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Functional Analysis — Moser-Trudinger inequality in grand Lebesgue space,
by ROBERT CERNY, communicated on 9 January 2015.

ABSTRACT. — Letn e N, n > 2 and let Q < R" be a bounded domain. We study sharp constants
for the Moser-Trudinger inequality in the Sobolev-type space WyL™ (), where L") (Q) is so called
grand L” space introduced in [9]. In particular, we obtain our results with respect to two quantities
introduced in [8].

Key worDps: Grand Lebesgue space, Sobolev spaces, embedding theorems, sharp constants,
Moser-Trudinger inequality.
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1. INTRODUCTION

Throughout this note, Q = R”, n > 2, is an open bounded set, w, denotes the
volume of the unit ball in R”, %, is the n-dimensional Lebesgue measure and
|Q2| stands for %,(Q). We use the standard notation n’ = -2

m .
If Wol‘p (Q) denotes the usual completion of C5°(Q) in W!7(Q), then it is well
known that

WP (Q) e L(Q) ifl<p<n,
WP (Q) c L(Q) if n < p.
In the borderline case p = n we have
W, (Q) = L1(Q)  for every g € [1, ),
however, W,"(Q) ¢ L (Q).

This case was studied more precisely by Trudinger [14] who showed that for every
K >0 and every u € W,"(Q) we have

/ exp((K|u(x))™) dx < .
Q
Moser [12] proved the famous inequality

C(n,K,|Q|) when K < nwj

1
o0 when K > nw;,.

(L) sup /Q ex1o<<1<|u<x>|>”’>dx{S

[Vull pnig) <1
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In the last two decades, the Moser-Trudinger inequality became a crucial tool
when proving the existence and the regularity of nontrivial weak solutions to
elliptic partial differential equations with critical growth (see for example the
pioneering works [2] and [3] by Adimurthi). Further applications required several
versions and generalizations of the Moser inequality such as a version for un-
bounded domains (see [1]), a version without boundary conditions (see [6]), the
Concentration-Compactness Alternative (see [11] and [5]) and others.

The aim of this note is to obtain an inequality of the same type as (1.1) for the
functions having their gradient in the grand Lebesgue space L") (Q). These spaces
were introduced in [9] and the condition |Vf| € L") (Q), where f : R" — R" is a
homeomorphism, is a borderline condition for a pathological behavior of the
Jacobian and the failure of the Luzin N condition (see [9, 10, 4]).

In [9], the space L") (Q) was introduced and it was equipped with the norm

(12) e = s (5 [ 17

ee(0,n—1)

However, it is a bit uncomfortable to work with this norm (see the last section for
more information), therefore we derive our results for two equivalent quantities
obtained in [8]. The first one is a quasi-norm

ey [ !
1.3 = su log™! L / (s ds
(1.3) I7l= sup (log™ (57) | (1))
and the second one is a norm

ey [ L
1.4 = su log™! L / ()" ds)".
(1.4) 7= sup (log™ (57) [ ()" ds)

Let us recall that passing to an equivalent norm (or quasi-norm) in Moser-type
inequalities influences the size of the borderline exponent. Our new results are
the following.

THEOREM 1.1. Letn e N, n > 2 and let Q = R" be a bounded open set. Suppose
that the space L™ (Q) is equipped with the quasi-norm (1.3). Let us set

1
K = nw;.
Then

< C(n,|Q,K) forK <K

sup [ expliuto an { =€ Jor K = K1

ue Cy(Q),||Vul| <1

THEOREM 1.2. Letne N, n > 2 and let Q = R" be a bounded open set. Suppose
that the space L") (Q) is equipped with the norm (1.4). Let us set

2
K, = .
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Then

< Cn,|QLK) forK <K
sup / exp(K|u(x)|)dx{ (n, 10}, K) - for K < K,
ue CF(Q), [Vul <1 o0 for K > K.

The paper is organized as follows. After Preliminaries we prove Theorem 1.1.
Theorem 1.2 is proved in the fourth section. The last section is devoted to some
comments concerning the author’s unsuccessful attempt to obtain sharp constants
corresponding to the Moser-type inequality with respect to the norm (1.2).

2. PRELIMINARIES
Notation. The n-dimensional Lebesgue measure is denoted by %, and |Q| stands
for %,(Q2). By B(x, R) we denote an open Euclidean ball in R” centered at x € R”
with the radius R > 0. If x = 0, we simply write B(R).
By C we denote a generic positive constant which may depend on n, |Q| and
K. This constant may vary from expression to expression as usual.

Non-increasing rearrangement. The non-increasing rearrangement f* of a mea-
surable function f on Q is

fr0)=sup{s>0: |{xeQ:|f(x)|>s}|>1} forre(0,00).
Further, we define the maximal function of f* by
1 t
;/ f*(s)ds forte (0,00).
0

Next, we recall an inequality obtained in [13]. If Q is open and u € Wol’ (Q), then

1 L[ 2 |
l(z‘? / \Vu|* (s) ds + / |Vu|*(s)s_7ds>
0 t

nwj,

(2.1) u'(t) <

for every ¢ € (0, |Q]).

Let us also derive a version of (2.1) for the quantity |Vu|™. By the Fubini theorem
we have

/toos%|Vu|**(s) ds
_/ 24 /|Vu| (r) dr) ds
e

r)drds
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/ / dsdr—l—/ / 2
:_n_l([s s / Vul* ()dr+/tw[s%JfOIVul*(r)dr)
—1/0 |Vu|*(r)dr+/tw V_n’;’lwu\*(”)dr)'

“(r) ds dr

Thus, (2.1) reads

—1 sl
(2.2) u*(t) < & T / \Vu[*™*(s)s " ds for every 1 € (0, Q).
n2w;

Finally we recall the Holder-type inequality for Grand Lebesgue spaces
obtained in [7]. It reads

1
(23) o /Q foldx < [1f Loy 9]

where the first norm is (1.2) and the second one is

o0
oy = inf T n=) "*"’
ol e Ilz{;n o (i [l }

3. PROOF OF THEOREM 1.1

PRrOOF OF THEOREM 1.1: CASE K < K. By (2.1) we have for every ¢ € (0,|Q|)

Lo ! < 1
u'(t) < —l(t_n_’/ |Vu| ™ (s) ds+/ |Vu|*(s)s_7ds) =:
0 ‘

now;

T (11 + Iz).
nwj,

Let us estimate the integrals. When estimating I, we apply Holder’s inequality
and the assumption ||Vu|| <1 with the quasi-norm (1.3) to obtain for every
1€(0,|9)

(]

(3.1) Izz/tQ IVl (5)s— ds < ([Q(|Vu|*( )" ds) (/, —ds)
i (2 () ()

Next, let us estimate 7;. We use inequality (2.3), the assumption ||Vu|| < 1 and the
fact that the quasi-norm (1.3) and the norm (1.2) are equivalent (it was proved
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in [8], we should also note that the constants concerning this equivalence depend
on Q)

o]

L= / Val*(s)ds = 5% |1Vl ()0, (0)

<t

| |Va*

Lo ey < CEm |X0z||u ((0,120))

oo, 20,9

Next, we have for ¢ > 0 small enough

0 Q| 1 .
o = inf inf & / | )
||X(o,z)||L< ((0,12])) ngk{kz:kKn | |Q| lg. | }

/Q 1

. . 1
< C inf & rt" 7 < Ctv inf e
O<e<n—1 O<e<n—1

< Ctv (Ingl (%))m < Ctv log”l%(%).

This yields for every 7z e (0,|Q]) (it is easy to see that I} < C whenever ¢ is
bounded away from 0)

< 1 =
- O<z.<n 18 l( |Q‘

1

L <C+ Clog”*%(%)

and thus we obtain from (3.1)

- (h+h) < %@(CJFClogn!(l)HOg(elQI))

Hence, if K = (1 — 2¢)K; for some ¢ > 0, we have for some 7, > 0 small enough

u*(t) <

Q|
/ exp(Ku(x)]) dx = / exp(Klul* (1)) dr
Q 0
< /lo exp((l —¢e)Kin~ wn”log(e|Q|))dt+/|Q Cdt
0 I0)
= /to exp((l —¢g) 10g< |Q|>)dt+ C
0

I
0 tl—()

Thus, we are done. O
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PrOOF OF THEOREM 1.1: CASE K > K;. We can suppose that 0 € Q. Let
R > 0 be so small that B(R) < Q. Let us set

u(x) = { wn_% log(‘%) for x € B(R)\{0}
0 for x e R"\B(R).

Then we have
|
|Vu|(x) = wn m for x € B(R)\{0}

and, as | B(|x|)| = walx[",

| —

SN |
|Vl/l|*(t) = w, )lz = forte (07 |B(R)|)
t

==
=

Wy

Now, for every ¢t € (0,|B(R)|) we obtain

. /elB(R |B(R)| o ., sew,R" IB(R)| |
log 1(#)/ (IVu|"(s))" ds = log 1( ; )/ Eds
t t

zlog’l(ew';Rn)log<w"tR ) <1.

Thus, ||Vu|| < 1. On the other hand

R ! R
exp(K;|u(x dx:na),,/ "~Lexp( Kim, "log( =) )d
/B(R) p(Ki|u(x)]) Y p( 1 g(y)) ly
R

:nwn/ORy" exp(nlog( ))dy C/ ;dy:w

Now it is easy to see that for each § € (0,1) there is 0 € (0,0) and a radially
symmetric function us € C;°(B(R)) such that

= Ussp() for x € B(0)
us(x) € (”|53(25)v “|aB(a‘)) for x e 3(25)\1}’(5)
= u(x) for x € B(R —9)\B(20)
€ (0,u(x)) for x € B(R)\B(R — ),
=0 for x € B(9)
€ (0,|Vu(x)|) forxe B(2(5)\B( )
Vit ()] = |Vu(x)] for x € B(R — 8)\B(20)
€ (0,2|Vu(x)|) for x € B(R)\B(R —9),
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||Vus|| < 1 and
/ exp(Ki |us(x)|) dx = / exp(Kifu(x)))dx— C =% 0. 4
BE®) BR)\B(29)
4. PROOF OF THEOREM 1.2

PrOOF OF THEOREM 1.2: CASE K < K. By (2.2) we have for every ¢ € (0, |Q|)

—1 r«
u (1) < ! 1/ V™ (s)s 7 ds.
t

n2wj;
Next we apply Holder’s inequality and the assumption ||Vu| < 1 with the norm
(1.4) to obtain for every ¢ € (0,]Q|)

(O] 2l

u (1) < ”_}(/[Q(wuﬁ*( )" ds)’ (/t Las) "

nwj

" g (o9

nlwj

=" log (42,

IA

1
n2w;

Hence, if K = (1 — ¢)K, for some ¢ > 0, we have

1
/Q exp(K|u]) dx — /0 exp(Klu|* (1)) dt

< /0|Q| exp((l—e)Kz ; log(e|?|>) t

n C()n

= /OQ exp((l —8)10g<ﬁ)>dt

Qo ¢
o 7F

and we are done. O

PrOOF OF THEOREM 1.2: CASE K > K,. We can suppose that 0 € Q. Let
R > 0 be so small that B(R) = Q. Let us set

u(x) = {—w "log () for x e B(R)\{0}
0 for x e R"\B(R).
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Then we have
-1 11
= T for x € B(R\{O},
X

|Vu|(x) = a),,”ﬂ
—1 1 1 —11
Vu" (1) =2 — ' —— ="~ forte (0,[B(R))
(L)n n In
and
11 /1 n—11] n 1" 1
*(f) = —ds = - Tl == f B(R))).
vl () =" [ ="t R =g forre 1(RI)

Now, for every ¢ € (0,|B(R)|) we obtain
2 (920) [ =g (2 [
log ( . )/, (|Vu|™ (s))" ds = log ( ; ) t Sds

o yrelQ] |Q
= log <—t )log(—t ) <1
Thus [|Vul| < 1. We also have

R
/ exp(Ka|u(x)|) dx = nw, / y”’1 exp (Kz "
B(R) 0
R

_nwn/ORy" exp(nlog( ))dy— /Oédy—oo

We conclude the proof using the smoothing procedure shown in the proof of
O

—1w,,_%10g(§>)dy

Theorem 1.1.
5. OPEN PROBLEM

The author was not able to obtain sharp constants concerning the Moser-type
inequality with respect to the norm (1.2). In this section we give some comments

concerning this open problem.
First, we suggest to replace the norm (1.2) b

1 nL
171l =19 sup / 717)
(e

ee(0,n—1)

(5.1)

This new norm is just a multiple of the norm (1.2), but the constants in the

Moser-type inequality are independent of |Q| now
It is easy to obtain the following partial result.
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LeMMA 5.1. Letne N, n> 2 and let Q < R" be an open bounded set. Suppose

that the space L") (Q) is equipped with the norm (5.1). Then for every K > n*wj,
we have

sup / exp(K|u(x)|) dx = oo.

ue Cy(Q),|Vul| <1 /Q

ProOOF. We can suppose that 0 € Q. Let R > 0 be so small that B(R) < Q. Let
us set

u(x) = n~'o,"log({) for x € B(R)\{0}
0 for x e R"\B(R).
We have

1
IVu|(x) = n"wy,"

& for x € B(R)\{0}.

Hence for every ¢ € (0,n — 1]

(am /Bm) val")

[B(R)]"

1

R
1 & _1] \n—¢ =
_ an ;( . n—l( -1 nn_> d)
(w,R") wan/O nwy, y n_ o 5 ly

1—n+e
n
Rn

6/R —H'Edy) *R(f’ll n+£R£ n)+ — I’l% < 1
0

(it can be easily seen that the worst case is ¢ = n — 1) and thus ||Vu|| < 1.
Finally

R

1 R 1
/ exp(n’wplu(x)|) dx = nco,,/ ' exp(n log( ))dy C/ —dy = .
Q 0 Y

Now, the proof can be easily completed using a suitable smoothing procedure.
O

The author was not able to prove the boundedness of the supremum for

K <n a),’; (since the functions with the logarithmic growth played the crucial
role in the sharp estimates concerning the norm (1.4) and the quasi-norm (1.3),

the author believes that the borderline constant is the number n2m! obtained in
Remark 5.1). The problem rests upon the fact that the author was not able to
modify the application of Holder’s inequality in (3.1) so that the resulting inte-
grals had an appearance compatible with the assumption ||Vu|| < 1, where the
norm comes from (5.1).
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The first idea was to read ||Vu|| < 1 as
1
|Q|l(ﬁ/Q |f|"_6)H <1 foreveryee (0,n—1)

and to apply Holder’s inequality corresponding to each ¢ in (3.1). That is,
for every ¢ € (0,|Q|) we obtain a collection of estimates of u*(z) indexed by
¢ € (0,n — 1) and then we use the most restrictive one. Unfortunately, the result-
ing estimate of u* () has too large power of log(}).

Another option is to use the Holder-type inequality (2.3). The relevant version
with respect to the norm (5.1) reads

\ Q|
L/ foldx < 1F Lol o
t

where the second norm is

= — 1 1 ‘Q| ’ ;,
! = (|Q] — ¢ f . f ,m(i (}’l—C))(ﬂ—e) .
iy = 0900 it {3 it (il [

Our problem would be solved if we were able to show that for every # there is
to > 0 so small that

(52 I

1 1
Lo (o)) < (1+ 17); log<;) for every ¢ € (0,1).

However, the author was not able to prove this estimate because he did not
find the corresponding decomposition of the function s ~*7. Let us note that
numerical approximations show that if g;(s) := s+ and other functions from
the decomposition are trivial, then we obtain an estimate with too large multipli-
cative constant

nl

a1 1
™% o o) S los( 5 )-

. n-1 . . . .
Decomposing s~ into vertical slices leads to an useless estimate

_n—1
5™ M o gy < 00

and horizontal slices (after some computation) give us an estimate with too large
power of the logarithm

i1
HS ” W((MQD) < C10g1+”(;).
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Let us also note that it is not obvious that a decomposition leading to (5.2)
actually exists, since we do not know whether inequality (2.3) is sharp. Indeed,
in [7, Lemma 2.9] it is shown that for every f € L™ there are g; € L™ such that

S for] ke

1
9l Lo

11

(beware of the gap in the proof given in [7], for many functions the worst case is
a(f) = p —1). However, we need a statement with fixed function ¢, that is, for
every g € L™, there are f; € L™ such that

f|fkg| k— o0 1
[ fell o gl 2o

L

The author did not find such a result in the literature and it also does not look as
easy to be proved as the statement concerning a fixed function f.
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