which are invariant for time reversal. After showing that

the corresponding elliptic equation lj� Lj ¼ f has a unique weak solution for any l > 0 and
f a L2ðO; mÞ, we obtain new results for the characterization of the domain of L.
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1. Introduction and setting of the problem

Let O be a bounded open subset of Rd with closure O and boundary qO of class
C1. We are concerned with the following elliptic operator in O

Lj ¼ 1

2
Tr½ss�D2j� þ 3b;Dj4; j a C2ðOÞ;ð1:1Þ

where b : O ! Rd is of class C1, s : O ! LðRdÞ is continuous on O, of class
C1ðOÞ and such that, setting a ¼ ss�,

det aðxÞ > 0; Ex a O:ð1:2Þ

It is well known that L is the Kolmogorov operator associated with the di¤usion
process described by the stochastic di¤erential equation

dXðtÞ ¼ bðXðtÞÞ dtþ sðX ðtÞÞ dWðtÞ;
Xð0Þ ¼ x a O:

�
ð1:3Þ

A unique solution of (1.3) exists in a suitable random interval ½0; txÞ, where tx is
the first time when X ðtÞ reaches qO.



The formal adjoint of L reads as follows

L�r ¼ 1

2
div½aDrþ ðg� 2bÞr�;ð1:4Þ

where g is the vector field

gj ¼
Xd
i¼1

Diaij; j ¼ 1; . . . ; d:ð1:5Þ

The role of the above operator in the characterization of the invariant measures
for X , that are absolutely continuous with respect to the Lebesgue measure, is
well known.

Let X ðtÞ; t a ½0; 1�; be a solution of the equation

dXðtÞ ¼ bðXðtÞÞ dtþ sðX ðtÞÞ dWðtÞ;

with coe‰cients defined on Rd . We call X reversible if Y ðtÞ :¼ Xð1� tÞ is a solu-
tion of the same stochastic di¤erential equation (with exactly the same coe‰-
cients b and s as X but a di¤erent Brownian motion). From a general result by
Haussmann and Pardoux [13] it follows that Y is a di¤usion process that satisfies
the equation

dYðtÞ ¼ bðt;Y ðtÞÞ dtþ sðYðtÞÞ dW ðtÞ

for some Brownian motion W , where we have set, for ðt; xÞ a ½0; 1� � Rd ,

biðt; xÞ ¼ �biðxÞ þ ½pð1� t; xÞ��1
Xd
j¼1

Dj½aijðxÞpð1� t; xÞ�ð1:6Þ

with pðt; xÞ dx the law of X ðtÞ. Now, suppose that there exists r a C1ðRdÞB
L1ðRdÞ such that

aDrþ ðg� 2bÞr ¼ 0:ð1:7Þ

Then L�r ¼ 0, and mðdxÞ ¼ rðxÞ dx is an invariant measure for X . So, pðt; xÞ ¼
rðxÞ is independent of t, and (1.6) reduces to

biðt; xÞ ¼ �biðxÞ þ rðxÞ�1
Xd
j¼1

Dj½aijðxÞrðxÞ�

¼ �biðxÞ þ giðxÞ þ rðxÞ�1ðaðxÞDrðxÞÞi ¼ biðxÞ:

Therefore, X is reversible. Conversely, one can show that if X is reversible and
mðdxÞ ¼ rðxÞ dx is an invariant measure for X , then condition (1.7) is satisfied.
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We are thus led to regard (1.7), in some sense, as a quantitative characterization
of reversibility.

By analogy, we say that the operator L in (1.1), with coe‰cients defined in
O, is of gradient form if there exists r a C1ðOÞBL1ðOÞ such that (1.7) holds in
O. Such a terminology is justified by the observation that, in this case, L can be
recast (at least formally) as

Lj ¼ 1

2r
divðraDjÞ:ð1:8Þ

Consequently, L is symmetric on L2ðO; mÞ, where m is the finite measure

mðdxÞ ¼ rðxÞ dx:ð1:9Þ

We shall proceed as follows. In Section 2, we will show that, under general
hypotheses, for any l > 0 and f a L2ðO; mÞ the equation

lj� Lj ¼ fð1:10Þ

has a unique distributional solution j a W 1;2ðO; mÞ. This simple result, obtained
by a standard variational method, will allow us to define rigorously the varia-
tional operator L in L2ðO; mÞ with domain DðLÞ.

Then, as a first step in the direction of studying regularity properties of the
operator ðL;DðLÞÞ, we will focus on a special class of gradient operators, namely
operators of the form

Lj ¼ 1

2
aDjþ 3b;Dj4:ð1:11Þ

under the following assumptions.

Hypothesis 1.1. (i) O is C1-regular, 0a a a C1ðOÞ, and

aðxÞ ¼ 0 , x a qO:

(ii) b a C1ðOÞ and

bðxÞA 0 Ex a qO:

(iii) There exists r a C1ðOÞ such that r a L1ðOÞ and

aðxÞD log rðxÞ þDaðxÞ ¼ 2bðxÞ Ex a O:ð1:12Þ

Observe that, in view of condition (i) above, L degenerates on the whole bound-
ary of O. On the other hand, condition (ii) ensures that b is nondegenerate on qO.
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Moreover, condition (1.12) is nothing but (1.7), restricted to O, for the operator L
in (1.11).

In section 3, we will show that

DðLÞ ¼ fj a W
2;2
loc ðO; mÞ : Dj a L2ðO; m;RdÞ; aDj a L2ðO; mÞgð1:13Þ

under the further assumption

Hypothesis 1.2. Besides the conditions in Hypothesis 1.1, assume that O is
Cl-regular, and b, a, and r belong to ClðOÞ.

The characterization of the domain, even for more general operators but only
in L2 with respect to the Lebesgue measure, is proved by di¤erent methods in
[2]. The Lp case, 1 < pal, with Dirichlet boundary condition and first order
global degeneracy of the di¤usion coe‰cients at the boundary is treated in [10].
It is worth pointing out that, in the literature on degenerate parabolic equations
(see, e.g., [1], [6], [7], and [8]), one can generally guarantee that

a1=2Dj a L2ðO;RdÞ;

though exceptions to such a tradition are known in low space dimension (see,
e.g., [9] and [5]). Here, however, we obtain stronger integrability for the gradient,
namely Z

O

jDjj2 dmaCðlÞ
Z
O

j f j2 dm;ð1:14Þ

(where CðlÞ is independent of j) in a multidimensional setting. This can be
explained recalling the nondegenerate contribution of b at the boundary. Indeed,
the above statement (1.13) turns out to be a maximal regularity result for L.
Here, the key technical tool will be a regularity result from [14] ensuring that
j a ClðOÞ for f a ClðOÞ. It is for this point that we need Hypothesis 1.2 in its
full strength.

Finally, in Section 4, under weaker regularity hypotheses on the coe‰cients,
we shall consider operators with the even more restrictive structure

Lj ¼ 1

2
aDjþ k

2
3Da;Dj4; kb 1:ð1:15Þ

In this case, we introduce suitable approximating operators Le, that are still
reversible and satisfy the main estimates leading to the domain characterization,
and then pass to the limit as e ! 0 in order to recover the characterization of the
domain of L.

An important feature of our analysis is that it just requires a to be regular in
O and positive in O, so that a in general (for example in the case of first-order
degeneracy) it does not possess any smooth extension outside O which is still
nonnegative.
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2. Weak solutions

In this section, we start our analysis of operator (1.8) under Hypothesis 1.1. Let
us denote by BðOÞ the Borel s-algebra in O, and by m the finite measure on
ðO;BðOÞÞ defined by (1.9), where r is given by (1.12).

Now, let us define the Sobolev space W 1;2
a ðO; mÞ as follows

W 1;2
a ðO; mÞ ¼ fu a W

1;2
loc ðOÞ : kukW 1; 2

a ðO;mÞ < lg;ð2:1Þ

where k � k
W

1; 2
a ðO;mÞ is the norm which is associated with the inner product

3j;c4
W 1; 2

a ðO;mÞ :¼ 3j;c4L2ðO;mÞ þ
Z
O

3aDj;Dc4 dm:

We now proceed to showing that the space W 1;2
a ðO; mÞ is a Hilbert space, the only

point which needs to be checked being completeness. Let ðujÞ be a Cauchy se-
quence in W 1;2

a ðO; mÞ. Then, ðujÞ is convergent in L2ðO; mÞ and W
1;2
loc ðOÞ, because

a is nondegenerate in O. Moreover, there is a subsequence such that ujk ! u and
Dujk ! Du a.e. in O. In order to verify that ujk ! u in W 1;2

a ðO; mÞ, let us fix e,
and let n a N be such that

kujk � ujnkW 1; 2
a ðO;mÞ < e Ek; n > n:

Letting n ! l, by Fatou’s Lemma we get

kujk � uk
W 1; 2

a ðO;mÞ < e Ek > n:

Since e is arbitrary, the convergence of ujk to u in W 1;2
a ðO; mÞ follows, together

with the convergence of the whole sequence.
Next, consider the Dirichlet form

Aðj;cÞ :¼ 1

2

Z
O

3aDj;Dc4 dm;ð2:2Þ

which is obviously symmetric, coercive and continuous on W 1;2
a ðO; mÞ. Given

l > 0 and f a L2ðO; mÞ, by the Lax–Milgram theorem there is a unique
j a W 1;2

a ðO; mÞ such that

l

Z
O

jc dmþ 1

2

Z
O

3aDj;Dc4 dm ¼
Z
O

fc dm; Ec a W 1;2
a ðO; mÞ:ð2:3Þ

Let us recall the definition of the variational operator, Lv, associated with (2.2).
We say that j a W 1;2

a ðO; mÞ belongs to the the domain, DðLvÞ, of Lv if there exists
a constant KðjÞb 0 such thatZ

O

3aDj;Dc4 dm

����
����aKðjÞkckL2ðO;mÞ; Ec a W 1;2

a ðO; mÞ:ð2:4Þ
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In this case, by the Riesz theorem, there is a unique element in L2ðO; mÞ, that will
be denoted by Lvj, such that

� 1

2

Z
O

3aDj;Dc4 dm ¼
Z
O

Lvjc dm; Ec a W 1;2
a ðO; mÞ:ð2:5Þ

Equivalently, by (2.3) and (2.5), for any l > 0 and f a L2ðO; mÞ there exists a
unique j a DðLvÞ such that

lj� Lvj ¼ f :

3. A characterization of DðLvÞ

In this section, we characterize the domain of the variational operator Lv in the
‘‘diagonal’’ case (1.11). Our first step is the following identity satisfied by the
operator L introduced in (1.1) under Hypotesis 1.1.

Proposition 3.1. Under Hypotesis 1.1, for any j;c a C2ðOÞ we have
Z
O

LjcmðdxÞ ¼ � 1

2

Z
O

a3Dj;Dc4mðdxÞ:ð3:1Þ

Proof. Integrating by parts we find, recalling that a vanishes on qW,

1

2

Z
O

aDjc dm ¼ � 1

2

Z
O

a3Dj;Dc4 dm� 1

2

Z
O

3Dj;Daþ aD log r4c dm:

Since Daþ aD log r ¼ 2b, the conclusion follows. r

Let us now prove some classical estimates.

Lemma 3.2. Let l > 0, j a C2ðOÞ and set

f ¼ lj� Lj:ð3:2Þ

Then we have Z
O

jjj2 dma 1

l2

Z
O

j f j2 dmð3:3Þ

and

Z
O

ajDjj2 dma 1

2l

Z
O

j f j2 dm:ð3:4Þ
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Proof. Multiplying both sides of (3.2) by j and taking into account (3.1)
yields

l

Z
O

jjj2 dmþ 1

2

Z
O

ajDjj2 dm ¼
Z
O

j f dm:

The conclusion follows via standard arguments that use the Cauchy-Schwarz
inequality. r

Lemma 3.3. Let j a C2ðOÞ. Then the following identity holdsZ
O

Lj3b;Dj4 dm ¼ 1

4

Z
O

a3ðdiv bI � 2DbÞDj;Dj4 dmð3:5Þ

þ 1

2

Z
O

jDjj2jbj2 dm:

Proof. By (3.1) we haveZ
O

Lj3b;Dj4 dm ¼ � 1

2

Z
O

a3Dj;D3b;Dj44 dmð3:6Þ

¼ � 1

2

Z
O

a3DbDj;Dj4 dm� 1

2

Z
O

a3D2jDj; b4 dm:

Now, let us compute the rightmost term above as follows:

Z
O

a3D2jDj; b4 dm ¼
Xd
h;k¼1

Z
O

DhDkjDkjabhr dx

¼ 1

2

Xd
h;k¼1

Z
O

Dh½ðDkjÞ2�abhr dx

¼ � 1

2

Xd
h;k¼1

Z
O

ðDkjÞ2DhðabhrÞ dx

¼ � 1

2

Z
O

jDjj2 divðarbÞ dx

¼ � 1

2

Z
O

jDjj2ðar div bþ 3b;DðarÞ4Þ dx

¼ � 1

2

Z
O

jDjj2ða div bþ 3b; aD log rþDa4Þ dm

¼ � 1

2

Z
O

jDjj2ða div bþ 2jbj2Þ dm:
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(in the integration by parts we have used the fact that ra ¼ 0 on qO). Therefore,
substituting in (3.6) yieldsZ

O

Lj3b;Dj4 dm ¼ � 1

2

Z
O

a3DbDj;Dj4 dmþ 1

4

Z
O

jDjj2ða div bþ 2jbj2Þ dm;

which implies (3.5). r

Lemma 3.4. Assume Hypothesis 1.1, let l > 0 and j a C2ðOÞ, and set f ¼
lj� Lj. Then, for any e > 0 there is CðeÞ > 0 such thatZ

O

jDjj2jbj2 dma e

Z
O

jDjj2 dmþ CðeÞ
Z
O

j f j2 dm:ð3:7Þ

Proof. Multiplying both sides of (3.2) by 3b;Dj4 and integrating over O yields

l

Z
O

j3b;Dj4 dm�
Z
O

Lj3b;Dj4 dm ¼
Z
O

f 3b;Dj4 dm:

Taking into account (3.5), we obtain

1

2

Z
O

jDjj2jbj2 dm ¼ l

Z
O

j3b;Dj4 dm

� 1

4

Z
O

a3ðdiv bI � 2DbÞDj;Dj4 dm�
Z
O

f 3b;Dj4 dm:

It follows that

1

2

Z
O

jDjj2jbj2 dma lkbkl
Z
O

jjj jDjj dm

þ 1

4
ðkdiv bkl þ kDbklÞ

Z
O

ajDjj2 dmþ kbkl
Z
O

j f j jDjj dm;

which in turn yieldsZ
O

jDjj2jbj2 dma e

2

Z
O

jDjj2 dmþ 8l2

e
kbk2l

Z
O

jjj2 dm

þ 1

2
ðkdiv bkl þ kDbklÞ

Z
O

ajDjj2 dm

þ e

2

Z
O

jDjj2 dmþ 4

e
kbk2l

Z
O

j f j2 dm:

So,Z
O

jDjj2jbj2 dma e

Z
O

jDjj2 dmþ 8l2

e
kbk2l

Z
O

jjj2 dm

þ 1

2
ðkdiv bkl þ kDbklÞ

Z
O

ajDjj2 dmþ 4

e
kbk2l

Z
O

j f j2 dm:
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Now, using (3.3) and (3.4), we haveZ
O

jDjj2jbj2 dma e

Z
O

jDjj2 dmþ 8

e
kbk2l

Z
O

j f j2 dm

þ 1

l
ðkdiv bkl þ kDbklÞ

Z
O

j f j2 dmþ 4

e
kbk2l

Z
O

j f j2 dm:

The conclusion follows. r

Remark 3.5. As is clear from the above proof, the constant CðeÞ in estimate
(3.7) is independent of a. On the other hand, it depends on l, kbkl, and kDbkl,
and is bounded if kbkl and kDbkl stay bounded.

The condition bA 0 on qO, which has not been used so far, will hereafter
become essential for it implies, for some real number d > 0 and compact set
KHO,

aðxÞb d Ex a K and jbðxÞjb d Ex a OnK:ð3:8Þ

Indeed, fix 0 < d 0 < minqOjbj and let KHO be a compact such that

jbðxÞj > d 0 Ex a OnK:

If minK ab d 0, then (3.8) follows choosing d ¼ d 0. Otherwise, since minK a is
positive, it su‰ces to take d equal to such a minimum.

Proposition 3.6. Assume Hypothesis 1.1 and let d be a positive number satisfy-
ing (3.8). Moreover, let l > 0 and j a C2ðOÞ, and set f ¼ lj� Lj. Then there is a
constant C1 ¼ C1ðd; l; kbkl; kDbklÞ > 0 such thatZ

O

jDjj2 dmaC1

Z
O

j f j2 dm:ð3:9Þ

Proof. Let KHO be the compact set associated with d in (3.8). Then, by (3.4)
and (3.7) we deduce that for any e > 0 there exists CðeÞ > 0 such that

Z
O

jDjj2 dma 1

d

Z
OnK

jbj jDjj2 dmþ
Z
K

ajDjj2 dm
( )

a
1

d
e

Z
O

jDjj2 dmþ
�
CðeÞ þ 1

2l

�Z
O

j f j2 dm
� �

:

Now, choosing e ¼ d=2 the conclusion follows. r

We are now in a position to cheracterize the domain of Lv in L2ðO; mÞ, assum-
ing more regularity on the coe‰cients.
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Theorem 3.7. Assume Hypotheses 1.1 and 1.2. The domain of the variational
operator Lv defined in (2.5) is characterized as follows:

DðLvÞ ¼ fj a W 2;2
loc ðOÞ : Dj a L2ðO; m;RdÞ; aDj a L2ðO; mÞg:ð3:10Þ

Proof. Let W denote the right-hand side of (3.10). We have to show that every
weak solution j a W 1;2

a ðO; mÞ of f ¼ lj� Lvj belongs to W . Let ð fhÞHClðOÞ
be a sequence converging to f in L2ðO; mÞ, and, for every h a N, let jh a DðLvÞ be
such that ljh � Lvjh ¼ fh. Then, by [14] we know that jh a ClðOÞ and therefore
estimates (3.3), (3.9) hold (Lv coincides with L on smooth functions). In particu-
lar, (3.3) implies that jh ! j in L2ðO; mÞ, so that (3.9) holds for j as well. Thus,
j a W and the proof is complete. r

In the particular case when % ¼ 1, that is m is the Lebesgue measure, we
can further specialize DðLvÞ, as shown below. Observe that % ¼ 1 if and only if
2b ¼ Da.

Proposition 3.8. Assume Hypotheses 1.1 and 1.2 and moreover that 2b ¼ Da.
Then dm ¼ dx and the domain of the variational operator Lv defined in (2.5) is
characterized as follows:

DðLvÞ ¼ fj a W
2;2
loc ðOÞ : Dj a L2ðO;RdÞ; aD2j a L2ðO;Rd�dÞg:ð3:11Þ

Proof. Arguing as in the proof of Theroem 3.7, it is su‰cient to show the exis-
tence of a constant C > 0 such that for every j a ClðOÞ, setting f ¼ lj� Lvj,
the inequality kaDhkjk2 aCk f k2 holds. Since aj is a smooth funcion vanish-
ing at the boundary, we can apply the classical elliptic estimates kDhkðajÞk2 a
CkDðajÞk2, which yield

kaDhkjk2 aC1ðkaDjk2 þ kDaklkDjk2 þ kD2aklkjk2Þ
aC2ðkðl� LvÞjk2 þ kDaklkDjk2 þ kD2aklkjk2Þ:

The thesis now follows from estimates (3.3), (3.9). r

We do not know whether the above Proposition holds in more general
contexts.

4. A special case with less regularity

In this section, we study operator L relaxing the regularity assumptions on the
coe‰cients but restricting the analysis to the special structure

Lj ¼ 1

2
aDjþ k

2
3Da;Dj4ð4:1Þ
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with kb 1 (note that if k ¼ 1 then Lj ¼ div½aDj�). We assume that a a C3ðOÞ,
O ¼ fa > 0g, qO ¼ fa ¼ 0g and DaA 0 on qO, and we argue by approximation.
For any e > 0 we set

Lej ¼ 1

2
aeðxÞDjþ k

2
3Da;Dj4;ð4:2Þ

where

aeðxÞ :¼ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ þ e

p
�

ffiffi
e

p
Þ2; x a O:ð4:3Þ

Notice that

lim
e!0

aeðxÞ ¼ aðxÞ

and

0a aeðxÞa aðxÞ; x a O:

We set moreover b ¼ k
2Da and

seðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðxÞ þ e

p
�

ffiffi
e

p
; x a O:ð4:4Þ

Then, se a C3ðOÞ. The stochastic di¤erential equation

dXðtÞ ¼ bðX ðtÞÞ dtþ seðXðtÞÞ dWðtÞ;
X ð0Þ ¼ x a O;

�
ð4:5Þ

has a unique regular solution Xeðt; xÞ, which is global in time because the set O is
invariant under the flow, as can be checked using the criteria in [11], [3] (here is
where we need the C3 regularity). Therefore, for any l > 0 and any f a C2ðOÞ
the problem

lje � Leje ¼ fð4:6Þ

has a unique solution je a C2ðOÞ given by the probabilistic formula

jeðxÞ ¼
Z l

0

e�ltE½ f ðXeðt; xÞÞ� dt:ð4:7Þ

For the operator (4.1) a solution r of (1.12) is given by

rðxÞ ¼ ak�1ðxÞ:ð4:8Þ

Now we show that Le is of gradient form, that is there exists a solution of the
equation

aeD log re þDae ¼ kDa:ð4:9Þ
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Lemma 4.1. A solution of (4.9) is given by

reðxÞ ¼
Bkak�1

e ðxÞ
ð

ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffi
e

p
Þ2k

exp �2k
ffiffi
e

p � ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffiffiffiffiffiffiffiffiffiffi
aþ e

p

seð
ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffi
e

p
Þ

�� �
;ð4:10Þ

where B ¼ sup a.

Proof. By (4.9) we have

D log re ¼ k
Da

ae
�D log aeð4:11Þ

Let us write Da
ae

¼ DGeðaÞ, where

GeðrÞ ¼
Z r

B

1

ð
ffiffiffiffiffiffiffiffiffiffi
sþ e

p
�

ffiffi
e

p
Þ2
dsð4:12Þ

¼ 2 log

ffiffiffiffiffiffiffiffiffiffi
rþ e

p
�

ffiffi
e

pffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffi
e

p � 2
ffiffi
e

p ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffiffiffiffiffiffiffiffiffi
rþ e

p

ð
ffiffiffiffiffiffiffiffiffiffi
rþ e

p
�

ffiffi
e

p
Þð

ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffi
e

p
Þ
:

Then we have

D log re ¼ kDGeðaÞ �D log ae;

so that

re ¼
Bk

ae
ekGeðaÞ

Now the conclusion follows in view of (4.12). r

Remark 4.2. Since there is e0 > 0 such that

ffiffiffiffiffiffiffiffiffiffiffi
Bþ e

p
�

ffiffi
e

p
>

ffiffiffiffi
B

p

2
;

we have

reðxÞa 2krðxÞ ¼ 2kak�1ðxÞ; x a O

for 0 < ea e0. Moreover, re converges to r uniformly on the compact subsets of
O and then also in L1ðOÞ. As a consequence, estimates (3.3), (3.9) hold in the
form Z

O

jjej
2
dme a

2k

l2

Z
O

j f j2 dmð4:13Þ
Z
O

jDjej
2
dme a 2kC1

Z
O

j f j2 dmð4:14Þ
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for the solutions je of equation (4.6) with f a L2ðO; mÞ. Indeed, je a C2ðOÞ by
(4.7). Notice that the constant C1 can be taken independent of ea e0. In fact, it
su‰ces to fix Od in the proof of Proposition 3.6 in such a way that ae b d for
all ea e0. The other constants involved are independent of a, as pointed out in
Remark 3.5.

From the previous remark it is clear that if we are able to pass to the limit as
e goes to 0 in (4.13), (4.14) then the domain characterization (3.10) follows. This
is done in the following

Theorem 4.3. Under the above hypotheses on a, the domain DðLÞ of L is given
by

DðLÞ ¼ fj a W 2;2
loc ðOÞ : Dj a L2ðO; m;RdÞ; aDj a L2ðO; mÞg:ð4:15Þ

Proof. Set dme ¼ re dx and define for r > 0

BðrÞ ¼ fx a O : aðxÞ > rgð4:16Þ
dðrÞ ¼ inffrðxÞ : x a BðrÞg:ð4:17Þ

Observe that re b dðrÞ=2 for all x a BðrÞ and e > 0 small enough. So, owing to
(4.14), Z

BðrÞ
jDjej

2
dxa

2

dðrÞ

Z
BðrÞ

jDjej
2
dme a

2kþ1C1

dðrÞ

Z
O

j f j2 dm ¼: KðrÞð4:18Þ

and then ðjeÞ is weakly compact in H 1
locðOÞ, i.e., there is a sequence jh ¼ jeh

strongly convergent to a function j in L2
locðOÞ with Djh weakly convergent to Dj

in L2
locðOÞ. In particular, jh ! j a.e. and then jjhj

2
re ! jjj2r a.e. and in L1ðOÞ.

Using the Fatou Lemma in (4.13) we getZ
O

jjj2 dma 2

l2

Z
O

j f j2:ð4:19Þ

Coming to the gradient estimates, observe thatZ
O

jDjj2r dx ¼ lim
r!0

Z
BðrÞ

jDjj2r dx:ð4:20Þ

Moreover, we claim thatZ
BðrÞ

jDjj2r dxa lim inf
h!l

Z
BðrÞ

jDjhj
2rh dxð4:21Þ

(where rh ¼ reh ) for all r > 0. Indeed, writingZ
BðrÞ

jDjhj
2r dx ¼

Z
BðrÞ

jDjhj
2rh dxþ

Z
BðrÞ

jDjhj
2ðr� rhÞ dx;
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we have that the last integral converges to 0 by the uniform convergence of the re
to r in BðrÞ. Then, (4.21) follows by the weak lower semicontinuity of the norm
invoking the L2

loc-weak convergence of Djh.
Finally, from (4.14), (4.21) and (4.20) we deduce the estimateZ

O

jDjj2 dmaC

Z
O

j f j2 dm

and the proof is complete. r

Remark 4.4. The special feature of operator (4.1) is that the gradient struc-
ture is preserved under the approximation. In the general case of (1.11), one
can either approximate the coe‰cient a as we did, keeping b fixed, or modify
both a and b in order to keep the gradient structure. In the first case the gradient
structure is destroyed in general, while in the second one, which leads e.g. to
2be ¼ aeD log rþDae, where r is defined by (1.12), the derivative of be is not
bounded in general (this is needed to get an estimate as (3.7) uniform in e).

We conclude the paper by giving an example.

Example 4.5. We take O ¼ B1, the ball of center 0 and radius 1. In this case
the operator L reads as follows

LjðxÞ ¼ 1

2
ð1� jxj2ÞDj� k3x;Dj4;

where kb 1, and the density of the invariant measure m is

rðxÞ ¼ ð1� jxj2Þk�1; Ex a B1:

By (4.15) the domain of L in L2ðB1; mÞ is given by

DðLÞ ¼ fj a W
2;2
loc ðB1Þ : Dj a L2ðB1; m;R

dÞ; ð1� jxj2ÞDj a L2ðB1; mÞg:
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