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Abstract. — We present a class of non-negative functions, acting on a solid vector subspace X

of L0, enjoying the following property: each member of the class determines on X a locally solid
topological Riesz space structure which is continuously embedded into L0. These functions are

neither necessarily monotone, nor subadditive. Special instances are provided by function norms
and quasi-norms on X .
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1. Introduction and main results

Given a measure space ðS;S; mÞ, we let L0ðmÞ denote the vector space of all
(m-equivalence classes of ) extended real-valued functions defined on S, which are
S-measurable and m-almost everywhere finite on S. Under the m-almost every-
where ordering, L0ðmÞ turns out to be a Riesz space, namely, a vector lattice
whose standard topology is the topology of convergence in measure on m-finite
sets, hereafter denoted as tm.

This topology plays a central role in many questions in analysis, and, in
particular, in the study of function spaces. Its special importance may be said to
derive from the fact that Lebesgue spaces are actually continuously embedded
into L0ðmÞ. In formulas,

ðLpðmÞ; tk�kpÞ ,! ðL0ðmÞ; tmÞð1:1Þ

for every p a ½1;l�. Here, tk�kp and ,! stand for the norm topology of the
Lebesgue space LpðmÞ, and for a continuous embedding, respectively.

The Lebesgue spaces LpðmÞ, for p a ½1;l�, are in fact prototypal examples of
locally solid (see Section 2) topological Riesz spaces of measurable functions, as
well as of rearrangement invariant Banach function spaces. The norm k � kp is
indeed a lattice norm, i.e. it is monotone on the positive cone of LpðmÞ, and
only depends on the measure of level sets of functions. Furthermore, in the case
when the measure space ðS;S; mÞ is totally finite, all rearrangement invariant
function spaces are continuously embedded into L1ðmÞ (see e.g. [4] for relevant
definitions and examples, and the monograph [3] for a comprehensive treatment



of the topic). Thus, thanks to (1.1) with p ¼ 1, all rearrangement invariant func-
tion spaces built upon a totally finite measure space are continuously embedded
into ðL0ðmÞ; tmÞ.

In recent years, various contributions have appeared, where generalizations,
along di¤erent directions, of rearrangement invariant function spaces have been
exploited (see e.g. [1, 14, 12, 7]). The generalizations that we have in mind
roughly amount to equipping some solid vector subspace X of L0ðmÞ with some
‘relaxed’ function norm on X , such as, for instance, a quasi-norm. Such function
spaces lack a Banach structure, and their topological structure heavily depends
on the assumptions on the involved relaxed norm. It is noteworthy that member-
ship of a function to such spaces does not still assure its local integrability. Con-
sequently, the above mentioned embedding into ðL0ðmÞ; tmÞ of these generalized
function spaces is not guaranteed.

The above considerations naturally raise the issue of finding a broad class T
of nonnegative functions, acting on a solid vector subspace X ¼ XðmÞ of L0ðmÞ,
obeying the following requirements:

i) membership of a function F to the class T depends only on the behavior of
the function in question with respect to the lattice operations of X ;

ii) each function F a T generates on X a locally solid topology, denoted as tF;
iii) embedding (1.1) continues to hold even if ðLpðmÞ; tk�kpÞ is replaced by ðX ; tFÞ,

provided F a T;
iv) lattice norms on X belong to the class T, and the locally solid topology

generated on X by each of them as elements of T agrees with the norm
topology.

Let us remark that condition i) is justified by the highly non-trivial fact that
the topology of convergence in measure on L0ðmÞ can be described just in terms
of the Riesz space structure, without any reference to either the underlying mea-
sure algebra or to integration (see e.g. [11, Chapt. 36, Sect. 367T]). Accordingly,
here our investigation of such an issue calls into play the notion of disjointness
for functions in any Riesz subspace X JL0ðmÞ, that the lattice structure of X
actually allows.

To be more specific, two functions f ; g a X are called disjoint whenever
j f jbjgj ¼ 0. Here, we adopt the standard notation f4g ¼ supf f ; gg and
fbg ¼ inff f ; gg for f ; g a X JL0ðmÞ. We shall write f ? g to denote that f
and g are disjoint.

A function F : X ! ½0;l½, with Fð0Þ ¼ 0, is then called quasi-triangular
whenever for any � > 0 there exists d� > 0 such that

Fð f4gÞ < � if Fð f Þ;FðgÞ a ½0; d�½;
FðgÞ < � if Fð f Þ;Fð f4gÞ a ½0; d�½

ð1:2Þ

for all f ; g a X , with f ? g.
Each quasi-triangular function on X clearly satisfies i). Moreover, lattice

norms on X turn out to be quasi-triangular functions. This is also the case for
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quasi-monotone and quasi-subadditive nonnegative maps on X , namely, those
functions C : X ! ½0;l½, with Cð0Þ ¼ 0, for which some constants C1;C2 b 1
exist such that

1

C1
maxfCð f Þ;CðgÞgaCð f4gÞaC2 maxfCð f Þ;CðgÞgð1:3Þ

for every f ; g a X , with f ? g. All quasi-norms on X satisfy (1.3). Typical exam-

ples are provided by X ¼ LpðmÞ, for p a �0; 1½, and Cð f Þ ¼ k f kp ¼
�Z

j f j p
�1=p

for f a X . Further instances can be obtained from functions of the form
A �C, where C : X ! ½0;þl½, Cð0Þ ¼ 0, fulfils (1.3) with C1 ¼ C2 ¼ 1, and
A : ½0;þl½ ! ½0;þl½ vanishes at 0 and is either convex (namely, a Young func-
tion) and satisfies the D2-condition, or quasi-concave. Recall that A satisfies the
D2-condition if a positive constant c exists such that Að2tÞa cAðtÞ for tb 0,
whereas A is quasi-concave if Að0Þ ¼ 0, AðtÞ > 0 and increasing for t > 0, and
AðtÞ
t

is decreasing for t > 0.
We refer to [12] for more details on customary, and less standard, examples of

quasi-monotone and quasi-subadditive functions.
Our first result shows, in particular, that quasi-triangular functions fulfil re-

quirement ii) as well. In what follow, the notion of Fréchet-Nikodým topology
on a solid vector space X will play a role. Recall that the symmetric di¤erence
of two function f ; g a L0ðmÞ is defined as f 4 g ¼ f4g� fbg ¼ j f � gj, and
the Fréchet-Nikodým topology turns ðX ;4Þ into a topological abelian group
with a base of neighborhoods of 0 consisting of solid subsets of X . For further
information and references, we refer to [9, 8, 15].

Theorem 1.1. Let X be a solid vector subspace of L0ðmÞ. Every quasi-triangular
function F : X ! ½0;l½, with Fð0Þ ¼ 0, induces on X a locally solid topology tF
whose neighborhood base at each f a X is the family B½ f � ¼ fBð f ; rÞ : r > 0g,
where

Bð f ; rÞ ¼ fg a X : FðjujÞ < r for u a L0ðmÞ s:t: juja j j f j � jgj jg:ð1:4Þ

Moreover, tF is a Fréchet-Nikodým topology on X.
When F, in addition, vanishes only at functions which equal 0 a.e., then the to-

pology tF is Hausdor¤, and the positive cone Xþ ¼ f f a X : f b 0g of X is closed
in ðX ; tFÞ.

We observe that, being X a solid vector subspace of L0ðmÞ, the set Bð f ; rÞ
described in (1.4) is well-defined, since functions u a L0ðmÞ actually belong to X .
In the special case when F is a lattice norm on X in Theorem 1.1, one has that
Bð f ; rÞ ¼ fg a X : Fð f � gÞ < rg, i.e. Bð f ; rÞ is the standard open ball centered
at f , with radius r, of normed Riesz spaces. This follows from the solidity of
X and from the monotonicity of a lattice norm on Xþ. The first part of condition
iv) is thus satisfied by quasi-triangular functions.
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It is however clear that condition iii)—and, consequently, the second part of
iv)—entails additional assumptions on the behavior of quasi-triangular func-
tions with respect to multiplication by scalars, as well as to the m-almost every-
where ordering. Next result provides them in the context of s-finite measure
spaces. Letting wA denote the characteristic function of any A a S, we state the
following

Theorem 1.2. Let ðS;S; mÞ be a s-finite measure space, and let X be a solid Riesz
subspace of L0ðmÞ satisfying the following property

(N0) wKj
a X for all j a N, and for some ðKjÞj AN HS such that mðKjÞ < l and

Kj % S.

Then

ðX ; tFÞ ,! ðL0ðmÞ; tmÞ

for every quasi-triangular function F : X ! ½0;l½ such that

(N1) there exist a function o : ½0;l½ ! ½0;l½, with oð0Þ ¼ 0, such that

Fðaf ÞaoðaÞFð f Þ for all a a ½0;l½; f a X ;

(N2) Fð f Þ > 0 if f does not vanish m-a.e.;
(N3) for any l > 0 there exists some rl > 0 such that FðgÞ < l whenever

f ; g a Xþ, ga f and Fð f Þ < rl.

To summarize, an answer to the issue stated above can be formulated in the
setting of s-finite measure spaces ðS;S; mÞ as follows. For any solid vector sub-
space X ¼ X ðmÞ of L0ðmÞ obeying condition (N0), the class T consists of all
those non-negative functions defined on X which are quasi-triangular and fulfil
assumptions (N1)–(N3).

Since s-finiteness of a measure space ðS;S; mÞ is equivalent to metrizability of
the topology of convergence in measure on L0ðmÞ, t

m
can be e¤ectively described

in terms of convergent sequences. Our last result thus relates tF-sequential con-
vergence to sequential convergence in measure in X (and thus with m-a.e. sequen-
tial pointwise convergence in S).

Corollary 1.3. Let ðS;S; mÞ, X and F be as in Theorem 1.2. If ð fkÞk AN HX
converges to some f a X with respect to tF, then every subsequence of ð fkÞk AN has
a further subsequence which converges to f m-a.e. in S.

Let us mention that Theorems 1.1–1.2 improve [12, Theorem 1.6], where
the case of quasi-additive and quasi-monotone functions fulfilling conditions
(N1)–(N2) is taken into account. In particular, [12, Definition 1.2] introduces a
definition of topology induced by a nonnegative function vanishing at the zero
of the abelian group ðX ;þÞ. A specialization of our Theorem 1.1 to the frame-
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work of [12] shows that there is no need for such an assumption. Indeed, any
quasi-triangular function does generate a Fréchet-Nikodým topology on a solid
vector subspace of L0ðmÞ.

We finally point out that the proof of Theorem 1.2 depends in a key way
on the equivalence on sets of finite measure between the notion of 0-continuity
and that of ð�; dÞ-continuity of the measure m—of the underlying measure space
ðS;S; mÞ—with respect to the non-additive measure f determined on S by the
quasi-triangular function F on X which is taken into account (see the end of
Sect. 2 for definitions). Such an equivalence is established in a more general
setting by [5, Theorem 1.2], whose proof makes use of Fréchet-Nikodým topol-
ogies and of standard methods of measure theory. Our approach is therefore
completely di¤erent from that of [12], where the theory of capacities, and specif-
ically certain capacitary estimates on semigruppoids are instead exploited (see
[12, Sect. 2] and [13]).

Proofs of our results will be given in Sect. 3. The next section contains defini-
tions, notation and preliminary results needed in our discussion.

2. Background

We collect here some definitions and properties from the theory of Riesz spaces.
We refer to the monographs [2], [10, Chap. 24] and [11, Chap. 35–36] for more
details and proofs.

Let ðS;S; mÞ be a measure space, i.e. S is s-algebra of subsets of a set S, and
m : S ! ½0;þl� is an extended non-negative measure. Hereafter, wA stands for
the characteristic function of A a S.

We let L0ðmÞ ¼ L0ðS;S; mÞ denote the vector space of all (m-equivalence
classes of ) extended real-valued functions defined on S, which are S-measurable
and m-almost everywhere finite on S. The space L0ðmÞ is a Riesz space (or vector
lattice) under the m-almost everywhere ordering, defined by saying that f a g
whenener f ðxÞa gðxÞ for all x a SnN, with N a S and mðNÞ ¼ 0.

Following the classic lattice notation, we let f4g ¼ supf f ; gg, fbg ¼
inff f ; gg and f 4 g ¼ f4g� fbg ¼ j f � gj for every f ; g a L0ðmÞ. Then two
functions f ; g a L0ðmÞ are called disjoint, in symbols f ? g, if j f jbjgj ¼ 0. Note
that for f ? g, then f 4 g ¼ f4g ¼ f þ g. Moreover, a subset Y of L0ðmÞ is
said to be solid if, for every g a Y ,

f f a L0ðmÞ : j f ja jgjgJY :

Solid sets of L0ðmÞ contain absolute values of their elements. Thus, solid vector
subspaces (usually called ‘ideals’) of L0ðmÞ are Riesz subspaces of L0ðmÞ, i.e. vec-
tor subspaces of L0ðmÞ closed under lattice operations. The converse, however,
fails. A straightforward example is given by the Riesz subspace C0½0; 1� of all
continuous real functions in L0½0; 1�, which is clearly not an ideal. Here, L0½0; 1�
simply denotes L0ðmÞ in the case when ðS;S; mÞ is the Lebesgue measure space
on ½0; 1�.
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Throughout, we assume L0ðmÞ equipped with the topology of convergence in
measure, that we shall denote as tm. This topology is induced by the semimetrics

pK : ð f ; gÞ a L0ðmÞ � L0ðmÞ 7!
Z

j f � gjbwK a ½0;l½ð2:1Þ

for K a S, with mðKÞ < l.
The metrizability of tm depends on the underlying measure space. Indeed,

tm is metrizable if, and only if, ðS;S; mÞ is s-finite. When ðS;S; mÞ is s-finite, if
ðKjÞj ANHS is some increasing sequence such that S ¼

S
j ANKj, with mðKjÞ < l

for all j, the function

rð f ; gÞ ¼
X
j AN

pKj
ð f ; gÞ

1þ 2 jmðKjÞ
for ð f ; gÞ a L0ðmÞ � L0ðmÞ

is a metric on L0ðmÞ inducing tm, and the sets

Uj; � ¼ f f a L0ðmÞ : mðfx a Kj ; j f ðxÞjb �gÞ < �g;ð2:2Þ

with j a N and � > 0, form a base of solid neighborhoods at zero. So a sequence
ð fkÞk AN in L0ðmÞ converges in measure to f a L0ðmÞ ( fk !

m
f , for short) if, and

only if,

lim
k

mðfx a S : j fkðxÞ � f ðxÞjb �gÞ ¼ 0ð2:3Þ

for every � > 0.
Hence, focusing on s-finite measure spaces, the topology tm of convergence in

measure can be e¤ectively described in terms of convergent sequences, and the
following sharp characterization of sequential convergence in measure becomes
relevant (see e.g. [10, Chapt. 24, Sect. 245K]).

Proposition 2.1. Let ðS;S; mÞ be a s-finite measure space. A sequence
ð fkÞk AN HL0ðmÞ converges in measure to f a L0ðmÞ if, and only if, every sub-
sequence of ð fkÞk AN has a sub-subsequence converging to f m-a.e. on S.

In Sect. 1 we have introduced the definition of a quasi-triangular function
acting on Riesz subspace X of L0ðmÞ ¼ L0ðS;S; mÞ, emphasizing—throught re-
quirement i)—that such notion just depends on the behavior of the function in
question with respect to the lattice operations of X . It is therefore obvious that
the notion of quasi-triangular function defined on any Boolean ring (and thus
on the s-algebra S of the measure space taken into account) can be analogously
formulated. Precisely, a function f : S ! ½0;l½, with fðjÞ ¼ 0, is said to be
quasi-triangular (on S) whenever for any � > 0 there exists some d� > 0 such that

fðEAF Þ < � if fðEÞ; fðF Þ a ½0; d�½;
fðFÞ < � if fðEÞ; fðEAFÞ a ½0; d�½

ð2:4Þ
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for all E;F a S, with EBF ¼ j. For several concrete examples of quasi-
triangular functions acting on Boolean rings, we refer the reader to [6]. Here we
just mention that non-negative classical measures, finitely additive measures,
k-triangular functions and quasi-submeasures (i.e. quasi-subadditive and quasi-
monotone in a sense similar to (1.3) above) acting on S are all relevant instances
of quasi-triangular functions on S.

Quasi-triangular functions may fail to be both monotone and subadditive.
Then the kernel of a quasi-triangular f : S ! ½0;l½ is defined as

NðfÞ ¼ fA a S : fðEÞ ¼ 0 for all E a SAg;ð2:5Þ

where SA ¼ fEBA : E a Sg.
Given a measure space ðS;S; mÞ, and two quasi-triangular functions f, n on S,

we recall that n is said to be 0-continuous with respect to f, in symbols nf f,
if NðfÞJNðnÞ; whereas n is called ðe; dÞ-continuous with respect to f, in
symbols n½AC�f, whenever for every e > 0 there exists some d > 0 such that if
fðSAÞJ ½0; d½ for some A a S, then nðAÞ < e.

Of course, n½AC�f implies nf f. On specializing [5, Theorem 1.2], the non-
trivial reverse implication also holds for n being a classical measure on S. This
equivalence will play a key role in the proof of Theorem 1.2.

3. Proofs

Proof of Theorem 1.1. We first show that, taken any f a X , the sets

Bð f ; rÞ ¼ fg a X : FðjujÞ < r for u a L0ðmÞ such that juja j j f j � jgj jg;

for r a �0;l½, form a neighbourhood base at f . Notice that, being X a solid
vector subspace of L0ðmÞ, each function u a L0ðmÞ appearing in the above
description of Bð f ; rÞ does belong to X as well its absolute value.

It is immediate that f a Bð f ; rÞ for every r > 0 and that Bð f ; r1ÞBBð f ; r2ÞK
Bð f ; rÞ for every r1; r2 a �0;l½ and r a �0;minfr1; r2g�.

We now claim that for any r > 0 there exist some numbers r; r 0 > 0 such that
Bðg; r 0ÞJBð f ; rÞ when g a Bð f ; rÞ.

Indeed, given r > 0, the quasi-triangularity of F provides the existence of
some da r for which (2.4) holds with � replaced by r. Let g a Bð f ; dÞ, and take
h a Bðg; dÞ. Note that j jhj � j f j j ¼ jhj 4 j f j, and j f j 4 jhj a X . Moreover, the
absolute value of any u a L0ðmÞ fulfilling the estimate juja j j f j � jgj j can be
rewritten as juj ¼ v14v2, where

v1 ¼ jujbfjhj 4 jgj � ½ðjhj 4 jgjÞbðjgj 4 j f jÞ�g;
v2 ¼ jujbfjgj 4 j f j � ½ðjhj 4 jgjÞbðjgj 4 j f jÞ�g:

Observe that v1; v2 a Xþ, v1 ? v2. Moreover, v1 a Bðg; dÞ and v2 a Bð f ; dÞ. So
the quasi-triangularity of F guarantees that FðjujÞ < r. Thus, h a Bð f ; rÞ. This
proves the claim with r ¼ r 0 ¼ d.
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Second, each Bð f ; rÞ, r > 0, is a solid set in X . This follows at once observing
that jhj 4 j f ja j f j 4 jgj for every g a Bð f ; rÞ and h a X with jhja jgj.

Next, we show that ðX ;4; tFÞ is actually a topological group, where tF stands
for the topology induced on X by the sets Bð f ; rÞ, with f a X and r > 0. For this,
since f 4 f ¼ 0 for every f a X , it is enough to prove the continuity on X of the
symmetric di¤erence operation 4. Take f ; g a X , and consider Bð f 4 g; rÞ for
some r > 0. Again, the quasi-triangularity of F yields the existence of some
da r such that (2.4) holds with � replaced by r. Easy computations provide that
f1 4 g1 a Bð f 4 g; rÞ whenever f1 a Bð f ; dÞ and g1 a Bðg; dÞ. That is, the desired
continuity of 4 on X .

Finally, to see that tF is a Fréchet-Nikodým topology, it su‰ces to show
that functions pg : f a X 7! fbg a X are tF-continuous, uniformly with respect
to g a X . But this follows by observing that, for any f1 a X , then ð fbgÞ4
ð f1bgÞ ¼ ð f 4 f1Þbg for all f ; g a X , and Bð f1bg; rÞJBð f1; rÞ for every
r > 0 and g a X .

When F, in addition, vanishes only at functions which equal 0 a.e., it is easy
to check that tF is Hausdor¤. Hence, in particular, f0g is closed in ðX ; tFÞ. Being
tF a Fréchet-Nikodým topology, the map f 7! fb0 is continuous in ðX ; tFÞ.
Then Xþ is closed in ðX ; tFÞ, since Xþ ¼ f f a X : fb0 ¼ 0g. r

Proof of Theorem 1.2. Let ðKjÞj AN HS be an increasing sequence of sets of
finite measure such that S ¼

S
j Kj and wKj

a X for all j, accordingly to assump-
tion (N0).

For each j a N, set

mj : E a S 7! mðEBKjÞ a ½0;l½;ð3:1Þ
fj : E a S 7! FðwEBKj

Þ a ½0;l½:ð3:2Þ

Each mj defined in (3.1) is a finite non-negative measure on S. Note that functions
fj described in (3.2) are well-defined. In fact, since X is a solid Riesz space
containing each wKj

, functions wEBKj
belong to X for every E a S. It is easy to

check that all fj are quasi-triangular functions on S, and we leave it to the reader.

We now point out that, for each j a N, mj f fj, namely, NðfjÞJNðmjÞ.
For this, take any A a NðfjÞ. Then FðwEBKj

Þ ¼ 0 for every E a SA. Thus,

combining (3.2), (N3) and (3.1) provide that mjðEÞ ¼ 0 for every E a SA. This
means that A belongs to NðmjÞ, as desired.

Specializing [5, Theorem 1.2] tells us that, for each j a N, the 0-continuity
property mj f fj is actually equivalent to the ð�; dÞ-continuity property mj½AC�fj,
namely, corresponding to each � > 0 there exists some d ¼ dð�; jÞ > 0 such that,
for any A a S,

FðwEBKj
Þ < d for all E a SA ) mjðAÞ < �:ð3:3Þ

Now, let j a N and � > 0 be arbitrarily given, and consider any f a X . Set

M ¼ fx a Kj : j f ðxÞjb �g:
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Notice that for each E a SM , then wE a X . This follows from assumption (N0)
and from the solidity of X . Moreover, �wE a j f j on E.

Assumption (N2) thus implies that

FðwEÞaoð��1ÞFð�wEÞ:ð3:4Þ

On the other hand, condition (N4) with l ¼ d=oð��1Þ provides us with the
existence of some r ¼ rð�; jÞ > 0 for which

Fð�wEÞ < d=oð��1Þ whenever Fðj f jÞ < r:ð3:5Þ

Hence, coupling (3.4) and (3.5) entails

Fðj f jÞ < r ) FðwEÞ < d for every E a SM :

This together with (3.3)—where A has to be replaced by M—assures that

Fðj f jÞ < r ) mjðMÞ ¼ mðMÞ ¼ mðfx a Kj : j f ðxÞjb �gÞ < �:

Therefore, according to (1.4) and (2.2), we can conclude that, for every j a N
and � > 0, some r > 0 exists such that

f a Bð0; rÞ ) f a U�; jð0Þ;

ending the proof. r

Proof of Corollary 1.3. Assume that ðS;S; mÞ, X and F are as in Theorem
1.2. If ð fkÞk ANHX converges to f a X with respect to the topology tF described
in Theorem 1.1, then ð fkÞk AN converges in measure to f , according to Theorem
1.2. Hence Proposition 2.1 concludes. r
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