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ABSTRACT. — We study a class of elliptic operators L that degenerate at the boundary of a
bounded open set @ = RY and possess a symmetrizing invariant measure . Such operators are
associated with diffusion processes in (@ which are invariant for time reversal. After showing that
the corresponding elliptic equation Ap — Ly = f has a unique weak solution for any A > 0 and
f e L*(0, 1), we obtain new results for the characterization of the domain of L.
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1. INTRODUCTION AND SETTING OF THE PROBLEM

Let ¢ be a bounded open subset of R? with closure ¢ and boundary 00 of class
C'. We are concerned with the following elliptic operator in ¢

(1) Lp = Tiloo" D] + <b.Dp). g e C(0),

where b: 0 — R? is of class C', o: @ — L(R?) is continuous on @, of class
C'(0) and such that, setting a = go*,

(1.2) deta(x) >0, Vxe .

It is well known that L is the Kolmogorov operator associated with the diffusion
process described by the stochastic differential equation

(1.3) {dX(f) = b(X (1)) dt + (X (1)) dW (1),

X(0)=xe€e 0.

A unique solution of (1.3) exists in a suitable random interval [0, 7,), where 7, is
the first time when X (¢) reaches 00.
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The formal adjoint of L reads as follows
1 ..
(1.4) L'p = 3 divlaDp + (g — 2b)p],

where ¢ is the vector field

d
(15) g/:ZD,dU, ]:1,761
i=1

The role of the above operator in the characterization of the invariant measures
for X, that are absolutely continuous with respect to the Lebesgue measure, is
well known.

Let X(7),t € [0, 1], be a solution of the equation

dX (1) = b(X(£)) dt + a(X (1)) dW (1),

with coefficients defined on RY. We call X reversible if Y () :== X (1 — 1) is a solu-
tion of the same stochastic differential equation (with exactly the same coeffi-
cients b and ¢ as X but a different Brownian motion). From a general result by
Haussmann and Pardoux [13] it follows that Y is a diffusion process that satisfies
the equation

dY () = b(t, Y(£))dt + a(Y (1)) dW (1)
for some Brownian motion ¥, where we have set, for (¢,x) € [0, 1] x R,
~ d
(1.6) bi(t,x) = —bi(x) + [p(1 — £,%)] 7" > Djlag(x)p(1 — t,x)]
j=1

with p(t,x)dx the law of X (). Now, suppose that there exists p € C'(R?) N
L'(RY) such that

(1.7) aDp + (g — 2b)p = 0.

Then L*p =0, and u(dx) = p(x) dx is an invariant measure for X. So, p(¢,x) =
p(x) is independent of ¢, and (1.6) reduces to

d
bi(t,x) = ! ZD] aij(x

= —bi(x) +gi(x) + p(x) " (a(x)Dp(x)); = bi(x).

Therefore, X is reversible. Conversely, one can show that if X is reversible and
u(dx) = p(x) dx is an invariant measure for X, then condition (1.7) is satisfied.
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We are thus led to regard (1.7), in some sense, as a quantitative characterization
of reversibility.

By analogy, we say that the operator L in (1.1), with coefficients defined in
0, is of gradient form if there exists p € C'(0¢) n L'(0) such that (1.7) holds in
0. Such a terminology is justified by the observation that, in this case, L can be
recast (at least formally) as

I ..
(1.8) Ly = 2 div(paDep).

Consequently, L is symmetric on L?((, 1), where y is the finite measure

(1.9) w(dx) = p(x) dx.

We shall proceed as follows. In Section 2, we will show that, under general
hypotheses, for any 4 > 0 and f € L?(0, u) the equation

(1.10) Ap—Lop=f

has a unique distributional solution ¢ € W'2((, u). This simple result, obtained
by a standard variational method, will allow us to define rigorously the varia-
tional operator L in L?(¢/, ) with domain D(L).

Then, as a first step in the direction of studying regularity properties of the
operator (L, D(L)), we will focus on a special class of gradient operators, namely
operators of the form

(1.11) Lgo:%ocAgo+<b,Dgo>.
under the following assumptions.
HypotHESIS 1.1. (i) O is Cl-regular, 0 < o € C'(O), and
a(x) =0 < xedl.

(i) b e C'(O) and

b(x) #0 Vxed0.
(iii) There exists p € C'(0) such that p € L'(0) and

(1.12) a(x)Dlogp(x) + Do(x) = 2b(x) Vx e 0.

Observe that, in view of condition (i) above, L degenerates on the whole bound-
ary of (0. On the other hand, condition (ii) ensures that 5 is nondegenerate on 0.
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Moreover, condition (1.12) is nothing but (1.7), restricted to ¢, for the operator L
in (1.11).
In section 3, we will show that

(1.13)  D(L) ={p e Wp2(O,u) : Dp € L*(0,11; R!), ahAp € L*(0, 1)}
under the further assumption

HYPOTHESIS 1.2. Besides the conditions in Hypothesis 1.1, assume that O is
C*-regular, and b, o, and p belong to C*(0).

The characterization of the domain, even for more general operators but only
in L? with respect to the Lebesgue measure, is proved by different methods in
[2]. The L? case, 1 < p < oo, with Dirichlet boundary condition and first order
global degeneracy of the diffusion coefficients at the boundary is treated in [10].
It is worth pointing out that, in the literature on degenerate parabolic equations
(see, e.g., [1], [6], [7], and [8]), one can generally guarantee that

22Dy e L*(0; RY),

though exceptions to such a tradition are known in low space dimension (see,
e.g., [9] and [5]). Here, however, we obtain stronger integrability for the gradient,
namely

(1.14) 100 dus e [ 117 dn

(where C(4) is independent of ¢) in a multidimensional setting. This can be
explained recalling the nondegenerate contribution of b at the boundary. Indeed,
the above statement (1.13) turns out to be a maximal regularity result for L.
Here, the key technical tool will be a regularity result from [14] ensuring that
@ e C*(0) for f € C*(0). It is for this point that we need Hypothesis 1.2 in its
full strength.

Finally, in Section 4, under weaker regularity hypotheses on the coefficients,
we shall consider operators with the even more restrictive structure

(1.15) L(/):%ocAgo—k%(Doc,Dg@, k>1.

In this case, we introduce suitable approximating operators L., that are still
reversible and satisfy the main estimates leading to the domain characterization,
and then pass to the limit as ¢ — 0 in order to recover the characterization of the
domain of L.

An important feature of our analysis is that it just requires o to be regular in
O and positive in ¢, so that « in general (for example in the case of first-order
degeneracy) it does not possess any smooth extension outside (¢ which is still
nonnegative.
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2. WEAK SOLUTIONS

In this section, we start our analysis of operator (1.8) under Hypothesis 1.1. Let
us denote by B(() the Borel g-algebra in @, and by u the finite measure on
(0, B(0)) defined by (1.9), where p is given by (1.12).

Now, let us define the Sobolev space W!2(0, 1) as follows
(2'1) W;72(07ﬂ) = {” € Wl(l),Cz(@) : HuHWl}-Z((z;ﬂ) < oo},

where || is the norm which is associated with the inner product

w20,
PP,y = OV + [ aDp DY die

We now proceed to showing that the space W!2(0, 1) is a Hilbert space, the only
point which needs to be checked being completeness. Let (u#;) be a Cauchy se-
quence in W2(0, u). Then, (i) is convergent in L*(0, x) and W,)>(©), because
a is nondegenerate in (/. Moreover, there is a subsequence such that u;, — u and
Duj, — Du a.e. in O. In order to verify that u;, — u in W)2(0, p), let us fix &,
and let v € N be such that

[ = wj,

”Wul'z(cf‘.,u) <e Vk,n>v.

Letting n — o0, by Fatou’s Lemma we get
l|luj, — u”WJ‘Z(@-ﬂ) <& Vk>v.
Since ¢ is arbitrary, the convergence of u;, to u in W12(0, u) follows, together

with the convergence of the whole sequence.
Next, consider the Dirichlet form

1
22) Alp.p) =3 [ aDp. DY d

which is obviously symmetric, coercive and continuous on W!'2(0,u). Given
>0 and f e L*(0,u), by the Lax-Milgram theorem there is a unique
@ € WH2(0, p) such that

1 _ 1,2/ m
@3 2 [ owdues [ <ap.Dpydu= [ fudn e w0,

Let us recall the definition of the variational operator, L,, associated with (2.2).
We say that ¢ € W,'2(0, i) belongs to the the domain, D(L,), of L, if there exists
a constant K(¢) > 0 such that

(2.4) \ / <aD¢,Dw>du\s1<<¢>||¢|w,,,>, Vg e W00,
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In this case, by the Riesz theorem, there is a unique element in L?(0, u), that will
be denoted by L,p, such that

1
@5) =5 [ «pp.Duydn= [ Lowdn e W0,

Equivalently, by (2.3) and (2.5), for any A >0 and f € L*(0, x) there exists a
unique ¢ € D(L,) such that

lp—Lp=f.

3. A CHARACTERIZATION OF D(L,)

In this section, we characterize the domain of the variational operator L, in the
“diagonal” case (1.11). Our first step is the following identity satisfied by the
operator L introduced in (1.1) under Hypotesis 1.1.

PROPOSITION 3.1. Under Hypotesis 1.1, for any ¢, € C*(O) we have

(3.1) / Lopu(dx) =~ / % Do, DY Spu(d).

PRrROOEF. Integrating by parts we find, recalling that o vanishes on 0Q,

1 1 1
: / gy du =~ 5 / 2(Dp, DY du 5 [ <Dp, D+ aDlog pyi
4 O o

Since Do + aDlog p = 2b, the conclusion follows. |
Let us now prove some classical estimates.

LEMMA 3.2. Let 2 >0, 9 e C*(0O) and set
(3.2) f =720 — Lo.
Then we have

1
(33) [P du< 5 [ 1
0 A Jo

and

1
(3.4) / oDl du < 5 / 12
o AJo
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PrOOF. Multiplying both sides of (3.2) by ¢ and taking into account (3.1)
yields

1 .
?»/|¢|2dﬂ+§/aIDfﬂlzdu=/¢fdﬂ-
o o 0

The conclusion follows via standard arguments that use the Cauchy-Schwarz
inequality. O

LEMMA 3.3. Let ¢ € C*(O). Then the following identity holds

(3.5) /L(p<b7Dgo> du = %/ al(divbhI — 2Db) Dy, Dp) du
0 ¢

1
+ / Db dp.
0

PRrOOF. By (3.1) we have

1
(3.6) /C Lp<h Doy = 3 /{ Dy, D<b, Do dy

= —;/OKDngo,Dgo}d —;/oc<D2(/)D(p,b>d,u.
o o

Now, let us compute the rightmost term above as follows:

d

/ o D*pDyp,bydu= "> " | DyDipDipabyp dx
o hk=1"0

1 d
=5 Z /Dh[(Dk(/))z]acbhpdx
k=170

1
== (D) Dy(orbyp) dx
1 2 5
___/ |Do|~ div(apb) dx
2 o
1 .
_ _5/ |D¢|2(ocpdlvb+ <b, D(ap)y) dx
(9
_ _;/ |Dg|*(ordiv b+ <b, aDlog p + D)) dp
0

1
= —5/ |Dg|* (adiv b + 2|b|*) dp.
0
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(in the integration by parts we have used the fact that po = 0 on 60). Therefore,
substituting in (3.6) yields

1 1 .
[ Loe. Doy du =~ [ x<DbDp. Dy i+ [ Do rdive + 245)
O 4 ©
which implies (3.5). O

LEMMA 3.4. Assume Hypothesis 1.1, let . >0 and ¢ € C*(0), and set f =
Ao — Lo. Then, for any ¢ > 0 there is C(g) > 0 such that

(3.7) 1ol P i <o [ Do d+ ) [ 177 dn

PrOOF. Multiplying both sides of (3.2) by <, D) and integrating over O yields
/1/6 ¢<b, Dy du — /C Lo<b,Dp)du = /€f<b, Do) dpu.

Taking into account (3.5), we obtain

1 :
5/( |D¢|2Ib|2dﬂ=A[¢<b,D¢>dﬂ

—i/ ol (divbI — 2Db)Dyp, Dp) du — /f<b,Dgo> du.
0 0

It follows that
1 21712
3 | 1ol b du= 2161 [ 1ol1Do] d

+ X qdival, + 1oo),) / o| Dol du + |1, / /1 Dol i,

B —

which in turn yields
e 81’
[ oleRde< 5 [ Dol du 2= [ 1o du
o 2 © & I
L, ..
+5(1div bl + 1bl,) | 2iDol”

e 4
+5 [ Do d 201 [ 17 die
0 € 0
So

b

81
[ 1DoP16P die < [ 100 e 2012, [ 1o

L, .. 4
+501divbl, + 1001.,) [ Dol du+ 101, [ 1117 dn
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Now, using (3.3) and (3.4), we have
8
100l due [ 1poP s 10l [ 177 du

1, .. 4
+5(1div bl + 100l [ 1P+ 12 [ 1P de

The conclusion follows. O

REMARK 3.5. As is clear from the above proof, the constant C(¢) in estimate
(3.7) is independent of «. On the other hand, it depends on 4, ||b||,, and || Db
and is bounded if ||b||, and || Db||, stay bounded.

o0

The condition b # 0 on d(, which has not been used so far, will hereafter
become essential for it implies, for some real number J > 0 and compact set
H < O,

(3.8) a(x) >0 VxeH  and |b(x)| =0 Vxe O\X.
Indeed, fix 0 < 6’ < miny|b| and let #* = O be a compact such that
|b(x)| > 6" Vxe O\X.

If min, o >, then (3.8) follows choosing § =d’. Otherwise, since min o is
positive, it suffices to take J equal to such a minimum.

PROPOSITION 3.6. Assume Hypothesis 1.1 and let 6 be a positive number satisfy-
ing (3.8). Moreover, let . > 0 and p € C*(0), and set f = Ap — Lo. Then there is a
constant Cy = C1(6, 4, ||b]| ., || Db|| ) > 0 such that

(3.9) / Dol du < G / n

PROOF. Let #" < O be the compact set associated with J in (3.8). Then, by (3.4)
and (3.7) we deduce that for any ¢ > 0 there exists C(¢) > 0 such that

1
/ |D¢|2dus5{ / 1B Do du + / °‘|D(P|2dﬂ}
0 ox x
<! o [ 1ol a +(C(e)+i)/|f|2d
=%, ek 27) J Ty

Now, choosing ¢ = J/2 the conclusion follows. 0

We are now in a position to cheracterize the domain of L, in L?((, u), assum-
ing more regularity on the coefficients.
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THEOREM 3.7. Assume Hypotheses 1.1 and 1.2. The domain of the variational
operator L, defined in (2.5) is characterized as follows:

(3.10)  D(L,) = {p e WZX0): Dp € L}(0,11; R?),aAp € L* (O, p)}.

PRrROOF. Let W denote the right-hand side of (3.10). We have to show that every
weak solution ¢ € W12(0, ) of f = Ap — L, belongs to W. Let (f,) = C*(0)
be a sequence converging to f in L>(0, u), and, for every h € N, let ¢, € D(L,) be
such that Ap, — L,p;, = f». Then, by [14] we know that g, € C*(() and therefore
estimates (3.3), (3.9) hold (L, coincides with L on smooth functions). In particu-
lar, (3.3) implies that ¢, — ¢ in L>(O, 1), so that (3.9) holds for ¢ as well. Thus,
@ € W and the proof is complete. O

In the particular case when o =1, that is u is the Lebesgue measure, we
can further specialize D(L,), as shown below. Observe that o = 1 if and only if
2b = Do

PrROPOSITION 3.8. Assume Hypotheses 1.1 and 1.2 and moreover that 2b = Do.
Then du = dx and the domain of the variational operator L, defined in (2.5) is
characterized as follows:

(3.11)  D(L,) = {p € W2X(0O): Dp € L*0,R?),aD*p € L*(0,R"*)}.

PROOF. Arguing as in the proof of Theroem 3.7, it is sufficient to show the exis-
tence of a constant C > 0 such that for every ¢ € C*(0), setting f = lp — L,p,
the inequality ||eDpuc¢||, < C||f]||, holds. Since ag is a smooth funcion vanish-

ing at the boundary, we can apply the classical elliptic estimates || D (o9)||, <
C||A(ap)|l,, which yield

leDueplly < Ci(lledglly + (1Dl |1 Dolly + 1Dl llgll,)
< Co((A = Lo)olly + [1Da| 1Dl + 1Dl [loll,)-

The thesis now follows from estimates (3.3), (3.9). O

We do not know whether the above Proposition holds in more general
contexts.

4. A SPECIAL CASE WITH LESS REGULARITY

In this section, we study operator L relaxing the regularity assumptions on the
coefficients but restricting the analysis to the special structure

(4.1 Ly = %ocAgo + g (Do, Dp>
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with k > 1 (note that if k = 1 then Ly = div[xDg]). We assume that « € C3(0),
O ={a>0}, 00 ={o=0} and Do # 0 on 00, and we argue by approximation.
For any ¢ > 0 we set

1
(4.2) L.p= E“S(X)AW+§<D%D¢>7
where
(4.3) o,(x) = (Valx) + e — ve)?, xed.

Notice that

H% o (X) = a(x)

and

0<o(x) <a(x), xed.
We set moreover b = 4 Do and
(4.4) go(x) = Va(x) +e— e, xed.
Then, o, € C*(0O). The stochastic differential equation

(4.5) { dX (1) = b(X (1) dt + o,(X (1)) dW (1),

X(0)=x€e0,

has a unique regular solution X,(z, x), which is global in time because the set @ is
invariant under the flow, as can be checked using the criteria in [11], [3] (here is
where we need the C? regularity). Therefore, for any A > 0 and any f € C*(0)
the problem

(46) /’L¢s - Le(ﬂg = f

has a unique solution ¢, € C?(() given by the probabilistic formula

=

@) p0) = [ e MELFOX )
0

For the operator (4.1) a solution p of (1.12) is given by

(4.8) p(x) = oA ().

Now we show that L, is of gradient form, that is there exists a solution of the
equation

(4.9) o.Dlogp, + Do, = kDo
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LeEmMMA 4.1. A solution of (4.9) is given by
By (x)

VBTi- Vi)~

(4.10)  p,(x) =

exp{—2k\/§< VBt \/m) },

Js(VB+8_\/§)

where B = sup o.

PrOOF. By (4.9) we have

(4.11) Dlogpczk%—Dlogac
e

Let us write 2% = DG;(a), where

@12) G = /B "(;st

., VETi- it
Bre i (Vrre-vOWBTe- v

S

Then we have

Dlogp, = kDG,(x) — Dlogo,,

so that
B 6
2 Lk 2 (o)
Pe="¢
Now the conclusion follows in view of (4.12). O

REMARK 4.2. Since there is ¢ > 0 such that

B
VB+e—+e> \/2—,
we have
pa(x) < 26p(x) = 2% (x), xe 0
for 0 < ¢ < &. Moreover, p, converges to p uniformly on the compact subsets of

O and then also in L'((). As a consequence, estimates (3.3), (3.9) hold in the
form

2k
(4.13) / o2 dy, < 2 / /2 dy
0 At Jo

(4.18) / Dy, du, < 2°C, / 2 dp
4 0
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for the solutions ¢, of equation (4.6) with f € L*(, 1). Indeed, ¢, € C*(C) by
(4.7). Notice that the constant C; can be taken independent of ¢ < ¢. In fact, it
suffices to fix (5 in the proof of Proposition 3.6 in such a way that o, >0 for
all & < &. The other constants involved are independent of «, as pointed out in
Remark 3.5.

From the previous remark it is clear that if we are able to pass to the limit as
& goes to 0 in (4.13), (4.14) then the domain characterization (3.10) follows. This
is done in the following

THEOREM 4.3. Under the above hypotheses on o, the domain D(L) of L is given
by

(4.15)  D(L)={pe W22(0): Dp e L*(O,1;R?),aAp € L*(0, 1)}
PRrOOF. Set du, = p, dx and define for r > 0

(4.16) B(ry={xe€ 0:a(x)>r}
(4.17) o(r) =inf{p(x) : x € B(r)}.

Observe that p, > d(r)/2 for all x € B(r) and & > 0 small enough. So, owing to
(4.14),

mwy/www<ij|wﬁm<ﬁ3/m%ﬁ«m
' B o) ey 7 T o) Je '

and then (p,) is weakly compact in H} (©), ie., there is a sequence ¢, = ¢,
strongly convergent to a function ¢ in L} (0O) Wlth D(ph Weakly convergent to D¢
in L} (0). In particular, Pn — @ ae. and then |¢,|*p, — |¢|*p a.e. and in L'(0).

loc

Using the Fatou Lemma in (4.13) we get

2
(4.19) LﬂWmsj/m?
o A Je

Coming to the gradient estimates, observe that

(4.20) / |Do|*pdx = lim/ |Dg|*p dx.
o =0 JB(r)
Moreover, we claim that
(4.21) / Dp|*pdx < liminf / Dg, |, dx
B(r) =SB
(where p, = p,,) for all r > 0. Indeed, writing

/'wm%w—/|wMWW+/|wm@ﬂmm
B(r) B(r) B(r)
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we have that the last integral converges to 0 by the uniform convergence of the p,
to p in B(r). Then, (4.21) follows by the weak lower semicontinuity of the norm
invoking the L} -weak convergence of Dg,.

Finally, from (4.14), (4.21) and (4.20) we deduce the estimate

[ ool ansc [P

and the proof is complete. |

REMARK 4.4. The special feature of operator (4.1) is that the gradient struc-
ture is preserved under the approximation. In the general case of (1.11), one
can either approximate the coefficient o as we did, keeping b fixed, or modify
both o and b in order to keep the gradient structure. In the first case the gradient
structure is destroyed in general, while in the second one, which leads e.g. to
2b, = a.Dlogp + Du,, where p is defined by (1.12), the derivative of b, is not
bounded in general (this is needed to get an estimate as (3.7) uniform in &).

We conclude the paper by giving an example.

ExaMPLE 4.5. We take (0 = By, the ball of center 0 and radius 1. In this case
the operator L reads as follows

1

Lp(x) =5 (1= [x|")Ap — k<x, Dp),

where k& > 1, and the density of the invariant measure y is
p(x)=(1—|x)", vxeB.
By (4.15) the domain of L in L?(By, u) is given by

D(L) = {pe W22(By) : Dp e L*(By,;1; RY), (1 — |x|)Ap € L*(By, u)}.
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