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Functional Analysis — Moser-Trudinger inequality in grand Lebesgue space,
by Robert Černý, communicated on 9 January 2015.

Abstract. — Let n a N, nb 2 and let WHRn be a bounded domain. We study sharp constants

for the Moser-Trudinger inequality in the Sobolev-type space W0L
nÞðWÞ, where LnÞðWÞ is so called

grand Ln space introduced in [9]. In particular, we obtain our results with respect to two quantities

introduced in [8].
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1. Introduction

Throughout this note, WHRn, nb 2, is an open bounded set, on denotes the
volume of the unit ball in Rn, Ln is the n-dimensional Lebesgue measure and
jWj stands for LnðWÞ. We use the standard notation n 0 ¼ n

n�1 .
If W 1;p

0 ðWÞ denotes the usual completion of Cl
0 ðWÞ in W 1;pðWÞ, then it is well

known that

W
1;p
0 ðWÞHL

np

n�pðWÞ if 1a p < n;

W
1;p
0 ðWÞHLlðWÞ if n < p:

In the borderline case p ¼ n we have

W
1;n
0 ðWÞHLqðWÞ for every q a ½1;lÞ;

however; W
1;n
0 ðWÞQLlðWÞ:

This case was studied more precisely by Trudinger [14] who showed that for every
Kb 0 and every u a W 1;n

0 ðWÞ we haveZ
W

expððKjuðxÞjÞn
0
Þ dx < l:

Moser [12] proved the famous inequality

sup
k‘ukLnðWÞa1

Z
W

expððK juðxÞjÞn
0
Þ dx aCðn;K ; jWjÞ when K a no

1
n
n

¼ l when K > no
1
n
n:

(
ð1:1Þ



In the last two decades, the Moser-Trudinger inequality became a crucial tool
when proving the existence and the regularity of nontrivial weak solutions to
elliptic partial di¤erential equations with critical growth (see for example the
pioneering works [2] and [3] by Adimurthi). Further applications required several
versions and generalizations of the Moser inequality such as a version for un-
bounded domains (see [1]), a version without boundary conditions (see [6]), the
Concentration-Compactness Alternative (see [11] and [5]) and others.

The aim of this note is to obtain an inequality of the same type as (1.1) for the
functions having their gradient in the grand Lebesgue space LnÞðWÞ. These spaces
were introduced in [9] and the condition j‘f j a LnÞðWÞ, where f : Rn 7! Rn is a
homeomorphism, is a borderline condition for a pathological behavior of the
Jacobian and the failure of the Luzin N condition (see [9, 10, 4]).

In [9], the space LnÞðWÞ was introduced and it was equipped with the norm

k f kLnÞðWÞ ¼ sup
e A ð0;n�1Þ

� e

jWj

Z
W

j f jn�e
� 1

n�e

:ð1:2Þ

However, it is a bit uncomfortable to work with this norm (see the last section for
more information), therefore we derive our results for two equivalent quantities
obtained in [8]. The first one is a quasi-norm

k f k ¼ sup
t A ð0; jWjÞ

�
log�1

� ejWj
t

�Z jWj

t

ð f �ðsÞÞn ds
�1

nð1:3Þ

and the second one is a norm

k f k ¼ sup
t A ð0; jWjÞ

�
log�1

� ejWj
t

�Z jWj

t

ð f ��ðsÞÞn ds
�1

n

:ð1:4Þ

Let us recall that passing to an equivalent norm (or quasi-norm) in Moser-type
inequalities influences the size of the borderline exponent. Our new results are
the following.

Theorem 1.1. Let n a N, nb 2 and let WHRn be a bounded open set. Suppose
that the space LnÞðWÞ is equipped with the quasi-norm (1.3). Let us set

K1 ¼ no
1
n
n:

Then

sup
u ACl

0
ðWÞ;k‘uka1

Z
W

expðK juðxÞjÞ dx aCðn; jWj;KÞ for K < K1

¼ l for K bK1:

�

Theorem 1.2. Let n a N, nb 2 and let WHRn be a bounded open set. Suppose
that the space LnÞðWÞ is equipped with the norm (1.4). Let us set

K2 ¼
n

n� 1
K1 ¼

n2

n� 1
o

1
n
n:
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Then

sup
u ACl

0
ðWÞ;k‘uka1

Z
W

expðK juðxÞjÞ dx aCðn; jWj;KÞ for K < K2

¼ l for K bK2:

�

The paper is organized as follows. After Preliminaries we prove Theorem 1.1.
Theorem 1.2 is proved in the fourth section. The last section is devoted to some
comments concerning the author’s unsuccessful attempt to obtain sharp constants
corresponding to the Moser-type inequality with respect to the norm (1.2).

2. Preliminaries

Notation. The n-dimensional Lebesgue measure is denoted by Ln and jWj stands
for LnðWÞ. By Bðx;RÞ we denote an open Euclidean ball in Rn centered at x a Rn

with the radius R > 0. If x ¼ 0, we simply write BðRÞ.
By C we denote a generic positive constant which may depend on n, jWj and

K . This constant may vary from expression to expression as usual.

Non-increasing rearrangement. The non-increasing rearrangement f � of a mea-
surable function f on W is

f �ðtÞ ¼ supfsb 0 :
��fx a W : j f ðxÞj > sg

�� > tg for t a ð0;lÞ:

Further, we define the maximal function of f � by

f ��ðtÞ ¼ 1

t

Z t

0

f �ðsÞ ds for t a ð0;lÞ:

Next, we recall an inequality obtained in [13]. If W is open and u a W
1;1
0 ðWÞ, then

u�ðtÞa 1

no
1
n
n

�
t�

1
n 0

Z t

0

j‘uj�ðsÞ dsþ
Z jWj

t

j‘uj�ðsÞs� 1
n 0 ds

�
ð2:1Þ

for every t a ð0; jWjÞ:

Let us also derive a version of (2.1) for the quantity j‘uj��. By the Fubini theorem
we have Z l

t

s�
n�1
n j‘uj��ðsÞ ds

¼
Z l

t

s�2þ1
n

�Z s

0

j‘uj�ðrÞ dr
�
ds

¼
Z l

t

Z s

0

s�2þ1
nj‘uj�ðrÞ dr ds
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¼
Z t

0

Z l

t

s�2þ1
nj‘uj�ðrÞ ds drþ

Z l

t

Z l

r

s�2þ1
nj‘uj�ðrÞ ds dr

¼ � n

n� 1

�
½s�n�1

n �lt
Z t

0

j‘uj�ðrÞ drþ
Z l

t

½s�n�1
n �lr j‘uj�ðrÞ dr

�

¼ n

n� 1

�
t�

n�1
n

Z t

0

j‘uj�ðrÞ drþ
Z l

t

r�
n�1
n j‘uj�ðrÞ dr

�
:

Thus, (2.1) reads

u�ðtÞa n� 1

n2o
1
n
n

Z jWj

t

j‘uj��ðsÞs� 1
n 0 ds for every t a ð0; jWjÞ:ð2:2Þ

Finally we recall the Hölder-type inequality for Grand Lebesgue spaces
obtained in [7]. It reads

1

jWj

Z
W

j fgj dxa k f kLnÞðWÞkgkLðn 0 ðWÞ;ð2:3Þ

where the first norm is (1.2) and the second one is

kgkLðn 0 ðWÞ ¼ inf
g¼Tgk

Xl
k¼1

inf
0<e<n�1

e�
1

n�e

� 1

jWj

Z
W

jgkjðn�eÞ 0
� 1

ðn�eÞ 0

( )
:

3. Proof of theorem 1.1

Proof of Theorem 1.1: Case K < K1. By (2.1) we have for every t a ð0; jWjÞ

u�ðtÞa 1

no
1
n
n

�
t�

1
n 0

Z t

0

j‘uj�ðsÞ dsþ
Z jWj

t

j‘uj�ðsÞs� 1
n 0 ds

�
¼:

1

no
1
n
n

ðI1 þ I2Þ:

Let us estimate the integrals. When estimating I2 we apply Hölder’s inequality
and the assumption k‘uka 1 with the quasi-norm (1.3) to obtain for every
t a ð0; jWjÞ

I2 ¼
Z jWj

t

j‘uj�ðsÞs� 1
n 0 dsa

�Z jWj

t

ðj‘uj�ðsÞÞn ds
�1

n
�Z jWj

t

1

s
ds
�n�1

nð3:1Þ

a log
1
n

� ejWj
t

�
log

n�1
n

� jWj
t

�
a log

� ejWj
t

�
:

Next, let us estimate I1. We use inequality (2.3), the assumption k‘uka 1 and the
fact that the quasi-norm (1.3) and the norm (1.2) are equivalent (it was proved
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in [8], we should also note that the constants concerning this equivalence depend
on jWj)

I1 ¼ t�
n�1
n

Z t

0

j‘uj�ðsÞ ds ¼ t�
n�1
n

Z jWj

0

j‘uj�ðsÞwð0; tÞðsÞ ds

a t�
n�1
n k j‘uj�kLnÞðð0; jWjÞÞkwð0; tÞkLðn 0 ðð0; jWjÞÞ aCt�

n�1
n kwð0; tÞkLðn 0 ðð0; jWjÞÞ:

Next, we have for t > 0 small enough

kwð0; tÞkLðn 0 ðð0; jWjÞÞ ¼ inf
g¼Tgk

Xl
k¼1

inf
0<e<n�1

e�
1

n�e

� 1

jWj

Z jWj

0

jgkjðn�eÞ 0
� 1

ðn�eÞ 0

( )

a inf
0<e<n�1

e�
1

n�e

� 1

jWj

Z jWj

0

w
ðn�eÞ 0
ð0; tÞ

� 1
ðn�eÞ 0

aC inf
0<e<n�1

e�
1

n�et
1

ðn�eÞ 0 aCt
1
n 0 inf

0<e<n�1
e�

1
n�e

aCt
1
n 0
�
log�1

� 1

t

��� 1

n�log�1 1
tð ÞaCt

1
n 0 log

1

n�1
2

� 1

t

�
:

This yields for every t a ð0; jWjÞ (it is easy to see that I1 aC whenever t is
bounded away from 0)

I1 aC þ C log
1

n�1
2

� 1

t

�
and thus we obtain from (3.1)

u�ðtÞa 1

no
1
n
n

ðI1 þ I2Þa
1

no
1
n
n

�
C þ C log

1

n� 1
2

� 1

t

�
þ log

� ejWj
t

��
:

Hence, if K ¼ ð1� 2eÞK1 for some e > 0, we have for some t0 > 0 small enoughZ
W

expðK juðxÞjÞ dx ¼
Z jWj

0

expðK juj�ðtÞÞ dt

a

Z t0

0

exp
�
ð1� eÞK1n

�1o
�1

n
n log

� ejWj
t

��
dtþ

Z jWj

t0

C dt

¼
Z t0

0

exp
�
ð1� eÞ log

� ejWj
t

��
dtþ C

¼
Z t0

0

C

t1�e
dtþ C ¼ C:

Thus, we are done. r
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Proof of Theorem 1.1: Case KbK1. We can suppose that 0 a W. Let
R > 0 be so small that BðRÞHW. Let us set

uðxÞ ¼ o
�1

n
n log

�
R
jxj
�

for x a BðRÞnf0g
0 for x a RnnBðRÞ:

(

Then we have

j‘ujðxÞ ¼ o
�1

n
n

1

jxj for x a BðRÞnf0g

and, as jBðjxjÞj ¼ onjxjn,

j‘uj�ðtÞ ¼ o
�1

n
n

1�
t
on

�1
n

¼ 1

t
1
n

for t a ð0; jBðRÞjÞ:

Now, for every t a ð0; jBðRÞjÞ we obtain

log�1
� ejBðRÞj

t

�Z jBðRÞj

t

ðj‘uj�ðsÞÞn ds ¼ log�1
� eonR

n

t

�Z jBðRÞj

t

1

s
ds

¼ log�1
� eonR

n

t

�
log

�onR
n

t

�
a 1:

Thus, k‘uka 1. On the other hand

Z
BðRÞ

expðK1juðxÞjÞ dx ¼ non

Z R

0

yn�1 exp
�
K1o

�1
n

n log
�R

y

��
dy

¼ non

Z R

0

yn�1 exp
�
n log

�R

y

��
dy ¼ C

Z R

0

1

y
dy ¼ l:

Now it is easy to see that for each d a
�
0; 14

�
there is ~dd a ð0; dÞ and a radially

symmetric function ud a Cl
0 ðBðRÞÞ such that

udðxÞ

¼ udjqBðdÞ for x a BðdÞ
a ðujqBð2dÞ; ujqBðdÞÞ for x a Bð2dÞnBðdÞ
¼ uðxÞ for x a BðR� ~ddÞnBð2dÞ
a ð0; uðxÞÞ for x a BðRÞnBðR� ~ddÞ;

8>>><
>>>:

j‘udðxÞj

¼ 0 for x a BðdÞ
a ð0; j‘uðxÞjÞ for x a Bð2dÞnBðdÞ
¼ j‘uðxÞj for x a BðR� ~ddÞnBð2dÞ
a ð0; 2j‘uðxÞjÞ for x a BðRÞnBðR� ~ddÞ;

8>>><
>>>:
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k‘udka 1 andZ
BðRÞ

expðK1judðxÞjÞ dxb
Z
BðRÞnBð2dÞ

expðK1juðxÞjÞ dx� C ��!d!0þ
l: r

4. Proof of Theorem 1.2

Proof of Theorem 1.2: Case K < K2. By (2.2) we have for every t a ð0; jWjÞ

u�ðtÞa n� 1

n2o
1
n
n

Z jWj

t

j‘uj��ðsÞs� 1
n 0 ds:

Next we apply Hölder’s inequality and the assumption k‘uka 1 with the norm
(1.4) to obtain for every t a ð0; jWjÞ

u�ðtÞa n� 1

n2o
1
n
n

�Z jWj

t

ðj‘uj��ðsÞÞn ds
�1

n
�Z jWj

t

1

s
ds
�n�1

n

a
n� 1

n2o
1
n
n

log
1
n

� ejWj
t

�
log

n�1
n

� jWj
t

�

a
n� 1

n2o
1
n
n

log
� ejWj

t

�
:

Hence, if K ¼ ð1� eÞK2 for some e > 0, we haveZ
W

expðK jujÞ dx ¼
Z jWj

0

expðKjuj�ðtÞÞ dt

a

Z jWj

0

exp
�
ð1� eÞK2

n� 1

n2o
1
n
n

log
� ejWj

t

��
dt

¼
Z jWj

0

exp
�
ð1� eÞ log

� ejWj
t

��
dt

¼
Z jWj

0

C

t1�e
dt ¼ C

and we are done. r

Proof of Theorem 1.2: Case KbK2. We can suppose that 0 a W. Let
R > 0 be so small that BðRÞHW. Let us set

uðxÞ ¼
n�1
n
o

�1
n

n log
�
R
jxj
�

for x a BðRÞnf0g
0 for x a RnnBðRÞ:

(

183moser-trudinger inequality



Then we have

j‘ujðxÞ ¼ n� 1

n
o

�1
n

n
1

jxj for x a BðRÞnf0g;

j‘uj�ðtÞ ¼ n� 1

n
o

�1
n

n
1�
t
on

�1
n

¼ n� 1

n

1

t
1
n

for t a ð0; jBðRÞjÞ

and

j‘uj��ðtÞ ¼ n� 1

n

1

t

Z t

0

1

s
1
n

ds ¼ n� 1

n

1

t

n

n� 1
s
n�1
n

� 	 t

0

¼ 1

t
1
n

for t a ð0; jBðRÞjÞ:

Now, for every t a ð0; jBðRÞjÞ we obtain

log�1
� ejWj

t

�Z jWj

t

ðj‘uj��ðsÞÞn ds ¼ log�1
� ejWj

t

�Z jWj

t

1

s
ds

¼ log�1
� ejWj

t

�
log

� jWj
t

�
a 1:

Thus k‘uka 1. We also have

Z
BðRÞ

expðK2juðxÞjÞ dx ¼ non

Z R

0

yn�1 exp
�
K2

n� 1

n
o

�1
n

n log
�R

y

��
dy

¼ non

Z R

0

yn�1 exp
�
n log

�R

y

��
dy ¼ C

Z R

0

1

y
dy ¼ l:

We conclude the proof using the smoothing procedure shown in the proof of
Theorem 1.1. r

5. Open problem

The author was not able to obtain sharp constants concerning the Moser-type
inequality with respect to the norm (1.2). In this section we give some comments
concerning this open problem.

First, we suggest to replace the norm (1.2) by

k f k :¼ jWj
1
n sup
e A ð0;n�1Þ

� e

jWj

Z
W

j f jn�e
� 1

n�e

:ð5:1Þ

This new norm is just a multiple of the norm (1.2), but the constants in the
Moser-type inequality are independent of jWj now.

It is easy to obtain the following partial result.
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Lemma 5.1. Let n a N, nb 2 and let WHRn be an open bounded set. Suppose

that the space LnÞðWÞ is equipped with the norm (5.1). Then for every Kb n2o
1
n
n

we have

sup
u ACl

0
ðWÞ;k‘uka1

Z
W

expðK juðxÞjÞ dx ¼ l:

Proof. We can suppose that 0 a W. Let R > 0 be so small that BðRÞHW. Let
us set

uðxÞ ¼ n�1o
�1

n
n log

�
R
jxj
�

for x a BðRÞnf0g
0 for x a RnnBðRÞ:

(

We have

j‘ujðxÞ ¼ n�1o
�1

n
n

1

jxj for x a BðRÞnf0g:

Hence for every e a ð0; n� 1�

jBðRÞj
1
n

� e

jBðRÞj

Z
BðRÞ

j‘ujn�e
� 1

n�e

¼ ðonR
nÞ

1
n

� e

onRn

Z R

0

non y
n�1

�
n�1o

�1
n

n
1

y

�n�e

dy
� 1

n�e

¼ R
� n1�nþee

Rn

Z R

0

y�1þe dy
� 1

n�e ¼ Rðn1�nþeRe�nÞ
1

n�e ¼ n
1�nþe
n�e a 1

(it can be easily seen that the worst case is e ¼ n� 1) and thus k‘uka 1.
FinallyZ
W

expðn2o
1
n
njuðxÞjÞ dx ¼ non

Z R

0

yn�1 exp
�
n log

�R

y

��
dy ¼ C

Z R

0

1

y
dy ¼ l:

Now, the proof can be easily completed using a suitable smoothing procedure.
r

The author was not able to prove the boundedness of the supremum for

K < n2o
1
n
n (since the functions with the logarithmic growth played the crucial

role in the sharp estimates concerning the norm (1.4) and the quasi-norm (1.3),

the author believes that the borderline constant is the number n2o
1
n
n obtained in

Remark 5.1). The problem rests upon the fact that the author was not able to
modify the application of Hölder’s inequality in (3.1) so that the resulting inte-
grals had an appearance compatible with the assumption k‘uka 1, where the
norm comes from (5.1).
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The first idea was to read k‘uka 1 as

jWj
1
n

� e

jWj

Z
W

j f jn�e
� 1

n�e

a 1 for every e a ð0; n� 1Þ

and to apply Hölder’s inequality corresponding to each e in (3.1). That is,
for every t a ð0; jWjÞ we obtain a collection of estimates of u�ðtÞ indexed by
e a ð0; n� 1Þ and then we use the most restrictive one. Unfortunately, the result-
ing estimate of u�ðtÞ has too large power of logð1

t
Þ.

Another option is to use the Hölder-type inequality (2.3). The relevant version
with respect to the norm (5.1) reads

Z jWj

t

j fgj dxa k f kLnÞððt; jWjÞÞkgkLðn 0 ððt; jWjÞÞ;

where the second norm is

kgkLðn 0 ððt; jWjÞÞ ¼ ðjWj � tÞ
n�1
n inf

g¼Tgk

Xl
k¼1

inf
0<e<n�1

e�
1

n�e

� 1

jWj � t

Z jWj

t

jgkjðn�eÞ 0
� 1

ðn�eÞ 0

( )
:

Our problem would be solved if we were able to show that for every h there is
t0 > 0 so small that

ks�n�1
n kLðn 0 ððt; jWjÞÞ a ð1þ hÞ 1

n
log

� 1

t

�
for every t a ð0; t0Þ:ð5:2Þ

However, the author was not able to prove this estimate because he did not
find the corresponding decomposition of the function s�

n�1
n . Let us note that

numerical approximations show that if g1ðsÞ :¼ s�
n�1
n and other functions from

the decomposition are trivial, then we obtain an estimate with too large multipli-
cative constant

ks�n�1
n kLðn 0 ððt; jWjÞÞ o log

� 1

t

�
:

Decomposing s�
n�1
n into vertical slices leads to an useless estimate

ks�n�1
n kLðn 0 ððt; jWjÞÞ al

and horizontal slices (after some computation) give us an estimate with too large
power of the logarithm

ks�n�1
n kLðn 0 ððt; jWjÞÞ aC log1þ

1
n

� 1

t

�
:
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Let us also note that it is not obvious that a decomposition leading to (5.2)
actually exists, since we do not know whether inequality (2.3) is sharp. Indeed,
in [7, Lemma 2.9] it is shown that for every f a Ll there are gk a Ll such thatR

j fgkj
k f kLnÞkgkkLðn 0

��!k!l
1

(beware of the gap in the proof given in [7], for many functions the worst case is
sð f Þ ¼ p� 1). However, we need a statement with fixed function g, that is, for
every g a Ll, there are fk a Ll such thatR

j fkgj
k fkkLnÞkgkLðn 0

��!k!l
1:

The author did not find such a result in the literature and it also does not look as
easy to be proved as the statement concerning a fixed function f .
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