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Abstract. — This work is devoted to the study of the existence of solutions to nonlocal equations

involving the fractional Laplacian. These equations have a variational structure and we find a
nontrivial solution for them using the Mountain Pass Theorem. To make the nonlinear methods

work, some careful analysis of the fractional spaces involved is necessary. In addition, we require
rather general assumptions on the local operator. As far as we know, this result is new and represent

a fractional version of a classical theorem obtained working with Laplacian equations.

Key words: Nonlocal problems, fractional equations, Mountain Pass Theorem.

Mathematics Subject Classification: Primary: 49J35, 35S15; Secondary: 47G20, 45G05.

1. Introduction

As is well-known, nonlocal Laplacian boundary value problems model several
physical and biological systems where u describes a process which depends on
the average of itself, for example, the population density (see [1, 4, 13, 14, 34]).
In the vast literature on this subject, we also refer the reader to some interesting
results obtained by Autuori and Pucci in [5, 6, 7] studying Kirchho¤ equations by
using di¤erent approaches.

Very recently, the nonlocal fractional counterpart of Kirchho¤-type problems
has been considered (see [12] and [17, 22]). In this order of ideas, we are inter-
ested here on the existence of weak solutions for the following (doubly) nonlocal
problem:

M
�Z

Rn�Rn

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
ð�DÞsu ¼ f ðx; uÞ in W

u ¼ 0 in RnnW;

8><
>:ðDM; f Þ

where W is a bounded domain in ðRn; j � jÞ with smooth boundary qW, s a ð0; 1Þ
is fixed with s < n=2 and ð�DÞs is the fractional Laplace operator, which (up to
normalization factors) can be defined as

ð�DÞsuðxÞ :¼ �
Z
Rn

uðxþ yÞ þ uðx� yÞ � 2uðxÞ
jyjnþ2s

dy; x a Rn:

Further, f : W� R ! R and M : ½0;þlÞ ! ½0;þlÞ are suitable continuous
maps.



In our context, problem ðDM; f Þ is studied by exploiting classical variational
methods. More precisely, we apply the celebrated Mountain Pass Theorem
(abbreviated MPT) to this kind of equations motivated by the current literature
where the MPT has been intensively applied to find solutions to quasilinear
elliptic equations (see [3, 25, 27, 33]).

Technically, this approach is realizable by checking that the associated energy
functional satisfies the usual compactness Palais-Smale condition in a suitable
variational setting developed by Servadei and Valdinoci (see [30]). Indeed, the
nonlocal analysis which we perform in this paper in order to use the Mountain
Pass Theorem is quite general and it was successfully exploited for other goals
in several recent contributions (see [16, 19, 20, 21, 23, 28, 30, 31, 32] and [15]
for various properties on the fractional Sobolev space setting).

This functional analytical context was inspired by (but is not equivalent to)
the fractional Sobolev spaces, in order to correctly encode the Dirichlet boundary
datum in the variational formulation.

In our context, to avoid some additional technical di‰culties due to the
presence of the term

M
�Z

Rn�Rn

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
;

we impose some restrictions on the behavior of the continuous map M.
More precisely, we require that there exists a constant m0 such that:

ðC1
MÞ 0 < m0 aMðtÞ, Et a ½0;þlÞ.

In addition to the above hypothesis, we assume that:

ðC 2
MÞ There exists t0 b 0 such that

M̂MðtÞb tMðtÞ;

for every t a ½t0;þlÞ, where M̂MðtÞ :¼
Z t

0

MðsÞ ds.

The above conditions ensure, as proved in Lemma 1, that the potential M̂M has
a sublinear growth. Under the previous assumptions, by imposing conditions
on the nonlinear part f (among others, the Ambrosetti-Rabinowitz relation) we
prove the existence of at least one nontrivial weak solution to problem ðDM; f Þ,
see Theorem 2.

This result is related to [30, Theorem 2] where the authors studied a local
problem involving a general integro-di¤erential operator of fractional type (see
Remark 3) whose prototype is

ð�DÞsu ¼ f ðx; uÞ in W

u ¼ 0 in RnnW;

�
ðDf Þ

162 g. molica bisci and d. repovš



We just observe that in our context, in contrast with the cited result, we don’t
require that

lim
t!0

f ðx; tÞ
t

¼ 0;

uniformly with respect to x a W (see condition (1) in Theorem 2 and Remark 4
below).

Moreover, our main theorem extends to the nonlocal setting a result, already
known in the literature for Kirchho¤-type problems obtained by Alves, Corrêa
and Ma [2, Theorem 3]. We just point out that M, in the original meaning for
Kirchho¤ equation, is an increasing function, thus condition ðC2

MÞ is clearly
violated.

We mention, for completeness, that the existence and multiplicity of solutions
for elliptic equations in Rn, driven by a nonlocal integro-di¤erential operator,
whose standard prototype is the fractional Laplacian, have been studied by
Autuori and Pucci in [9] (this work is related to the results on general quasilinear
elliptic problems given in [8]). See also the relevant contributions [10, 24, 26]
where Kirchho¤-type problems have been studied by using di¤erent methods
and approaches.

The plan of the paper is as follows. Section 2 is devoted to our abstract frame-
work and preliminaries. Successively, in Sections 3 we give the main result (see
Theorem 2). Finally, a concrete example of an application is presented in the
last part of the paper (see Example 1).

2. Abstract framework

This section is devoted to the notations used throughout the paper. We also list
some preliminary results which will be useful in the sequel.

Let HsðRnÞ be the usual fractional Sobolev space endowed with the norm
(the so-called Gagliardo norm)

kgkH sðRnÞ ¼ kgkL2ðRnÞ þ
�Z

Rn�Rn

jgðxÞ � gðyÞj2

jx� yjnþ2s
dx dy

�1=2
:

and defined as the linear space of functions g a L2ðRnÞ such that

the map ðx; yÞ 7! gðxÞ � gðyÞ
jx� yjn=2þs

is in L2ðRn � Rn; dx dyÞ:

Let us consider the subspace X0 HHsðRnÞ given by

X0 :¼ fg a HsðRnÞ : g ¼ 0 a:e: in RnnWg:

Of course, the space X0 is non-empty, since C2
0 ðWÞJX0 by [29, Lemma 11] and

it depends on the set W.
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Moreover, by [30, Lemma 6] and the fact that any function v a X0 is such
that v ¼ 0 a.e. in RnnW, we can take in the sequel

X0 C v 7! kvkX0
:¼

�Z
Q

jvðxÞ � vðyÞj2

jx� yjnþ2s
dx dy

�1=2
as norm on X0, where Q :¼ ðRn � RnÞnðCW� CWÞ, and CW :¼ RnnW.

Also ðX0; k � kX0
Þ is a Hilbert space (for this see [30, Lemma 7]), with the scalar

product

3u; v4X0
:¼

Z
Q

ðuðxÞ � uðyÞÞðvðxÞ � vðyÞÞ
jx� yjnþ2s

dx dy:

We recall that in [30, Lemma 8] and [32, Lemma 9] the authors proved that
the embedding j : X0 ,! LnðRnÞ is continuous for any n a ½1; 2��, while it is com-
pact whenever n a ½1; 2�Þ, where 2� :¼ 2n=ðn� 2sÞ denotes the Sobolev fractional
exponent.

Hence, for any n a ½1; 2�Þ, there exists cn > 0 such that

kvkL nðRnÞ a cnkvkX0
;

for every v a X0.
In the sequel, we will denote by l1; s the first (simple and positive) eigenvalue

of the operator ð�DÞs with homogeneous Dirichlet boundary data, namely the
first eigenvalue of the problem

ð�DÞsu ¼ lu in W

u ¼ 0 in RnnW;

�

that can be characterized as follows

l1; s ¼ min

Z
Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dyZ

W

juðxÞj2 dx
: u a X0nf0X0

g

8>>><
>>>:

9>>>=
>>>;
:

For the existence and the basic properties of this eigenvalue we refer to
[31, Proposition 9 and Appendix A], where a spectral theory for general integro-
di¤erential nonlocal operators was developed. Further properties can be also
found in [28].

Finally, for the sake of completeness, we recall that a C1-functional
J : E ! R, where E is a real Banach space with topological dual E �, satisfies
the Palais-Smale condition at level m a R, (abbreviated ðPSÞm) when:

ðPSÞm Every sequence fujg in E such that

JðujÞ ! m; and kJ 0ðujÞkE � ! 0;

as j ! l, possesses a convergent subsequence.
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We say that J satisfies the Palais-Smale condition (abbreviated ðPSÞ) if ðPSÞm
holds for every m a R.

With the above notation, our main tool is the classical MPT:

Theorem 1. Let ðE; k � kEÞ be a real Banach space and let J a C1ðE;RÞ be such
that Jð0EÞ ¼ 0 and it satisfies the ðPSÞ condition. Suppose that:

ðI1Þ There exist constants r; a > 0 such that JðuÞb a if kukE ¼ r.
ðI2Þ There exists e a E with kekE > r such that JðeÞa 0.

Then J possesses a critical value cb a, which can be characterized as

c :¼ inf
g AG

max
u A gð½0;1�Þ

JðuÞ;

where

G :¼ fg a Cð½0; 1�;EÞ : gð0Þ ¼ 0bgð1Þ ¼ eg:

See [27, p. 7; Theorem 2.2].
We cite the monograph [18] as general reference for the variational setting

adopted in this paper.

3. The main result

Our main result is as follows.

Theorem 2. Let us assume that M : ½0;þlÞ ! ½0;þlÞ is a continuous map
such that conditions ðC1

MÞ and ðC2
MÞ hold. Further, require that f : W� R ! R is

a continuous function which satisfies the following requirements:

h1Þ The subcritical growth condition:

j f ðx; tÞja cð1þ jtjq�1Þ; ðEx a W; Et a RÞ

where c > 0 and 2 < q < 2�;
h2Þ The Ambrosetti-Rabinowitz (abbreviated ðARÞ) condition:

F ðx; xÞ :¼
Z x

0

f ðx; tÞ dt

is y-superhomogeneous at infinity, i.e. there exists t� > 0 such that

0 < yF ðx; xÞa f ðx; xÞx; ðEx a W; Ejxjb t?Þ

where y > 2.
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We also assume that

lim sup
t!0

f ðx; tÞ
t

a l;ð1Þ

uniformly for x a W, where

l < m0l1; s:

Then the nonlocal problem

M
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
ð�DÞsu ¼ f ðx; uÞ in W

u ¼ 0 in RnnW;

8><
>:ðDM; f Þ

has at least one nontrivial weak solution.

We recall that a weak solution of problem ðDM; f Þ is a function u a X0 such
that

M
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�Z
Q

ðuðxÞ � uðyÞÞðjðxÞ � jðyÞÞ
jx� yjnþ2s

dx dy

¼
Z
W

f ðx; uðxÞÞjðxÞ dx; Ej a X0:

3.1. Some remarks on our assumptions

The validity of the next lemma will be crucial in the sequel.

Lemma 1. Suppose that conditions ðC1
MÞ and ðC2

MÞ hold. Then, there are two
positive constants m1 and m2 such that

M̂MðtÞam1tþm2;ð2Þ

for every t a ½0;þlÞ.

Proof. Let t1 > t0, where t0 appears in hypothesis ðC2
MÞ. By our assumptions

we easily have

MðtÞ
M̂MðtÞ

a
1

t
;

for every t a ½t1;þlÞ. Integrating the above relation, we obtainZ t

t1

MðsÞ
M̂MðsÞ

ds ¼ log
M̂MðtÞ
M̂Mðt1Þ

a log
t

t1
;
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for every t a �t1;þlÞ. Thus

M̂MðtÞa M̂Mðt1Þ
t1

t;

for every t a �t1;þlÞ. Hence the growth condition (2) holds by taking, for

instance, m1 :¼
M̂Mðt1Þ
t1

and m2 :¼ max
t A ½0; t1�

M̂MðtÞ. The proof is complete.

Owing to conditions ðC1
MÞ and ðC2

MÞ, by Lemma 1 one gets the following
inequalities:

ðĈCMÞ m0

kuk2X0

2
a

1

2
M̂M

�Z
Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
am1

kuk2X0

2
þm2

2

for every u a X0.

Remark 1. We observe that h2Þ implies that

Fðx; txÞbFðx; xÞty;

for every x a W, jxjb t? and tb 1. Indeed, for t ¼ 1, clearly the equality holds.
Otherwise, fix jxjb t? and define gðx; tÞ :¼ F ðx; txÞ, for every x a W and
t a �1;þlÞ. By ðARÞ condition it follows that

g 0ðx; tÞ
gðx; tÞ b

y

t
;

for every x a W and t > 1. By integrating in �1; t� we get thatZ t

1

g 0ðx; sÞ
gðx; sÞ ds ¼ log

gðx; tÞ
gðx; 1Þ b log ty:

In conclusion, since for every x a W, jxjb t? and t > 1 one has

F ðx; txÞ ¼: gðx; tÞ
b gðx; 1Þty

¼ F ðx; xÞty;

the claim is verified.

3.2. Proof of Theorem 2
Set

FðuÞ :¼ 1

2
M̂M

�Z
Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�

for every u a X0.
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Under the assumptions of Theorem 2, we define the C1-functional

JðuÞ :¼ FðuÞ �
Z
W

Fðx; uðxÞÞ dx; ðEu a X0Þ

where

F ðx; uðxÞÞ :¼
Z uðxÞ

0

f ðx; sÞ ds;

whose critical points are the weak solutions of problem ðDM; f Þ.
In order to prove our result, we apply Theorem 1 to this functional. In the

next three lemmas we shall verify the Mountain Pass Theorem conditions.

Lemma 2. Every Palais-Smale sequence for the functional J is bounded in X0.

Proof. Let fujgHX0 be a Palais-Smale sequence i.e.

JðujÞ ! m;ð3Þ

for m a R and

kJ 0ðujÞkX �
0
¼ supfj3J 0ðujÞ; j4j : j a X0; kjkX0

¼ 1g ! 0;ð4Þ

as j ! l.
We argue by contradiction. So, suppose to the contrary that the conclusion

were not true. Passing to a subsequence if necessary, we may assume that

kujkX0
! þl;

as j ! l.
By conditions ðC1

MÞ and ðC2
MÞ, it follows that there exists j0 a N such that

JðujÞ �
3J 0ðujÞ; uj4

y
¼ Mðkujk2X0

Þ
M̂Mðkujk2X0

Þ
2Mðkujk2X0

Þ
�
kujk2X0

y

" #

þ
Z
W

f ðx; ujðxÞÞujðxÞ
y

� F ðx; ujðxÞÞ
� �

dx;

bm0

� 1

2
� 1

y

�
kujk2X0

þ
Z
W

f ðx; ujðxÞÞujðxÞ
y

� F ðx; ujðxÞÞ
� �

dx;

for every jb j0.
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Thus

m0

� y� 2

2y

�
kujk2X0

a JðujÞ �
3J 0ðujÞ; uj4

y

�
Z
jujðxÞj>t?

f ðx; ujðxÞÞujðxÞ
y

� Fðx; ujðxÞÞ
� �

dx;

þMmeasðWÞ; E jb j0;

where ‘‘measðWÞ’’ denotes the standard Lebesgue measure of W and

M :¼ sup
f ðx; tÞt

y
� F ðx; tÞ

����
���� : x a W; jtja t?

� �
:

Now, we observe that, the ðARÞ condition yieldsZ
jujðxÞj>t?

f ðx; ujðxÞÞujðxÞ
y

� Fðx; ujðxÞÞ
� �

dxb 0:

So, we deduce that

m0

� y� 2

2y

�
kujk2X0

a JðujÞ �
3J 0ðujÞ; uj4

y
þMmeasðWÞ;

for every jb j0.
Then, for every jb j0 one has

Ckujk2X0
a JðujÞ þ ykJ 0ðujÞkX �

0
kujkX0

þMmeasðWÞ;

where C :¼ m0

� y� 2

2y

�
> 0.

In conclusion, dividing by kujkX0
and letting j!l, we obtain a contradiction.

The above lemma implies that the C1-functional J satisfies the Palais-Smale
condition as proved in the next result.

Lemma 3. The functional J satisfies the compactness ðPSÞ condition.

Proof. Let fujgHX0 be a Palais-Smale sequence. By Lemma 2, the sequence
fujg is necessarily bounded in X0. Since X0 is reflexive, we can extract a sub-
sequence which for simplicity we shall call again fujg, such that uj * ul in X0.
This means that Z

Q

ðujðxÞ � ujðyÞÞðjðxÞ � jðyÞÞ
jx� yjnþ2s

dx dyð5Þ

!
Z
Q

ðulðxÞ � ulðyÞÞðjðxÞ � jðyÞÞ
jx� yjnþ2s

dx dy;

for any j a X0, as j ! þl.
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We will prove that uj strongly converges to ul a X0. Exploiting the derivative
J 0ðujÞðuj � ulÞ, we obtain

3aðujÞ; uj � ul4 ¼ 3J 0ðujÞ; uj � ul4ð6Þ

þ
Z
W

f ðx; ujðxÞÞðuj � ulÞðxÞ dx;

where we set

3aðujÞ; uj � ul4 :¼
�Z

Q

jujðxÞ � ujðyÞj2

jx� yjnþ2s
dx dy

�
Z
Q

ðujðxÞ � ujðyÞÞðulðxÞ � ulðyÞÞ
jx� yjnþ2s

dx dy
�

�M
�Z

Q

jujðxÞ � ujðyÞj2

jx� yjnþ2s
dx dy

�
:

Since kJ 0ðujÞkX �
0
! 0 and the sequence fuj � ulg is bounded in X0, taking

into account that j3J 0ðujÞ; uj � ul4ja kJ 0ðujÞkX �
0
kuj � ulkX0

, one gets

3J 0ðujÞ; uj � ul4 ! 0;ð7Þ

as j ! l.
Now observe that, by condition h1Þ, it follows thatZ

W

j f ðx; ujðxÞÞj jujðxÞ � ulðxÞj dx

a c
�Z

W

jujðxÞ � ulðxÞj dxþ
Z
W

jujðxÞjq�1jujðxÞ � ulðxÞj dx
�

a cððmeasðWÞÞ1=q
0
þ kujkq�1

LqðWÞÞkuj � ulkLqðWÞ;

where, as usual, q 0 denotes the conjugate of q.
Since the embedding X0 ,! LqðWÞ is compact, clearly uj ! ul strongly in

LqðWÞ. So we obtainZ
W

j f ðx; ujðxÞÞj jujðxÞ � ulðxÞj dx ! 0:ð8Þ

By (6), relations (7) and (8) yield

3aðujÞ; uj � ul4 ! 0;ð9Þ

when j ! l.
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Bearing in mind condition ðC1
MÞ one obtains

0 < m0 aM
�Z

Q

jujðxÞ � ujðyÞj2

jx� yjnþ2s
dx dy

�
;ð10Þ

for every j a N.
Hence by (10) and (9) we can write

Z
Q

jujðxÞ � ujðyÞj2

jx� yjnþ2s
dx dyð11Þ

�
Z
Q

ðujðxÞ � ujðyÞÞðulðxÞ � ulðyÞÞ
jx� yjnþ2s

dx dy ! 0;

when j ! l.
Thus, by (11) and (5) it follows that

lim sup
j!l

Z
Q

jujðxÞ � ujðyÞj2

jx� yjnþ2s
dx dy ¼

Z
Q

julðxÞ � ulðyÞj2

jx� yjnþ2s
dx dy:

In conclusion, thanks to [11, Proposition III.30], uj ! ul in X0. The proof is
thus complete.

Lemma 4. The functional J has the geometry of the Mountain Pass Theorem.
More precisely:

1. There exists r > 0 such that

inf
kukX0¼r

JðuÞ > 0:

2. For some u0 a X0 one has

Jðtu0Þ ! �l;

as t ! þl.

Proof. 1. We choose e > 0 small enough, so that it satisfies

m0 >
lþ e

l1; s
:

By condition (1) there exists de > 0 such that

f ðx; tÞ
t

a lþ e;

for every x a W and jtja de.
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Hence, one has

F ðx; xÞa lþ e

2
jxj2;

for every jxja de.
As a consequence of the above inequality, using hypotheses h1Þ, the Sobolev

embedding X0 ,! LqðWÞ and ðĈCMÞ, we can write:

JðuÞb m0

2
kuk2X0

�
Z
juðxÞjade

lþ e

2
juðxÞj2 dx� C

Z
juðxÞj>de

juðxÞjq dx

b
m0

2
kuk2X0

� lþ e

2l1; s
kuk2X0

� Ckukq
X0
;

for a suitable positive constant C.
Now, set r :¼ kuk2X0

and observe that for r > 0 small enough, we have

1

2

�
m0 �

lþ e

l1; s

�
r� Crq=2 > 0;

bearing in mind that q > 2. Hence

inf
kukX0¼r

JðuÞ > 0:

2. Let us choose an element u0 a X0 such that

measðfx a W : u0ðxÞb t?gÞ > 0:

F ðx; xÞ being a y-superhomogeneous function if jxjb t?, for t > 1, we have
that

Jðtu0Þa
m1

2
ktu0k2X0

þm2

2
�
Z
W

F ðx; tu0ðxÞÞ dx

am1

ku0k2X0

2
t2 � ty

Z
ju0ðxÞjbt?

F ðx; u0ðxÞÞ dxþm2

2
þMmeasðWÞ;

where

M :¼ supfjFðx; xÞj : x a W; jxja t?g:

Thus the ðARÞ condition implies that

Jðtu0Þ ! �l;

as t ! þl. This completes the proof.
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4. An example of application

In this section we present a simple application of our main result.

Example 1. Consider the following nonlocal problem:

M
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
ð�DÞsu ¼ u3 þ u4 in W

u ¼ 0 in RnnW;

8><
>:ðDMÞ

where

M
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�
:¼ 2þ

sin
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�

1þ
�Z

Q

juðxÞ � uðyÞj2

jx� yjnþ2s
dx dy

�2 :

By virtue of Theorem 2, problem ðDMÞ admits one nontrivial weak solution.
Indeed, a direct computation ensures that the continuous function

MðtÞ :¼ 2þ sin t

1þ t2
; ðEtb 0Þ

satisfies conditions ðC1
MÞ and ðC2

MÞ.
Further, the function f : R ! R given by

f ðtÞ :¼ t3 þ t4; ðEt a RÞ

satisfies all the hypotheses of Theorems 2.

Remark 2. We note that in Example 1 condition ðC2
MÞ is satisfied for every

tb t0, where t0 is the unique positive solution of the following real equationZ t

0

�
2þ sin s

1þ s2

�
ds� t

�
2þ sin t

1þ t2

�
¼ 0:

Remark 3. We just observe that Theorem 2 can be proved for a more general
class of nonlocal problems of the form

�M
�Z

Rn�Rn

jvðxÞ � vðyÞj2Kðx� yÞ dx dy
�
LKu ¼ f ðx; uÞ in W

u ¼ 0 in RnnW;

8<
:

where LK is defined as follows:

LKuðxÞ :¼
Z
Rn

ðuðxþ yÞ þ uðx� yÞ � 2uðxÞÞKðyÞ dy; ðx a RnÞ
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and K : Rnnf0g ! ð0;þlÞ is a function with the properties that:

1. gK a L1ðRnÞ, where gðxÞ :¼ minfjxj2; 1g;
2. There exists b > 0 and s a ð0; 1Þ such that

KðxÞb bjxj�ðnþ2sÞ;

for any x a Rnnf0g.

In this case we look for (weak) solutions u a X0, where

X0 :¼ fg a X : g ¼ 0 a:e: in RnnWg:

Here X denotes the linear space of Lebesgue measurable functions from Rn to R
such that the restriction to W of any function g in X belongs to L2ðWÞ and

ððx; yÞ 7! ðgðxÞ � gðyÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx� yÞ

p
Þ a L2ððRn � RnÞnðCW� CWÞ; dx dyÞ:

Moreover, hypothesis (1) assumes the form

lim sup
t!0

f ðx; tÞ
t

< m0l1;

where l1 is the first eigenvalue of the problem

�LKu ¼ lu in W

u ¼ 0 in RnnW:

�

Note that a model for K is given by the singular kernel KðxÞ :¼ jxj�ðnþ2sÞ which
gives rise to the fractional Laplace operator.

Remark 4. The previous remark ensures that our result represents an improve-
ment of [30, Theorems 1 and 2], provided that MC 1.
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