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ABSTRACT. — In the present paper we propose four systems of linear Partial Differential Equations
that can be deduced from the nonlinear Schrédinger equation for the propagation of light in optical
fibers in the frame of the recently-proposed Combined Regular-Logarithmic Perturbation method.
The unknown function in the Schrédinger equation is the optical field envelope; it is a complex-
valued function. Following the Combined Regular-Logarithmic Perturbation method, proposed
by Secondini, Forestieri and Menyuk, we look for complex solutions of the Schrédinger equation
in the form of a perturbed continuous wave that relates three unknown real-valued functions. Since
the Schrodinger equation is complex, we split it into two real equations, both in the three real un-
knowns. We linearize these two equations and add a third linear equation that relates the same three
unknown quantities. We propose four different choices for the third equation, therefore we obtain
four different real systems of linear Partial Differential Equations and we analyze the corresponding
systems of Ordinary Differential Equations for the Fourier transforms of the unknowns. One of the
four systems we obtain is equivalent to that studied by the quoted authors. We add to it other three
choices that could be useful to model different situations. Again, we consider the real part of the
Ordinary Differential Equations and we present solutions in recursive form. We also suggest solu-
tions for the complex-valued Fourier transforms by using Bessel functions.

KEy worDs: Linearized Schrédinger equation, PDEs, ODEs, optical fiber, perturbation method.

MATHEMATICS SUBJECT CLASSIFICATION: 35Q55, 35Q9%4, 35C10, 34A25, 34A30.

1. INTRODUCTION

Light propagates in optical fibers according to the nonlinear Schrodinger equa-
tion (NLSE) and its variants, [4, 1]. Moving from one variant of the NLSE, in
this paper we are going to examine several systems of Partial Differential Equa-
tions (PDEs) that can be deduced from it. In the model considered in this paper,
the following aspects are taken into account: chromatic dispersion, loss and self-
phase modulation. We assume that the time-frame is moving with the signal
group velocity. Effects of polarization are neglected. With the above assumptions,
the NLSE for a single-mode fiber can be written as follows, [3, 5]:

v B v a
(1.1) E—JEW—NM v=at
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where the complex-valued function v(z, ) is the optical field envelope, f, is the
chromatic dispersion coefficient (f, > 0 for defocusing fibers, , < 0 for focusing
ones), y > 0 is the Kerr nonlinear coefficient, o > 0 is the power attenuation
constant, z represents the coordinate along the fiber axis, ¢ is time and j stands
for the unit imaginary number.

REMARK 1 (Dimensional Analysis). The physical dimension of the optical field
envelope is [v] = [u] = M'/>?LT~3/?. The chromatic dispersion coefficient f5, has
real values and its dimension is [$,] = L~!T?; it is 8, > 0 for defocusing fibers
or 3, < 0 for focusing fibers; the Kerr nonlinear coefficient y > 0 has real values
and dimension [y] = M~'L7=3T3; the power attenuation constant « > 0 has di-
mension [¢] = L~'. We are going to assume the three coefficients as constants
(see also the following Remark 3). The power Py > 0 has dimension [Py] =
ML?T=3; the real-valued functions a and b represent a-dimensional quantities:
[a] = [b] = M°L°T". Also the phase 0 is a real-valued function which represents
an a-dimensional quantity: [0] = M°L°T?,

By putting:

—az
(1.2) v(z, 1) := exp(T)u(z, 7)
Equation (1.1) becomes:

u ﬁz 2
(1.3) == -5—255-—/yexp(—a2>hd u
We are interested in finding solutions u(z, #) belonging to the Hilbert space L?(R)
with respect to z.
Solutions to Equation (1.3) are known in some special cases. For y = 0 it is

(1)
em[ww>}

R \/27jf},(z — zp)

where z( is the initial coordinate of the fiber. Another well-known solution to
Equation (1.3) is for f, = 0 and it is:

/

u(z,t) =

=zo,t') dt

W@—me
o

u(z,t) = u(z = zp, 1) expl exp(—oaz) — exp(—ozp)) |-

Also in a special case, for soliton solutions with o = 0, exact analytical solu-
tions are known, see [8]. In general, when o # 0 numerical methods or analytical
approximations are necessary, see [5, 6] and the bibliography therein for an
overview.

We are mainly interested in the results regarding the Combined Regular-
Logarithmic Perturbation method proposed in [6]. This method is suitable for
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modeling the presence of nonlinear and dispersive effects because the contribu-
tion of the quadratic perturbation terms is preserved even after the linearization.
The signal is considered like a continuous wave (CW) and the noise is treated like
a perturbation. The authors look for solutions of Equation (1.3) in the form:

(1.4) u(z,1) = /Po[l + a(z, 1) + jb(z. 1] expl=70(z, 1)

where Py > 0 is the power of the noise-free solution and a(z, 7), b(z,t) and 0(z, 1)
are real perturbation functions; these latter are a-dimensional quantities. By put-
ting Equation (1.4) in Equation (1.3) and naming the complex-valued additive
perturbation function ¢(z,t) := a(z, t) + jb(z, t), the authors obtain the following
complex differential equation to be solved:

(1.5) ——j(1+¢) ——](l—i—c)w—@EE—(l—i—c

dc 0 _ P, 9% %0 .dc a0 )<ae)z
oz oz 72 |or

— jyPoexp(—az)|1 +¢[*(1 +¢),

where the dependence of both functions ¢ and 6 on z and ¢ has been omitted.

By splitting Equation (1.5) into two real differential equations, the authors ob-
tain a system of two equations in three unknowns: @, b and 6. Being such a system
under-determined, they arbitrarily add an additional equation which relates the
three variables. In order to obtain a linearized model leading to a useful solution
of Equation (1.5), they add the following equation:

a0 2 Py 00N?
(1.6) o = rPoexp(—o)[1 + | +7<E>'

Indeed in [6] it is explained that as in principle all of the choices are equivalent,
Equation (1.6) leads to a useful solution because it minimizes the impact of
the terms neglected in the linearization process. The system they aim to solve,
simplified thanks to Equation (1.6), is therefore the following:

(17¢) %: yPoexp(—uz)(1+ 2a + a® + b?) +% (‘2_‘?)2_
They define
(1.8) 0(z, 1) = ¢(z,1) + /OZVPO exp(—as) ds,
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where / yPyexp(—os) ds := ¢y, (z) is the deterministic time-independent non-
0

linear phase rotation of the noise-free solution. By neglecting the quadratic terms,
the authors obtain a linearized system for the Fourier transforms A(z, w), B(z, w)
and ®(z,w) of a(z, 1), b(z,t) and ¢(z, t) respectively:

o4 B,

_ == 2 —_

(1.9a) =5 (B—0)
0B P ,

(1.9b) FE A

(1.9¢) (i%) = 2yPyexp(—oz)A.

In order to solve system (1.9), the authors suggest the use of a 3 x 3 transfer
matrix. When o = 0 and y and f, are constant, the transfer matrix assumes a sim-
ple closed-form expression.

In this paper, we go back to the complex differential equation in (1.5), we split
it into the real and imaginary parts, and we add a third equation which relates the
three unknowns in order to obtain a linearized system. We show four different
possibilities for choosing the third equation, see Section 2. One of these leads
exactly to the same situation modeled in [6]. Indeed, we obtain four systems of
Ordinary Differential Equations (ODEs) for the Fourier transforms 4, B and
@ of the real-valued functions a, » and ¢ and one of these systems leads to
system (1.9). By handling the real part (or equivalently the imaginary part) of
the Fourier transforms, we are able to present solutions in recursive forms even
for « not null, see Section 3. In the same section we also suggest solutions for the
complex-valued Fourier transforms by using the Bessel functions of the first kind
for the case f, > 0 or the modified Bessel functions of the first kind for the
case f/, < 0. In Section 4 we briefly discuss some conclusive remarks; in the
Appendix we compute the solution of a fourth-order equation (see Equation
(2.6) in Section 2) for the real-valued function a both in the homogeneous and
non-homogeneous cases.

2. THE LINEARIZED SYSTEMS

By considering Equation (1.5) and substituting ¢(z,¢) = a(z,t) + jb(z,t), one ob-
tains the two following real differential equations in a(z, 1), b(z, t) and ¢(z, ):

oa B, | b ¢ _da d¢ ¢

(212) 22| amtUtagatiy az+b(az)
2, 52 o¢
+ ypPob(2a + a” + b”) exp(—oz) — b—

oz
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ob Py |d%a ,0°¢p . 0bog N2

(2.16) iz 2 ﬁ*bﬁ”aﬁ_(”‘”(az)
2, 2 a¢
—yPy(1+a)2a+a” +b )exp(—ocz)—i—(lﬁ-a)g.

Assume that z > 0 is real and 7 € R. In the following, a linearized problem asso-
ciated to system (2.1) is studied. The linear terms in Equations (2.1a) and (2.1b)
are respectively:

ba_P,| b 0%
(2:22) z 2 [_azﬂLaﬂ

ob B, %a o¢
(22b> & = 7 W — ZyP()a eXp(—O(Z) + g .

Equations (2.2a) and (2.2b) constitute a system of two equations in three un-
knowns: a, b and ¢. Being such a system under-determined, one looks for an
additional linear equation which relates the three variables.

The second-order terms for Equations (2.1a) and (2.1b) are respectively:

B[ @9 cadg
(2.3a) 3 a6t2+261 3,

+ 2yPoab exp(—az) — b?
z

A XA
(2.3b) 2 bazz+2az ot (az)

— yPo(3a* + b*) exp(—az) + ag—f;

similarly the third-order terms for the two equations in system (2.1) are respec-
tively:

(2.4a) %b(%)z + yPob(a* + b*) exp(—oz)
(2.4b) - %a(%)z — yPoa(a* + b*) exp(—az).

In order to obtain a third linear equation, to be considered together with equa-
tions in system (2.2), one can equal to zero some addends in (2.3a) or in (2.3b).
Here it is not evaluated the efficiency of one choice with respect to the others by
an engineering point of view.

By starting from the second-order term in (2.3a) one obtains the linear rela-
tionships in Equations (2.5a) and (2.5b); by starting from the second-order term
in (2.3b) one obtains the linear relationships in Equations (2.5¢), (2.5d) and
(2.5e). The five alternative equations are therefore the following:
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il :
(2.5a) % G—Zf +2yPobexp(—oz) =0 if a#0
(2.5b) % — 2yPoaexp(—az) =0 ifb#0
0’ :
(2.5¢) % 6—1? —yPobexp(—az) =0 if b#0
(2.5d) % — 3ypPoaexp(—az) =0 ifa#0
ob 0p .. 0¢
(2.5¢) 25 =3, =0 it 5 #0

Condition (2.5¢) is not admissible. Indeed, if f, — 0 and y # 0, condition (2.5¢)
leads to a contradiction: » # 0 and b = 0 at the same time.

REMARK 2. By deriving the terms in Equation (2.2a) with respect to z and
changing order of derivatives (assuming it is allowed) and referring to Equation
(2.2b), one obtains the following fourth-order equation:

o’a (B, a
2 <7> az4+ﬁ2VP°eXp( 2rry

or

a0
(2.6) a_;_ﬁ{ (%) atzjtlfzyPoexp( az)a }

An explicit solution can be given when y = 0. The reader can find the steps in the
Appendix. The NLSE has a known solution for y = 0, but solving Equation (2.6)
for y =0 let one determine the unknown real-valued function a(z, ) in this
special case. Equations in (2.2) and one of (2.5a), (2.5b), (2.5d) or (2.5¢) let us
determine also the real-valued functions b(z, ) and ¢(z, ) when y = 0, therefore
we can obtain the three perturbation components for the solution in Equation
(1.4). But Equation (2.6) when y = 0 can be seen like the homogeneous equation
associated to the non-homogeneous one:

Br\2d%a
622 +(7) praak Gl

where ¢(z, t) is a real-valued source term. The steps for finding a(z, ¢) in this case
are given in the Appendix. The Appendix concludes with an implicit fzorm of
Equation (2.6), relating a(z,¢) and its second-order partlal derivative 5 (z, 1),
that can be transformed into a Volterra integral equation in the unknown a(z, ¢).

By considering Equations (2.2a), (2.2b) and one of (2.5a), (2.5b), (2.5d) or
(2.5¢), one obtains four different systems, each constituted by three PDEs. Such
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systems are difficult to handle; therefore it may be interesting to consider A(z,w),
B(z,w) and ®(z,w), the Fourier transforms, with respect to ¢ € R, of a(z,1),
b(z,t) and ¢(z,t) respectively. The new equations contain the real variable
z>0 and w € R (dimension 7~!) as a parameter. Differentiation is with re-
spect to z. Functions A(z,w), B(z,w) and ®(z,w) have complex values but
the new equations can be seen like equations either in (Re(A4),Re(B),Re(d))
or in (Im(A),Im(B),Im(®)), according to the standard notation F(z,w) =
Re(F(z,w)) + jIm(F(z,w)) for any complex-valued function F(z,w). For the
sake of simplicity, the real functions Re(A4), Re(B), Re(®) (or equivalently
Im(A4), Im(B), Im(®)) are denoted by means of letters 4, B and ®; they are
a-dimensional quantities, like a, b and ¢.

The real coefficients f3,, 7, o, Py are constant. The derivative with respect to z
of a function f(z,w) is represented as f'(z,w); z and w are omitted in the fol-
lowing four real systems:

A = %sz —%wzd)

(2.7) B = _ﬁ_zzsz — 2yPyexp(—az)A + @’
—%a)zdb + 2yPyexp(—oz)B=0 with 4 £ 0
A =20B- L0’

(2.8) B = —Bw?d - 2yPyexp(—az)4 + @'
@' = 2yPyexp(—az)A with B# 0
A = %a)zB - %a)z(I)

(2.9) B = — %sz — 2yPyexp(—oaz)A + @'
@' = 3yPyexp(—az)A with 4 # 0
A = %a)zB — %a)z(b

(2.10) B = —%aﬂA —2yPyexp(—az)A + @'
(2B — ®) =0 with @ % 0

Note that system (2.8) is equal to system (1.9), obtained in [6], with the request
that B # 0. System (2.10) becomes easily:

A =-LwB
(2.11) B = {% ? +2yP exp(—ocz)}A
® =28 with @ 2 0.

The four systems are equipped with the initial conditions at z = 0:
(2.12a) A(z =0,0) = Ap(w)
(2.12b) B(z =0,w) = By(w)
(2.12¢) Dz =0,0) = Dy(w)
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or, by omitting the dependence on w:

(2.13a) A(z = 0) = Ay
(2.13b) B(z=0) = B,
(2.13¢) D(z = 0) = B,

REMARK 3. The reader can note that the coefficients f, and y could be depen-
dent on z (but not on ¢) without changing the expressions for systems (2.7)—(2.10).

From the first and the second equations of all the four systems (2.7)—(2.10):

(2.14) A’ :&sz—&a)z(D,
2 2
(2.15) B' = —%sz —2yPyexp(—az)A + @'

one obtains the following equation (see Equation (7) in [2]):
(2.16) A" = —%w2<%w2+2yPoexp(—cxz))A

where f” represents the second-order derivative of any function f(z,w) with
respect to z. Indeed, Equation (2.15) can be written as:

(2.17) B —d' = —%wz/l — 2yPyexp(—az)A,
and Equation (2.14) can be re-arranged as:

(2.18) A’:%wz(B—cD).

The previous equation can be derived with respect to z:

(2.19) A" :%wz(B’ - @)

which becomes, by referring to Equation (2.17),

(2.20) A" = %wz (—%wZA — 2P, exp(—ocz)A)

and Equation (2.16) follows directly. Once ODE (2.16) is solved, A4 can be put in
the four systems, ob}taining easily both B and @, also assuming: @ # 0 for systems
(2.7) and (2.10); —%wz + 2yPyexp(—ouz) # 0 for system (2.7).



SOME REMARKS ON A LINEARIZED SCHRODINGER EQUATION 197

3. SOLUTION OF THE ORDINARY DIFFERENTIAL EQUATION

Consider the ODE (2.16) equipped with two initial conditions, see Equation
(2.13a):

(3.1a) A"(z) = —%af(%wz + 2yP exp(—az))A(z)
(3.1b) A(z=0) = 4y
(3.1c) A'(z=0) = 4]

where it has been omitted the dependence of 4, 4y and A4 on w.

The ODE can be solved by a development in power series for z with coeffi-
cients depending on w and on the constant real parameters f,, y and a. For the
sake of simplicity we put:

(3.2) 5= %a)z
and
(3.3) k = 2yP,.

Note that J is positive if f, > 0 (defocusing fiber) and it is negative if f, < 0
(focusing fiber); k is positive. Equation (3.1a) becomes:

(3.4) A"(2) = —0%A(z) — ok exp(—oz) A(z).

Recall that it is:

(3.5) exp(—az) =

=0

Look for solutions 4 having the following form:

+o©
(3.6) Aiz) =) am=";
m=0
note that from problem (3.1) it follows:
(3.7) A(z=0) =ay = Ao(w)
and

(3.8) A'(z=0)=a; = A)(w).
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From Equations (3.5) and (3.6) one obtains:

+o0 n —0 i
(3.9) exp(—uaz)A(z) = Z <Z( i') a,,,,-) z"
n=0 =0 :
and
(3.10) A"(z) = i(n +2)(n+ Day 22"
n=0

Therefore Equation (3.4) becomes

+o0 +o0 +0o0 n (—O()i
(3.11) Z(n +2)(n + Dapsrz" = —0? Z a,z" — 5k2 ( , a,,,,)Z”
n=0 n=0 j '

and this gives the following recursive relationship for n > 0:

n — i
(3.12) (n+2)(n+ Dayr = —0%ay —5k;%anh
where
ay = A()(a))
and
ar = Aj(w).

Here some values for a, when n > 0 are explicitly written. For n = 0, it is

1
(313) ay; = —55(5 + k)ao.
For n =1 it results

1 1
(3.14) ay = —ﬁé(é +k)ay + ﬁaékao.

Forn=2itis

_ 20ke 00+ k))? — Ok
BT 41

(3.15) dy ap.
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Similarly, for n = 3 it is:

00 4 k))* — 30ka? , 46k (6 + k)or — Okor?
5! b 5!

(3.16) as = ap.

Therefore, according to Equation (3.6), one obtains:

5
(3.17) A(z) =) apz"+R
n=0

2 50
{1 5+k 2+(¥Z3+[5(5+k)i' ok

_ 40%k(0 + K)o — Okor? ZS}
5!

z" +

2 _ 2

a {Z 0@ +k) 5, ke 4 @+ k) — 30ka 25} R
3! 4! 5!

where Rs(z) is the rest of the series.

REMARK 4. Note that « > 0 has its effects on the terms of order three or more.

Recall that 5, > 0 or 8, < 0. It is useful to treat the two cases separately. First
let us consider the case when o =0 and f, > 0 (therefore 0 > 0). The second
order Equation (3.4) becomes, for « = 0:

(3.18) A"(z) = —0%A(z) — SkA(z)
or therefore, with 5, > 0:

(3.19) A"(2) = —h*A(2)

by putting

(3.20) h:=+\/0(0+k).

The reader can easily recognize the equation of harmonic motion where /2 > 0 is
the pulsation. By taking into account the initial conditions in problem (3.1), the
bounded solutions are:

(321)  A(z,0) = Ao(w) cos( ﬂz;"z (ﬁzé‘ﬂ + ZyP())Z)

Al(w
+ O( ln \/ﬁz
\//fz;) ﬁzw +2VPO
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where it is reintroduced the dependence for 4 on both z and w. Formally, the
previous solution is true for every w € R and for every z € R (even if the fiber is
defined for z > 0).

If o is null, but the fiber is focusing, that is f, < 0 (and therefore ¢ < 0),
one still obtains solutions like those in Equation (3.21) provided that 6 + k£ < 0,
that is w? > 4yPy|f,| . For the values of w such that w? < 4yPy|f,| ', solutions
A(z, w) are given by combinations of real exponential functions which diverge for
z — o0. Indeed, put

(3.22) ri= /=00 + k),

where —d(0 + k) > 0 because of the above assumptions; Equation (3.18) can be
written as follows:

(3.23) A"(2) = r*A(2);

according to the initial conditions in problem (3.1) and re-introducing the depen-
dence for 4 on both z and w, the solutions are:

Ap(@)

VB (B oypy)

X exp(\/— ﬂ2§02 (ﬁ2;02 + 2yP0> z>

Ap(@)

V=B (B2 4 aypy)

X exp(—\/—ﬁz;)2 (ﬂzguz +2yP0)z)

One obtains the following limits, when r = r(w) = \/ _& = g (ﬁ = “ 2yPy) — 0

(3.24) Az, ) :% Ao(w) +

+% A()(OO) —

(3.25) lin%) A(z,w) = Ao(®w = 0) + Aj(w = 0)z,

(3.26) 1inLPO) Az, 0) = Ag (a) - %) + A (a) - \/Tz—?)z

and
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(3.27) Uﬁ(nmzl 2y Az,0) = (o = - %) + 4p(o = - 4&%)z,
1821

Note that for z — +oco, it is A(z,w) — +00, maybe except for w =0 and

w =+, /2

7 . For such values of @, Equation (3.18) becomes:

(3.28) A"(z) =0

whose solutions are, by taking into account the initial conditions in problem

(3.1):

(3.29) A(z,0 =0) = Ag(w = 0) + Aj(w = 0)z,

(330)  A(z0= %) = do(0 = \/%) +Aj (0= 4@0)

and

(3.31) A(z,w - 12,;0) Ao (a) - 121:'0) + A <w S ‘TZ,]:'O)Z.

We are now going to consider the case when o > 0 and 8, > 0 (and therefore
0 > 0). By referring to Equations (3.6), (3.17) and (3.21), the solution can be
written in the following form:

(3.32)  A(z,0) = Ao() cos(\/ﬂszz (52502 + 2yP0)z>

! 2 2
i sm<¢%”<ﬂ27w+m>z>
\/[32;) /)’2«) + 2 P

ﬂ’w2Poc
+ Ao(w { Vo -

4

41

ﬁzgz)zzypo( bo” | 2yP0)

3
ZS+"'

B’ B’ 2
25-2yPyo 32—-29Pyu
+A6(a)){ 24'V 07422 S'y 0 25—|—~--}

Similarly, when o > 0 and f§, < 0 (and therefore 0 < 0), by referring to Equa-
tions (3.6), (3.17) and (3.24), one obtains:
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!/
(3.33) A(z,co):% Ag(w) + 2A°(°"2>
\/_/32;) (/3z§9 +2VP0)

con(yf =57 (757 m)-)

Ap(@)

VB (B2 4 0ypy)

con(yf A5 (B )

‘|‘% Ao(w) -

ﬂZTwZZVPO“ 3 ﬁszZZVPO“Z 4
+ Ap() 3l z° — 2 z
) 2 w2
_4(ﬂ2;’2)22y1)o(’32%+2ypo)oc—B‘TwzyPooﬁzs+m}
5!

Zﬂz—wz2yPooc 4 3ﬂ2—w22yPooc2 5
+ Ay g T

Once it has been solved the ODE in (3.1), systems (2.7)—(2.10) can be solved,
too.

3.1. Solution of the real systems

In the previous Section the ODE in problem (3.1) has been solved. Now that
A(z,w) has been determined, one can solve the real systems (2.7)—(2.10). The
focus is put on system (2.8) because it is the same as in [6]. Being 4(z) known,
one has to solve:

(3.34) { B = —ﬁz—zsz — 2yPyexp(—az)A + @’

@' =2yPyexp(—az)A with B#0

that is, by substituting the second equation in the first one:

r_ B, 2
(3.35) B,_ 2 @A .
®' =2yPyexp(—az)A with B#0

and therefore it results, by re-introducing the dependence of 4, B and ® on z
and w:
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— Z:B2 2 / /
(3.36) B(z,w) = By(w) — 5o A(Z' w)dZ’,
0
(3.37) D(z,w) = Dy(w) + 2yP0/“ exp(—az')A(z', w)dz'.
0

Systems (2.7) and (2.9)—(2.10) can be treated similarly.
For system (2.7) one obtains if #, < 0 (focusing case):

A/

(3.38) B(z,0) = ©) :

Fw? — 2yPgexp(—az)

2y Py exp(—uz) A'(z)
(3.39) D(z,w) = " s .

3o Fw? — 2yPyexp(—oz)
For system (2.9) it is:
(3.40) B(z,w) / (z', w) dz’ +yPo/_ exp(—az")A(z', w) dZ’,
0

(341) O(z,0) = Do(w )—|—3yP0/0 exp(—uz')A (', @) d='.

For system (2.10) it results:

(3.42) B(z,w) = By(w) + /0 Z%a)zA(zl,w) dz'
+2yP0/Z exp(—az")A(z', w) dzZ’,

(3.43) D(z,w) = 2By(w / B A(z', w)

+4yPo/ exp(—az')A(z', w) dz'.
0

3.2. Solution of the Ordinary Differential Equation for complex-valued functions

So far it was considered the Cauchy problem for 4 in (3.1) with the assumption
that the unknowns were the real part (or on the imaginary part) of A, because
handling real-valued functions is often useful. Moreover, by means of this
approach it results that the power attenuation constant « does not affect the terms
of order less than 3 in the power series solution (3.6).

Anyhow, one can also solve the Cauchy problem for the complex-valued
function A by using the Bessel functions in the non trivial case when @ # 0 (and
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therefore J # 0). Bessel Functions are often used in problems related to fiber
optics, see for instance [2] where the authors report a solution to a similar equa-
tion in terms of Hankel functions (or Bessel functions of third kind). Anyhow,
we distinguish between two different cases: f, > 0 and f, < 0. This distinction
leads us to the Bessel equation and to the modified Bessel equation respectively.
Indeed, by putting

(3.44) A(z) == y(¢(2))
where
(3.45) é@);:gwﬂa%exp<—%z)

with ¢ and k as defined in (3.2) and (3.3) and o positive, Equation (3.4) becomes:

a0 @+ 'O+ | () s v o

The previous Equation can be rewritten as follows:

B4 EO+ O+ o - ()]0 o
Put
(3.48) w:%?L

therefore Equation (3.47) becomes:
(3.49) Ey"(&) +8'(€) + [gn(0)E* — v’ p(&) = 0.

Two cases are possible: either sgn(d) = sgn(f,) =1 or sgn(d) = sgn(f,) = —1.
Consider the case 8, > 0. Therefore Equation (3.49) becomes

(3.50) EV"(E) + 8 (&) +[E = V&) =0

that is the Bessel equation of complex order v (here v is imaginary). It is well
known that solutions of this equation are given by:

(3.51) ¥(&) = (&) + e (&)

where ¢ and ¢, are constant with respect to & (and therefore also with respect to
z) and J,, is the Bessel function of the first kind of complex (non integral) order .
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By taking into account Equations (3.2), (3.3), (3.44) and (3.48), solutions of
Equation (2.16) are:

(3.52) A(z) = clJ,;szzj(g \/Bo| 02y Py exp(—%z))
+ chﬂz;sz(z \/ B> |w?yPy exp(— %z))

In order to determine ¢; and ¢;, compute the derivative of A(z) with respect to z:

(3.53) A'(z)= —Cl\/mexp<—%z).]¢j(§ \/mexp(_gz>>
e S I N )

where J(-) represents the derivative of J,(-) with respect to its argument.
By substituting Equations (3.52) and (3.53) in the initial conditions in problem
(3.1), one obtains:

lemz\w /.(g VIBalw?yPo) + szfwzlmzj(i VIBalw?yPy) = Ao(w)
SN AT b (5 VIBlw?yPo)
—C2/ |/’)2|6027P0 LM](‘% V |ﬂ2|w23’P0) = Ay(w).
Say K the following non null quantity:

J\/fzwmzj(% V |/32|WZVP0) J_\/fz\«ﬂj(% V |ﬂz|w2VP0)
(3.54) K :=—/|Bs|w2yPy| ° ; £ 0.
T e CVIBInR) I G0N

It is K # 0 because it is assumed w # 0 and because of the property of the Bessel
functions of the first kind when the order is not integral. One is therefore able to
compute the unique ¢; and ¢, in order to obtain the solution A for problem (3.1).
Denote #7(&) the Wronskian of J,(&) and J_,(&); it holds, see [7]:

(3.55) W(E) =

J(&) T (&) ' _ 2sin(vr)
S8 I né

and therefore Equation (3.54) becomes:
L |/32|(02 .
(3.56) K= - sm( . n]).

Finally
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(3.57)
Ao(w)\/|Bola?yPoJ’  Bylo? j(% % |/’)2|w2VP0) "’%(@{M}.(% % |52|WZVP0)
C](CU) = ) A - ’
7 sin ()
(3.58)
A(’)(w)JMj(é VIBlw?yPy) + Ag(w) |/))2|w2VP0J‘;2\mzj(§ VBal@?yPy)
o(w) = : - :

% sin( B3] ? j)

By putting these last two expressions for ¢; and ¢, in Equation (3.52), one obtains
the solution for problem (3.1).
Turn now to the second case, when f5, < 0: Equation (3.49) becomes

(3-59) Ey"(E) +8'(&) — [E+vE) =0

that is the modified Bessel equation of complex (non integral) order v. The solu-
tions of this equation are

where k| and k, are constant with respect to ¢ (and therefore with respect to z)
and I, is the modified Bessel function of the first kind of complex (non integral)
order u. Thanks to Equations (3.2), (3.3), (3.44), (3.45) and (3.48), one obtains:

(3.61) A(z) = klz/}z;ﬂj(i VBl Pyexp(~22))
+ kzli‘ﬁz‘;,)zj (% \/ B> |y Py exp(— %z) ) .

The computation of k; and k; in order to obtain the solution of problem (3.1)
is similar to the computation of ¢; and ¢, in the previous case: say #(&) the
Wronskian of 7,(¢) and 7_,(¢); it holds, see [7]:

L&) 1,(&) ‘ _ 2sin()
1<) 1L, ne

(3.62) W(E) =

and therefore

(3.63)
)\/|Bole?yPol’ V;z‘wzj(f VIBalw?yPo) + Aé(w)lfwj(f VIBalw?yPy)
k (C()) = - — - )
1 s1n(‘ﬁ"w )
(3.64) 2 2
A(’)(w)IMj(E VIBa|w?yPo) 4+ Ao(w)/|By|w?yPol] y? ‘(E VB2l w?yPy)
kz(a)) = - .

% sm( B |e? ])
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4. CONCLUSIONS

In the framework of the Combined Regular-Logarithmic Perturbation method
proposed in [6] (see Section 1 for a brief summary), it was looked for solutions
of the nonlinear Schrodinger equation (1.3) for the propagation of light in optical
fibers. In the Combined Regular-Logarithmic Perturbation method, solutions
have the form of a perturbed continuous wave where perturbation is due to three
real functions to be determined. In Section 2 they were proposed four systems of
Partial Differential Equations that can be deduced from the Schrodinger equation
after a linearization process that includes the addition of an equation arbitrarily
chosen. By taking the Fourier transform of the real perturbation functions in-
volved, four systems of Ordinary Differential Equations have been obtained; their
analytical solutions can be given by recurrence. One of the four systems obtained
is exactly the same approached in [6] by the means of a transfer matrix. The other
three systems proposed can be considered as useful alternatives to model different
situations and mutual relationships that relates the perturbation functions in
play in the model. In Section 3 the proposed systems have been solved: analytical
solutions have been given by means of recurrence formulae. By using this tech-
nique it has been proven that the power attenuation o > 0 does not affect the
terms of order less than three. Moreover, solutions which involve a combination
of Bessel functions have been proposed: Bessel functions of the first kind when
the fiber is defocusing, and modified Bessel functions of the first kind for focusing
fibers.

A future research will be aimed at comparing the proposed systems in order to
determine, from a practical point of view, which one is a better approximation
for light propagation in optical fibers. Another crucial aspect is the solution of
the problem for multi-span optical fibers instead of single-span ones: the presence
of amplifiers along the fiber constitutes an independent source of complex addi-
tive white Gaussian noise to be accounted for.

A. APPENDIX

Consider Equation (2.6). The homogeneous PDE for y = 0 becomes, for z > 0,
teR:

2 4
(A1) 272‘(2, t)+(%>2274a(z7 £ =0,

Consider the following initial conditions for a(z, 7):

(A2) alz = 0,1) = p(1),

oa

(A.3) o (z=0,1) = y(2).
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Equation (A.1) can be rewritten as follows by using an operator notation:

2 4
(A4) la S+ (%)2%] a(z, 1) = 0;

oz

the previous Equation can be splitted as follows:

0 o? o?
(AS) l&—]|ﬁ22 al2‘| laZ+]|ﬂzJ ﬁ‘|a(27 f) :O

Say L the operator that acts on functions f(z, ) as

(A6) L =% e,

Therefore Equation (A.5) becomes

(A7) E - L} % + L} a(z, 1) = 0.

Say a;(z,t) and ay(z, 1) respectively the solutions of the following two equations:

(A.8) [6% — L]al(z, 1) =0,
(A.9) [;Z + L] ay(z,1) = 0.

The solutions are:

(A.10) ay(z,t) =

2
,/zn]|ﬁz|z/ [] 2|52|Z] 1z =0, dr
=ela1(z=0,)(1)
_ /)2 7 = / /
JW/ [sz ] Ae=0,6)d

=e Fay(z=0,)(1)

(A1) a(z1) =

by using the semigroup notation.
The solution a(z, ¢) of Equation (A.1) can be written as

(A.12) a(z,t) = ai(z,t) + ax(z, 1)
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and conditions in Equations (A.2) and (A.3) let one determine functions
a1(z=0,1) and a(z=0,¢) that appear in Equations (A.10) and (A.11) and
therefore in (A.12): indeed, by substituting (A.12) in Equations (A.2) and (A.3),
one obtains the following system:

a(z=0,1)+ax(z=0,1) = ¢(2)
(A-13) { Laj(z=0,t) — Lax(z = 0,1) = (1)

or rather, by applying operator L~! to the second equation:
(A.14)
By addiction and subtraction, one obtains a;(z = 0, ¢) and a,(z = 0, 7):

(A.15)

{a1<z=0,r>=%¢<>+%< L0
ax(z = 0,1) = Jo(t) = 3§ (L79)(0).

Operator L~! acts on functions y(¢) such that (¢) = ]'ﬁzz‘ 5:2 f(¢) where f(1),

4 f(1) and j—; f(t) have limits for t — 400 that guarantee the existence of the

finite norm in L?(R). One can therefore conclude that f(r) = L~1y(¢) solving the
above equation is as follows

(A.16) ﬂgzé“zﬂﬁgﬂﬁ

and system (A.15) becomes:

(A.17)

By putting Equations in (A.17) in the solution «(z, ) of Equation (A.1) given by
Equation (A.12) and reordering, one obtains:

L (1—1")? L (1—1")?
! eXp[Jamp} eXp{f’nmv} N o
(Am>a@0:A§ + Ly ar

\V/21j|B, |2 V21| B,z

(—1')
+/lemb2ﬁ} Jmp /|_ cMm
vV 27j |32 V2 B2
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_ 41?2
%é@””””

t_t // "
lzﬂﬂz ]}/ - ]|ﬂ2 dl ar

or

11 (1—1)?
a(z, 1) _/Rzin|/32|z {cosl AR

4—/l ! Jj{ sin (t—t’)2
rR2 \/7|B,]2 2|B,|z

that is, by eliding j in the second addend:

B W (N [
(Aw)a@ﬂ—ézﬁ@ﬁ{wﬂﬂﬁﬁ

4—/1 ! sin (t—1)
R 2 \/n|/32|z 2|B, )z

2 2
(t—1)
Saeal
/|l |ﬂz dz dr'.

Note that a(z, 1) is real if ¢(¢) and (¢) are real.
The non-homogeneous form of Equation (A.1):

+ sin

261 4a
(A20 e+ (Y S en =g

with the same initial conditions (A.2) and (A.3) has the solution:

exp| j ”7’/)2} exp| (H')z}
2|8,z 2|B, 2 } Z/) dl‘/

1 p
(A21) f>:/[£{ N AR

dt” dt’

(i=1")?
+/1 e"p[f ETAE } f 2\&\7 /|
V211,12 \/:W |ﬁ2
)2 . (=12
/ / exp d 2Iﬂ2| = YJ B eXp{_J 2\/32|<H>}
V211Ba|(z =) \/=27)[fs (2 — 5)

" (S ) "
' —t dt" dt’ ds
A s

or rather:
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k| o
[;mjzl}
< fetgparars [ /2¢*|/;TZT;

=] (t—1")?
X{Smlzwzuz—s)] 2|ﬁ2|(z—s)”

% / |t/ _ t//|q(s’[ )dl// dt/ ds.
R 18]

Again, a(z,t) is real if ¢, y and ¢ are real. One can conclude by giving one
implicit equation for a(z, ¢) (see Equation (2.6)):
(t —1 /)2 l 1
p(t") dt
W | 7

1 (t—1)?
(A.23) a(z, Z)_/RE n|ﬁ2|z{cosl A
11 =) (t—1")?
+/[Rz \/n|/>’2|z{sml 2|B, 2 osl 2|B, |z ]}
< Jr-etgrara s [

| =) (t—1)?
X {sm [72|ﬂ2|(2 = S)] — CoS —2|ﬂ2|(2 -~ s)] }
I ﬁ2VPO exp<_“5) 6261(5‘,1‘
< - o

Recall that a(z, t) belongs to the Hilbert space L*(R) with respect to ¢. Under the
assumptions on a(z, ), it results:

11 (t—t’)2
,Z)_/Rzi—nmﬂz {cos[ STAE

(A.22) a(z

11 (N
+/[RZ \/n|[)’2|z{ l 2|8,z

+ sin

//)
dt" dt' ds.

A24 — 62 ) 2 /
(A24) - = 201

and one obtains the following equation:

(A25) a(z,t) = ﬁrgjo// 1" exp(—as)2a(s, t') di’ ds
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_ N2
g ] }W) “

(t—1")?
‘COSl AR ]}

where s(z, 7) is the following source term:

1 (t—1)°

(A2 s0= [ 3 NCTAE {“’S lW

o [ fe=ry

+/Rz W{Sm[ 2|,z
[

(A27) k(z—s,t—1")

_1 1 | =7 | =)
C 2.\ /7By (z =) 2|Bsl(z —s) 21Bl(z =) | [

+ sin

and

By putting

(A.28) (AHa)(z,s 1) = /Rk(z —s,t—1')2a(s,t') dt’
Equation (A.25) becomes:

(A.29) a(z,t) = s(z, 1) —i—ﬂ'z’gjo /OZ exp(—as)(Aa)(z,s,t)ds

that is, finally, a Volterra integral equation with respect to z, for ¢ fixed, in the
unknown a(z, 7).
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