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ABSTRACT. — We present a class of non-negative functions, acting on a solid vector subspace X
of LY, enjoying the following property: each member of the class determines on X a locally solid
topological Riesz space structure which is continuously embedded into L°. These functions are
neither necessarily monotone, nor subadditive. Special instances are provided by function norms
and quasi-norms on X.

KEy worDs: Measurable function, convergence in measure, topological Riesz space, quasi-
triangular function, quasi-norm, embedding.

2000 MATHEMATICS SUBJECT CLASSIFICATION: 46E40, 46E30, 28A12, 46A16.

1. INTRODUCTION AND MAIN RESULTS

Given a measure space (S,X,u), we let L°(x) denote the vector space of all
(u-equivalence classes of') extended real-valued functions defined on S, which are
X-measurable and p-almost everywhere finite on S. Under the u-almost every-
where ordering, L°(x) turns out to be a Riesz space, namely, a vector lattice
whose standard topology is the topology of convergence in measure on u-finite
sets, hereafter denoted as 7,,.

This topology plays a central role in many questions in analysis, and, in
particular, in the study of function spaces. Its special importance may be said to
derive from the fact that Lebesgue spaces are actually continuously embedded
into L°(x). In formulas,

(1.1) (L7 (1), 7)p,) = (LO(n), 7)

for every p € [1,o0]. Here, T, and — stand for the norm topology of the
Lebesgue space L?(x), and for a continuous embedding, respectively.

The Lebesgue spaces L?(u), for p € [1, oo, are in fact prototypal examples of
locally solid (see Section 2) topological Riesz spaces of measurable functions, as
well as of rearrangement invariant Banach function spaces. The norm || - [|,, is
indeed a lattice norm, i.e. it is monotone on the positive cone of L?(x), and
only depends on the measure of level sets of functions. Furthermore, in the case
when the measure space (S,%,u) is totally finite, all rearrangement invariant
function spaces are continuously embedded into L'(u) (see e.g. [4] for relevant
definitions and examples, and the monograph [3] for a comprehensive treatment
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of the topic). Thus, thanks to (1.1) with p = 1, all rearrangement invariant func-
tion spaces built upon a totally finite measure space are continuously embedded
into (L°(w),7,).

In recent years, various contributions have appeared, where generalizations,
along different directions, of rearrangement invariant function spaces have been
exploited (see e.g. [1, 14, 12, 7]). The generalizations that we have in mind
roughly amount to equipping some solid vector subspace X of L°(u) with some
‘relaxed’ function norm on X, such as, for instance, a quasi-norm. Such function
spaces lack a Banach structure, and their topological structure heavily depends
on the assumptions on the involved relaxed norm. It is noteworthy that member-
ship of a function to such spaces does not still assure its local integrability. Con-
sequently, the above mentioned embedding into (L°(x),7,) of these generalized
function spaces is not guaranteed.

The above considerations naturally raise the issue of finding a broad class .7
of nonnegative functions, acting on a solid vector subspace X = X (u) of L%(pu),
obeying the following requirements:

1) membership of a function @ to the class 7 depends only on the behavior of

the function in question with respect to the lattice operations of X

ii) each function ® € 7 generates on X a locally solid topology, denoted as zg;

iii) embedding (1.1) continues to hold even if (L?(u), TII-Hp) is replaced by (X, 7¢),
provided ® € 7;

iv) lattice norms on X belong to the class 7, and the locally solid topology
generated on X by each of them as elements of . agrees with the norm
topology.

Let us remark that condition i) is justified by the highly non-trivial fact that
the topology of convergence in measure on L°(u) can be described just in terms
of the Riesz space structure, without any reference to either the underlying mea-
sure algebra or to integration (see e.g. [11, Chapt. 36, Sect. 367T]). Accordingly,
here our investigation of such an issue calls into play the notion of disjointness
for functions in any Riesz subspace X <= L(u), that the lattice structure of X
actually allows.

To be more specific, two functions f,g € X are called disjoint whenever
|1 Algl| =0. Here, we adopt the standard notation fvg =sup{f,g} and
fAag=inf{f, g} for f,ge X = L°(u). We shall write f L g to denote that f
and ¢ are disjoint.

A function @ : X — [0, o[, with ®(0) =0, is then called quasi-triangular
whenever for any e > 0 there exists J. > 0 such that

O(fvg) <e if ©(f),D(g) € [0,0c[;
D(g) <€ if ©(f),®(f vg) €[0,0]
forall f,g e X, with f L g.

Each quasi-triangular function on X clearly satisfies i). Moreover, lattice
norms on X turn out to be quasi-triangular functions. This is also the case for

(1.2)
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quasi-monotone and quasi-subadditive nonnegative maps on X, namely, those
functions ¥ : X — [0, oo[, with ¥(0) = 0, for which some constants Cj, C; > 1
exist such that

(1.3) Ci max{¥(/),¥(9)} < ¥(f vg) < Cymax{¥(/), ¥(g)}

for every f,g € X, with f L g. All quasi-norms on X satisfy (1.3). Typical exam-
1/
ples are provided by X = L7 (), for p € |0, 1], and ¥(f) = ||/, = (/ |f|1’) !

for f e X. Further instances can be obtained from functions of the form
AoW¥, where ¥ : X — [0,+00[, ¥(0) =0, fulfils (1.3) with C;, = C, =1, and
A :[0,400[ — [0, +00[ vanishes at 0 and is either convex (namely, a Young func-
tion) and satisfies the A,-condition, or quasi-concave. Recall that A satisfies the
A,-condition if a positive constant ¢ exists such that A(27) < cA(r) for t = 0,
whereas A4 is quasi-concave if 4(0) =0, A(¢) > 0 and increasing for ¢ > 0, and
@ is decreasing for ¢ > 0.

We refer to [12] for more details on customary, and less standard, examples of
quasi-monotone and quasi-subadditive functions.

Our first result shows, in particular, that quasi-triangular functions fulfil re-
quirement ii) as well. In what follow, the notion of Fréchet-Nikodym topology
on a solid vector space X will play a role. Recall that the symmetric difference
of two function f,g € L°(u) is defined as f Ag=fvg— frg=|f—g|, and
the Fréchet-Nikodym topology turns (X, /\) into a topological abelian group
with a base of neighborhoods of 0 consisting of solid subsets of X. For further
information and references, we refer to [9, 8, 15].

THEOREM 1.1. Let X be a solid vector subspace of L°(u). Every quasi-triangular
Sfunction @ : X — [0, oo, with ®(0) = 0, induces on X a locally solid topology ¢
whose neighborhood base at each f € X is the family %[f] = {B(f,r):r > 0},
where

(14)  B(f,r)={ge X :O(ul) <r forue L) s.t. [u] <[|f] — gl [}.

Moreover, 1o is a Fréchet-Nikodym topology on X.

When @, in addition, vanishes only at functions which equal 0 a.e., then the to-
pology T is Hausdorff, and the positive cone X, = {f € X : f > 0} of X is closed
in (X,7e).

We observe that, being X a solid vector subspace of L(u), the set B(f,r)
described in (1.4) is well-defined, since functions u € L°(u) actually belong to X.
In the special case when @ is a lattice norm on X in Theorem 1.1, one has that
B(f,r)={g9ge X :®(f —g) <r}, ie. B(f,r) is the standard open ball centered
at f, with radius r, of normed Riesz spaces. This follows from the solidity of
X and from the monotonicity of a lattice norm on X.. The first part of condition
1v) is thus satisfied by quasi-triangular functions.
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It is however clear that condition iii)—and, consequently, the second part of
iv)—entails additional assumptions on the behavior of quasi-triangular func-
tions with respect to multiplication by scalars, as well as to the p-almost every-
where ordering. Next result provides them in the context of o-finite measure
spaces. Letting y, denote the characteristic function of any 4 € X, we state the
following

THEOREM 1.2. Let (S,Z, 1) be a a-finite measure space, and let X be a solid Riesz
subspace of L°(u) satisfying the following property

(NO) xg, € X for all j €N, and for some (K;); . = X such that u(K;) < oo and
K /S

Then
(Xy TfD) — (Lo(ﬂ)v T,u)
for every quasi-triangular function ® : X — [0, oo such that

(N1) there exist a function o : [0, o[ — [0, 0o[, with w(0) = 0, such that
O(of) < w()®@(f) forall e 0,0 f€X,

(N2) ®©(f) > 0 if f does not vanish p-a.e.;
(N3) for any A >0 there exists some r; >0 such that ®(g) < A whenever

figeX,, g < fand ®(f) <r,.

To summarize, an answer to the issue stated above can be formulated in the
setting of o-finite measure spaces (S, %, 1) as follows. For any solid vector sub-
space X = X(u) of L°(u) obeying condition (NO), the class 7 consists of all
those non-negative functions defined on X which are quasi-triangular and fulfil
assumptions (N1)—(N3).

Since o-finiteness of a measure space (S, X, 1) is equivalent to metrizability of
the topology of convergence in measure on L°(u), 7, can be effectively described
in terms of convergent sequences. Our last result thus relates t¢-sequential con-
vergence to sequential convergence in measure in X (and thus with u-a.e. sequen-
tial pointwise convergence in .S).

COROLLARY 1.3. Let (S,Z,p), X and ® be as in Theorem 1.2. If (fi)ony © X
converges to some [ € X with respect to te, then every subsequence of (fi),.n has
a further subsequence which converges to f p-a.e. in S.

Let us mention that Theorems 1.1-1.2 improve [12, Theorem 1.6], where
the case of quasi-additive and quasi-monotone functions fulfilling conditions
(N1)—(N2) is taken into account. In particular, [12, Definition 1.2] introduces a
definition of topology induced by a nonnegative function vanishing at the zero
of the abelian group (X, +). A specialization of our Theorem 1.1 to the frame-



TOPOLOGICAL RIESZ SPACES CONTINUOUSLY EMBEDDED INTO L° 155

work of [12] shows that there is no need for such an assumption. Indeed, any
quasi-triangular function does generate a Fréchet-Nikodym topology on a solid
vector subspace of L(u).

We finally point out that the proof of Theorem 1.2 depends in a key way
on the equivalence on sets of finite measure between the notion of 0-continuity
and that of (¢,J)-continuity of the measure g—of the underlying measure space
(S, %, u)—with respect to the non-additive measure ¢ determined on X by the
quasi-triangular function ® on X which is taken into account (see the end of
Sect. 2 for definitions). Such an equivalence is established in a more general
setting by [5, Theorem 1.2], whose proof makes use of Fréchet-Nikodym topol-
ogies and of standard methods of measure theory. Our approach is therefore
completely different from that of [12], where the theory of capacities, and specif-
ically certain capacitary estimates on semigruppoids are instead exploited (see
[12, Sect. 2] and [13]).

Proofs of our results will be given in Sect. 3. The next section contains defini-
tions, notation and preliminary results needed in our discussion.

2. BACKGROUND

We collect here some definitions and properties from the theory of Riesz spaces.
We refer to the monographs [2], [10, Chap. 24] and [11, Chap. 35-36] for more
details and proofs.

Let (S,Z, 1) be a measure space, i.e. X is g-algebra of subsets of a set S, and
12— [0,+00] is an extended non-negative measure. Hereafter, y, stands for
the characteristic function of 4 € X.

We let LO(u) = L°(S,Z, 1) denote the vector space of all (u-equivalence
classes of ) extended real-valued functions defined on S, which are X-measurable
and g-almost everywhere finite on S. The space L°(x) is a Riesz space (or vector
lattice) under the p-almost everywhere ordering, defined by saying that f <g
whenener f(x) < g(x) for all x € S\N, with N € £ and u(N) = 0.

Following the classic lattice notation, we let fvg=sup{f,g}, fArg=
inf{f,g}and f ANg=fvg—frg=|f—g|forevery f,g € L°(). Then two
functions f, g € L°(u) are called disjoint, in symbols f L g, if | f| A |g| = 0. Note
that for / L g, then f Ag= fvg=f+g. Moreover, a subset Y of L°(u) is
said to be solid if, for every g € Y,

{fel’w:lfl<lgl =Y.

Solid sets of L°(u) contain absolute values of their elements. Thus, solid vector
subspaces (usually called ‘ideals’) of L°(u) are Riesz subspaces of L°(u), i.e. vec-
tor subspaces of L%(u) closed under lattice operations. The converse, however,
fails. A straightforward example is given by the Riesz subspace C°[0,1] of all
continuous real functions in L°[0, 1], which is clearly not an ideal. Here, L°[0, 1]
simply denotes L°(x) in the case when (S,X, u) is the Lebesgue measure space
on [0, 1].
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Throughout, we assume L°(u) equipped with the topology of convergence in
measure, that we shall denote as 7,,. This topology is induced by the semimetrics

@.1) o+ (f19) € L) x LO(1) / 1 — gl Ak € [0, 0]

for K € X, with u(K) < oo.

The metrizability of 7, depends on the underlying measure space. Indeed,
7, is metrizable if, and only if, (S,Z, ) is o-finite. When (S,X, i) is o-finite, if
(Kj);en = X is some increasing sequence such that S = ;. Kj, with u(K;) < oo
for all j, the function ‘

TrouE) o0 e L1 x Ly

p(f,9) =

jeN
is a metric on L°(x) inducing 7,, and the sets

(2.2) Upe = 1{f € L) u({x € Ky | /(%) = €}) < e},

with j € N and € > 0, form a base of solid neighborhoods at zero. So a sequence
(fi)gen in L) converges in measure to f € L°(u) (fi = f, for short) if, and
only if]

(2.3) lim u({x € S |fi(¥) = £()] = }) = 0

for every € > 0.

Hence, focusing on o-finite measure spaces, the topology 7, of convergence in
measure can be effectively described in terms of convergent sequences, and the
following sharp characterization of sequential convergence in measure becomes
relevant (see e.g. [10, Chapt. 24, Sect. 245K]).

ProrosITION 2.1. Let (S,Z,u) be a o-finite measure space. A sequence
(fi)een = LO(1) converges in measure to f € L°(u) if, and only if, every sub-
sequence of (fi)ron has a sub-subsequence converging to f p-a.e. on S.

In Sect. 1 we have introduced the definition of a quasi-triangular function
acting on Riesz subspace X of L°(u) = L°(S,X, u), emphasizing—throught re-
quirement i)—that such notion just depends on the behavior of the function in
question with respect to the lattice operations of X. It is therefore obvious that
the notion of quasi-triangular function defined on any Boolean ring (and thus
on the g-algebra X of the measure space taken into account) can be analogously
formulated. Precisely, a function ¢: % — [0, 00[, with ¢(0) =0, is said to be
quasi-triangular (on X) whenever for any € > 0 there exists some J. > 0 such that

PEVF) <e if 9(E),¢(F) € [0,0[;

(2.4) $(F) < e if $(E), p(E L F) € (0,0
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for all E,FeX, with EnF =0. For several concrete examples of quasi-
triangular functions acting on Boolean rings, we refer the reader to [6]. Here we
just mention that non-negative classical measures, finitely additive measures,
k-triangular functions and quasi-submeasures (i.e. quasi-subadditive and quasi-
monotone in a sense similar to (1.3) above) acting on X are all relevant instances
of quasi-triangular functions on X.

Quasi-triangular functions may fail to be both monotone and subadditive.
Then the kernel of a quasi-triangular ¢ : ¥ — [0, oo[ is defined as

(2.5) N(p)={4eX:¢p(E)=0forall EeX,},

where 2, ={EnA:EeX}.

Given a measure space (S, X, 1), and two quasi-triangular functions ¢, v on X,
we recall that v is said to be 0-continuous with respect to ¢, in symbols v < ¢,
if A (¢) = A'(v); whereas v is called (e,0)-continuous with respect to ¢, in
symbols v[A4C]¢, whenever for every ¢ > 0 there exists some 0 > 0 such that if
#(Z4) < [0,0] for some A4 € X, then v(A4) < ¢.

Of course, v[4C]¢ implies v « ¢. On specializing |5, Theorem 1.2], the non-
trivial reverse implication also holds for v being a classical measure on X. This
equivalence will play a key role in the proof of Theorem 1.2.

3. PROOFS
ProOOF OF THEOREM 1.1. We first show that, taken any f € X, the sets
B(f,r)={g € X : ®(|u) < rfor u € L°(u) such that u| < ||| gl [},

for r €0, co[, form a neighbourhood base at f. Notice that, being X a solid
vector subspace of L°(u), each function u e L°(u) appearing in the above
description of B(f,r) does belong to X as well its absolute value.

It is immediate that f € B(f,r) for every r > 0 and that B(f,r) nB(f,r2) =2
B(f,r) for every ri,r; €]0,00[ and r € |0, min{ry, r2}].

We now claim that for any r > 0 there exist some numbers p, p’ > 0 such that
B(g,p') < B(f,r) when g € B(f,p).

Indeed, given r > 0, the quasi-triangularity of @ provides the existence of
some 0 < r for which (2.4) holds with e replaced by r. Let g € B(f',0), and take
h € B(g,0). Note that ||| — |f|| = |h| A|f], and |f] A |h| € X. Moreover, the
absolute value of any u e L) fulfilling the estimate |u| < ||f|—|g|| can be
rewritten as |u| = vy v vy, where

vi = [ul A{|A| &g = [(|A] & lgl) A (lg] & FDI
va = [ul A{lg| & [f] = [(IA] & 1g]) A (lg] & 17D}
Observe that vy,v; € X, vy L vp. Moreover, v; € B(g,0) and v, € B(f,0). So

the quasi-triangularity of ® guarantees that ®(|u|) < r. Thus, & € B(f,r). This
proves the claim with p = p’ = 0.
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Second, each B(f,r), r > 0, is a solid set in X. This follows at once observing
that |h] A |f| < |f| A |g| for every g € B(f,r) and h € X with |h] < |g].

Next, we show that (X, A, 7¢) is actually a topological group, where ¢, stands
for the topology induced on X by the sets B(f,r), with f € X and > 0. For this,
since /A f =0 for every f € X, it is enough to prove the continuity on X of the
symmetric difference operation A. Take f,g € X, and consider B(f A g,r) for
some r > 0. Again, the quasi-triangularity of ® yields the existence of some
0 < r such that (2.4) holds with e replaced by r. Easy computations provide that
fi &g € B(f A g,r) whenever f; € B(f,0) and g; € B(g,0). That is, the desired
continuity of A on X.

Finally, to see that 7o is a Fréchet-Nikodym topology, it suffices to show
that functions n, : f € X — f Ag € X are tgp-continuous, uniformly with respect
to g € X. But this follows by observing that, for any f; € X, then (fAg)A
(fing) =(fA fi)ng for all f.ge X, and B(fi Ag,r) = B(f1,r) for every
r>0andge X.

When @, in addition, vanishes only at functions which equal 0 a.e., it is easy
to check that 7 is Hausdorff. Hence, in particular, {0} is closed in (X, 7¢). Being
79 a Fréchet-Nikodym topology, the map f +— f A0 is continuous in (X, 7q).
Then X, is closed in (X, 7g), since X; = {f € X : f A0 =0}. O

PrOOF OF THEOREM 1.2. Let (Kj); . < X be an increasing sequence of sets of

finite measure such that S = (J; K; and Xk, € X for all j, accordingly to assump-
tion (NO).
For each j € N, set

(3.1) tEeX— u(EnK;) e |0,
(3.2) ¢ EeX— O(ypng) €10, 0.

Each ; defined in (3.1) is a finite non-negative measure on . Note that functions
¢; described in (3.2) are well-defined. In fact, since X is a solid Riesz space
containing each yg , functions yp., belong to X for every E € X. It is easy to
check that all ¢; are quasi-triangular functions on %, and we leave it to the reader.

We now point out that, for each j e N, W < ¢;, namely, N (¢;) = N (1;).

For this, take any 4 € 4(¢;). Then ®(yp~x ) =0 for every E € £4. Thus,
combining (3.2), (N3) and (3.1) provide that x;,(E) = 0 for every E € X4. This
means that 4 belongs to .A"(y;), as desired.

Specializing [5, Theorem 1.2] tells us that, for each j € N, the 0-continuity
property 4; < ¢; is actually equivalent to the (e,d)-continuity property x;[AC]¢;,
namely, corresponding to each e > 0 there exists some J = d(e, j) > 0 such that,
forany 4 € %,

Now, let j € N and € > 0 be arbitrarily given, and consider any f € X. Set

M={xeK;:|f(x)| =€}
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Notice that for each E € X, then y, € X. This follows from assumption (NO)
and from the solidity of X. Moreover, ey < |f| on E.
Assumption (N2) thus implies that

(3-4) D(xp) < (e )O(ex).

On the other hand, condition (N4) with 1 =dJ/w(e~!) provides us with the
existence of some r = r(e, j) > 0 for which

(3.5) ®(eyp) < 0/w(e ')  whenever ®(|f]) < r.
Hence, coupling (3.4) and (3.5) entails
O(f]) <r = ®(yp) <o forevery E € Z),.

This together with (3.3)—where A has to be replaced by M —assures that

O(f) <r = wM)=uM)=pu({xekK:[f(x)]=ze}) <e

Therefore, according to (1.4) and (2.2), we can conclude that, for every j € N
and € > 0, some r > 0 exists such that

feB0,r) = feU0),
ending the proof. O

PrROOF OF COROLLARY 1.3. Assume that (S, %, x), X and ® are as in Theorem
1.2, If (fi),cny © X converges to f € X with respect to the topology 7¢ described
in Theorem 1.1, then (f;), . converges in measure to f, according to Theorem
1.2. Hence Proposition 2.1 concludes. O
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