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Dedicated to Haim Brezis1, a beloved mentor and friend2

Abstract. — This note is devoted to the Calderon-Zygmund theory for linear di¤erential opera-

tors with discontinuous coe‰cients. It is known that the theory holds if the datum f ðxÞ, in (1.1),
belongs to the Lebesgue space LmðWÞ, with 1 < m < 2N

Nþ2 (see [6]). In this paper we prove that the

theory fails if m > N
2 .
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1. Introduction

In this note, we study the lack summability of the gradient of the solution of the
linear boundary value problem, with discontinuous coe‰cients,

�divðMðxÞ‘uÞ ¼ f ðxÞ; in W;

u ¼ 0; on qW;

�
ð1:1Þ

where W is a bounded open subset of RN , N > 2, f ðxÞ is a function belonging
to some Lebesgue space, and M is a bounded elliptic matrix; i.e., there exist
0 < aa b such that

ajxj2 aMðxÞxx; jMðxÞja b;ð1:2Þ

for every x in RN , for almost every x in W.
Since we assume that W is bounded, note that the Lebesgue spaces are

ordered: that is LpðWÞHLqðWÞ, if p > q.

1 for his 70th-birthday.
2 see [1].



Under the above assumptions, this paper is concerned with the regularity
theorem

f a LmðWÞ; 1 < m < N; implies ‘u a ðLm� ðWÞÞN ;ð1:3Þ

where m� ¼ mN
N�m

.
In particular, we recall classical results and we prove a new theorem about the

statement (1.3). If the right hand side belongs to the Marcinkiewicz space the
following similar result is proved in [4]

f a MmðWÞ; 1 < m <
2N

N þ 2
; implies ‘u a ðMm� ðWÞÞN :ð1:4Þ

2. Weak solutions

Proposition 2.1. The following results about the summability of the solutions of
Dirichlet problems for equations with discontinuous coe‰cients are nowadays clas-
sical, since the paper [18].

(1) If f a LmðWÞ, mb 2N
Nþ2 , thanks to Lax-Milgram Theorem and Sobolev em-

bedding, there exist a weak solutions u a W 1;2
0 ðWÞ of (1.1); that is

u a W
1;2
0 ðWÞ :

Z
W

MðxÞ‘u‘v ¼
Z
W

f ðxÞvðxÞ; Ev a W
1;2
0 ðWÞ:ð2:1Þ

(2) If f a LmðWÞ, 2N
Nþ2 < ma N

2 , the summability of u (which belongs to

Lm�� ðWÞ, m�� ¼ mN
N�2m , if

2N
Nþ2 < m < N

2 and it has exponential summability if

m ¼ N
2 ), was proved by Guido Stampacchia ([17], [18]).

(3) If f a LmðWÞ, m > N
2 , the boundedness of u, was proved by Guido Stampac-

chia ([18]).
(4) About the gradients, Norman Meyers proved in [13] (see also [11]) that there

exists e > 0, only depending on MðxÞ, such that, for all m a
�

2N
Nþ2 ;

2N
Nþ2 þ e

�
,

then u a W
1;m�

0 ðWÞ with

kuk
W

1;m�
0

ðWÞ aCmk f kLmðWÞ;

where Cm > 0 only depends on MðxÞ and m.

On the other hand, the situation is quite di¤erent if the coe‰cients of MðxÞ are
smooth enough.

Here we repeat the statement of Lemma 1 of the paper [1], by Haim Brezis,
about the standard Lp-regularity theory for elliptic equations in divergence form
(see also [14], or [10]).

Proposition 2.2. Assume that the coe‰cients of MðxÞ are continuous functions
on W and 1 < m < N. Then u a W

1;m�

loc ðWÞ and, for oHHW,

kukW 1;m� ðoÞ aC0ðkukW 1; 2ðWÞ þ k f kLmðWÞÞ;
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where C0 depends on a, b, m, o, W and the modulus of continuity of the coe‰cients
of MðxÞ.

Remark 2.3. First of all, we note that the above result does not only concern
the case mb 2N

Nþ2 .

Remark 2.4. Remark that the interval 2N
Nþ2 < m < 2N

Nþ2 þ e is present in Propo-
sition 2.1 (4) and in Proposition 2.2.

3. Infinite energy solutions

About the existence of solutions, the framework is completely di¤erent if

f a LmðWÞ; 1 < m <
2N

N þ 2
:ð3:1Þ

First of all, the above assumption on the summability of f ðxÞ does not allow the
use of Lax-Milgram Theorem, in order to prove the existence of weak solutions.
Then in [6] is proved the following existence result, concerning infinite energy
solutions.

Proposition 3.1. Assume (1.2), (3.1). Then there exists a distributional solution
u a W

1;m�

0 ðWÞ of (1.1); that is

u a W
1;m�

0 ðWÞ :
Z
W

MðxÞ‘u‘j ¼
Z
W

f ðxÞjðxÞ; Ej a W
1; ðm�Þ 0
0 ðWÞ:ð3:2Þ

Remark 3.2. If m ¼ 1, the previous statement is not true; in this case, it is
proved in [5] and [3] that the above Dirichlet problems has a distributional solu-
tion u which belongs to the Marcinkiewicz space M

N
N�2ðWÞ and ‘u a ðM N

N�2ðWÞÞN .

Remark 3.3. Note that 1 < m < 2N
Nþ2 implies N

N�1 < m� < 2 and that it is not
possible to take j ¼ u in the previous definition of distributional solution.

Remark 3.4. We recall the duality method of Guido Stampacchia.

Remark 3.5. The existence result stated in Proposition 3.1 is proved in [6] for
nonlinear di¤erential operators; here we use it in the easier linear case.

Further developments for the existence theory of infinite energy solutions in
Dirichlet problems can be found in [5], [6], [7], [8].

Now we recall a non-uniqueness result (fundamental in our discussion) by
James Serrin ([16], see also [15]).

Proposition 3.6. Let W be the unit ball of RN. There exist

• a discontinuous matrix MSðxÞ, which satisfies (1.2),

• a function uS a W
1;q
0 ðWÞ, for every q < N

N�1 ,

uS not identically zero;ð3:3Þ
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such that uS is distributional solution of the boundary value problem

�divðMSðxÞ‘uSÞ ¼ 0; in W;

uS ¼ 0; on qW;

�
ð3:4Þ

in the sense of (3.2); that is

uS a W
1;q
0 ðWÞ :

Z
W

MSðxÞ‘uS‘j ¼ 0; Ej a W
1;q 0

0 ðWÞ; q 0 > N:ð3:5Þ

4. A failing in the Calderon-Zygmund theory of Dirichlet

problems for equations with discontinuous coefficients

In this section, we prove that the statement (1.3), can be false for m > N
2 . The

proof uses a duality method.

Theorem 4.1. There exist a matrix MðxÞ, which satisfies (1.2), f a LmðWÞ, with
m > N

2 and W, such that the unique weak solution in W
1;2
0 ðWÞ of the boundary value

problem (1.1) does not belong to W
1;m�

0 ðWÞ.

Proof. First of all, note that if f a LmðWÞ, m > N
2 , then the unique weak solu-

tion exists (by Lax-Milgram Theorem); moreover it is bounded (by the Stampac-
chia’s boundedness Theorem). Thus our result concerns the gradient of the solu-
tion: ‘u does not belong to ðLm� ðWÞÞN .

Step 1. In the first part of the proof, we make the more restrictive assumption
N
2 < m < N.

By contradiction, we assume that, if f a LmðWÞ, m > N
2 , the unique weak so-

lution u of the Dirichlet problem (1.1) belongs to W
1;m�

0 ðWÞ (note that here m� is

well defined, since N
2 < m < N) and not only to W

1;2
0 ðWÞBLlðWÞ.

Let f a W
1; ðm�Þ 0
0 ðWÞ and let ffnðxÞg be a sequence of functions belonging to

W
1;2
0 ðWÞ and converging to f in W

1; ðm�Þ 0
0 ðWÞ; we take fnðxÞ as test function in

(2.1) we to pass to the limit (as n ! l) and we deduce that

Z
W

MSðxÞ‘u‘f ¼
Z
W

f f; Ef a W
1; ðm�Þ 0
0 ðWÞ:ð4:1Þ

Let now q < N
N�1 and take

f ðxÞ ¼ juSjq
��2

uS;

where uS (with M and W) is the solution of (3.4) defined in Proposition 3.6.

Note that uS a Lq� ðWÞ, q� < N
N�2 , implies that juSjq

��2
uS belongs to L

q�
q��1ðWÞ and

q� < N
N�2 implies q�

q��1 >
N
2 . Thus the function f ðxÞ ¼ juSjq

��2
uS belongs to

LrðWÞ, r > N
2 .
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Note that m > N
2 implies m� > N. Then, by (4.1), there exists u� solution

of

u� a W 1;m�

0 ðWÞ : �divðM �
S ðxÞ‘u�Þ ¼ juSjq

��2
uS:ð4:2Þ

In (4.1) we can take f ¼ uS and we have

Z
W

M �
S ðxÞ‘u�‘uS ¼

Z
W

juSjq
��2

uSuS:ð4:3Þ

On the other hand, it is possible to use u� as test function in (3.5), since
u� a W 1;m�

0 ðWÞ and m� > N. Thus we have

Z
W

MSðxÞ‘uS‘u� ¼ 0:

This equality and (4.3) give

0 ¼
Z
W

juSjq
��2

uSuS ¼
Z
W

juSjq
�
;

which is in conflict with (3.3).
Step 2. Here we assume m > N

2 . Let now u� be the solution of

u� a W
1;m�

0 ðWÞ : �divðM �
S ðxÞ‘u�Þ ¼ uS

juSj
:ð4:4Þ

Working as in Step 1, we have that

0 ¼
Z
W

MSðxÞ‘uS‘u� ¼
Z
W

juSj;

a contradiction as before. r

Theorem 4.2. There exists a matrix MðxÞ, which satisfies (1.2) and
F a ðLpðWÞÞN, p > N, such that the unique weak solution w in W

1;2
0 ðWÞ of the

boundary value problem

�divðMðxÞ‘wÞ ¼ �divðF Þ; in W;

w ¼ 0; on qW;

�
ð4:5Þ

does not belong to W
1;p
0 ðWÞ.

Proof. Let F be the unique weak solution of the Dirichlet problem
F a W

1;2
0 ðWÞ : �DðFÞ ¼ f , where f is defined in Theorem 4.1. The Calderon-
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Zygmund theory says that F ¼ ‘F belongs to ðLpðWÞÞN , p ¼ m� > N. But it
results that z ¼ u, where u is the solution stated in Theorem 4.1 and we proved
that u does not belong to W

1;p
0 ðWÞ.

Acknowledgments. The author presented the result of Theorem 4.1 to his friend Haim (during

the conference ‘‘New trends in Calculus of Variations and Partial Di¤erential Equations, in occasion
of the 65th birthday of Carlo Sbordone’’) and now he hopes that Haim will help him to study the

case 2N
Nþ2 þ e < ma N

2 .
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