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Abstract. — In this paper I present several results concerning the approximation of the BV-norm

by non-local functionals. Some of these functionals are convex, others are non-convex. The mode
of convergence introduces mysterious novelties and numerous problems remain open. The original

motivation comes from Image Processing.
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1. Introduction

Throughout this paper I assume that W is either a bounded, smooth open subset
of RN , or that W ¼ RN . The case N ¼ 1 is already of great interest, see e.g.
Section 3 and [BN1], since many di‰culties (and open problems!) occur even
when N ¼ 1. My goal is to present several techniques for approximating the total

variation, i.e., the BV -norm of a function u,

Z
W

j‘uj, by non-local functionals.

I will first discuss, in Section 2, a very simple and general formula originally
discovered by J. Bourgain, P. Mironescu and myself (see [BBM1], [Br1]). The
functionals approximating the total variation are convex and of the form:

FnðuÞ ¼
Z
W

Z
W

juðxÞ � uðyÞj
jx� yj rnðjx� yjÞ dx dy;ð1:1Þ

where u a L1ðWÞ, and rn is a sequence of radial mollifiers converging to the Dirac
d at 0 (see Section 2.1 for more details). I will discuss pointwise convergence, i.e.,
convergence of FnðuÞ for fixed u, and also G-convergence (in the sense of De
Giorgi) of the functionals Fn to the total variation. The results are somewhat nat-
ural because j‘uj is approximated by ‘‘finite di¤erences’’. Perhaps the main sur-
prise is that such an approximation had never been noticed earlier!

Then, I will discuss, in Section 3, a rather unusual approximation of the total
variation by non-local non-convex functionals. The idea grew out of a formal
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computation that I made around 2002, inspired from related computations in
[BBM1]. Here the functionals are of the form

LðuÞ ¼
Z
W

Z
W

jðjuðxÞ � uðyÞjÞ
jx� yjNþ1

dx dy and LdðuÞ ¼ dLðu=dÞ;ð1:2Þ

where u a L1ðWÞ, d is a small parameter and j is a specified function. The exam-
ple I had originally in mind for j was the Heaviside function

jðtÞ ¼ 0 if ta 1;

1 if t > 1:

�
ð1:3Þ

I proved that if u a Cl
c ðRNÞ, then LdðuÞ converges, as d ! 0, to KN

Z
W

j‘uj,
where KN is an explicit constant depending only on N; see Theorem 3.1.

My computation, reproduced below, was never published. Instead I asked
some students to convert this formal computation into a rigorous theorem for
more general functions u. The task turned out to be much more complicated
than I had expected. The first shock came when A. Ponce exhibited a function
u a W 1;1ðWÞ such that LdðuÞ tends to infinity (see Remark 3.1 below). At this
stage it occured to me that pointwise convergence was doomed to be flawed and
I asked H.-M. Nguyen to study the asymptotics of Ld as d ! 0 in the spirit of
G-convergence. My hope was that the ‘‘natural’’ limit would be restored, i.e.,

that Ld would G-converge to the functional KN

Z
W

j‘ � j. In a remarkable piece

of work H.-M. Nguyen ([Ng2], [Ng3]) established that I was partly wrong and

partly right: Ld does G-converge—however the G-limit is k

Z
W

j‘ � j for some mys-
terious constant k < KN !

I learned in 2011 from my (part-time) colleague R. Kimmel at the Technion
that the total variation and some non-local functionals were used as filters in
Image Processing (see Sections 2.6 and 3.4 below). In particular, the Yaroslavky
filter (and some of its descendants) renewed my interest in the study of LdðuÞ for
a general function j, not just the Heaviside function (1.3). The outcome is the
joint paper [BN1] whose results are summarized in Section 3.

To conclude, let me mention that a di¤erent type of approximation of the
BV -norm of a function u, especially suited when u is the characteristic function
of a set A—so that its BV -norm is the perimeter of A—has been recently devel-
oped in [ABBF1] and [ABBF2] (with roots in [BBM2]).

2. The BBM formula; some variants and applications

2.1. The BBM formula

Let ðreðrÞÞe>0 be sequence of radial mollifiers, more precisely

reðrÞ : ½0;þlÞ ! ½0;þlÞ is measurable;ð2:1Þ
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Z þl

0

reðrÞrN�1 dr ¼ 1 Ee > 0;ð2:2Þ Z þl

d

reðrÞrN�1 dr ! 0; as e ! 0; Ed > 0:ð2:3Þ

The standard example of such mollifiers is

reðrÞ ¼
1

eN
r
� r

e

�
ð2:4Þ

with rb 0, r smooth, rðrÞ ¼ 0 for rb 1, andZ l

0

rðrÞrN�1 dr ¼ 1:ð2:5Þ

Other examples, especially with non-smooth mollifiers are of interest (see Section
2.4, Example 1).

Given u a L1ðWÞ and e > 0 set

FeðuÞ ¼
Z
W

Z
W

juðxÞ � uðyÞj
jx� yj reðjx� yjÞ dx dy;ð2:6Þ

F0ðuÞ ¼
KN

Z
W

j‘uj if u a BVðWÞ;

þl otherwise

8<
:ð2:7Þ

where

KN ¼
Z
SN�1

js � ej ds ðany e a SN�1Þ;ð2:8Þ

and KN ¼ 2 when N ¼ 1.
The main result is the following

Theorem 2.1 ([BBM1], [Da]). Under the above assumptions we have

lim
e!0

FeðuÞ ¼ F0ðuÞ Eu a L1ðWÞ:

Theorem 2.1 contains two assertions:

(a) If u a BVðWÞ, then

lim
e!0

FeðuÞ ¼ KN

Z
W

j‘uj

(b) If u a L1ðWÞ satisfies

FenðuÞaC for some sequence en ! 0;

then u a BVðWÞ and thus (a) applies.
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Remark 2.1. To be precise, assertion (a) was established in [BBM1] only for

u a W 1;1ðWÞ; for a general u a BVðWÞ it was only proved that FeðuÞU
Z

j‘uj as

e ! 0. The full assertion (a) was raised as an open problem, which was eventually
settled by J. Davila [Da]; a simpler proof may be found in [vSW].

The sketch of the proof of Theorem 2.1 will be presented in Section 2.3. We
start with

2.2. A suggestive computation

For simplicity we assume here that W ¼ RN and u a Cl
c ðRNÞ. Write

FeðuÞ ¼
Z
RN

dx

Z
RN

juðxþ hÞ � uðxÞj
jhj reðjhjÞ dh:ð2:9Þ

Taylor’s expansion as jhj ! 0 is ‘‘natural’’ because re ‘‘lives’’ near 0 (consider e.g.
the special form (2.4)). We have

uðxþ hÞ � uðxÞ ¼ h � ‘uðxÞ þOðjhj2Þ;

so that

juðxþ hÞ � uðxÞj
jhj ¼ jh � ‘uðxÞj

jhj þOðjhjÞ

and therefore, as e ! 0,

Z
RN

juðxþ hÞ � uðxÞj
jhj reðjhjÞ dh ¼

Z
RN

jh � ‘uðxÞj
jhj reðjhjÞ dhþ oð1Þ:ð2:10Þ

Next we compute the integral in the RHS of (2.10) using polar coordinates:
r ¼ jhj and s ¼ h

jhj a SN�1. This yields

Z
RN

jh � ‘uðxÞj
jhj reðjhjÞ dh ¼

Z l

0

dr

Z
SN�1

js � ‘uðxÞjreðrÞrN�1 ds:ð2:11Þ

Observe that for any V a RN ,Z
SN�1

js � V j ds ¼ jV j
Z
SN�1

js � ej ds Ee a SN�1:ð2:12Þ

Combining (2.9), (2.10), (2.11) and (2.12) we find

FeðuÞ ¼ KN

Z
RN

j‘uðxÞj dxþ oð1Þ:ð2:13Þ

We now turn to
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2.3. Sketch of the proof of Theorem 2.1

For simplicity, assume again that W ¼ RN .

Assertion (a). By the triangle inequality we have

jFeðuÞ �FeðvÞjaFeðu� vÞ Eu; v:ð2:14Þ

On the other hand, it is well-known (see e.g. [Br2], Proposition 9.3) that for
every w, Z

RN

jwðxþ hÞ � wðxÞj dxa jhj
Z
RN

j‘wðxÞj dx;

and therefore we obtain the important estimate

FeðwÞa
Z
RN

j‘wðxÞj dx
Z
RN

reðjhjÞ dh ¼ CN

Z
RN

j‘wðxÞj dx:ð2:15Þ

Combining (2.14) and (2.15) we find

jFeðuÞ �FeðvÞjaCN

Z
RN

j‘ðu� vÞj:ð2:16Þ

Using (2.13), (2.16) and a standard density argument we conclude that

lim
e!0

FeðuÞ ¼ KN

Z
RN

j‘uðxÞj dx Eu a W 1;1ðWÞ:

Since smooth functions are not dense in BV the proof of assertion (a) for BV
functions is more delicate; see [Da] and [vSW].

Assertion (b). We follow a suggestion of E. Stein who simplified our original
proof. Let u a L1ðRNÞ be such that

FenðuÞaC for some sequence en ! 0:ð2:17Þ

Take any sequence of smooth mollifiers ðmdÞ. Since the functional Fe is convex we
have

Feðmd � uÞaFeðuÞ:ð2:18Þ

Next we fix d > 0. By assertion (a) we know that

lim
e!0

Feðmd � uÞ ¼ KN

Z
RN

j‘ðmd � uÞj:ð2:19Þ
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Applying (2.19) and assumption (2.17) we find that

Z
RN

j‘ðmd � uÞjaC; where C is independent of d:ð2:20Þ

Finally we pass to the limit in (2.20) as d ! 0 and conclude that u a BV .

2.4. Two examples

We present here two simple choices of mollifiers re, each one having its own
interest.

Example 1. Choose

reðrÞ ¼
e=rN�e if 0 < r < 1

0 if rb 1:

�

We deduce from Theorem 2.1 that

lim
e!0

e

Z
W

Z
W

juðxÞ � uðyÞj
jx� yjNþ1�e

dx dy ¼ KN

Z
W

j‘ujð2:21Þ

Indeed Theorem 2.1 gives

lim
e!0

e

Z
W

Z
W

jx�yj<1

juðxÞ � uðyÞj
jx� yjNþ1�e

dx dy ¼ KN

Z
W

j‘uj:

But

lim
e!0

e

Z
W

Z
W

jx�yjb1

juðxÞ � uðyÞj
jx� yjNþ1�e

dx dy ¼ 0;

since Z
W

Z
W

jx�yjb1

juðxÞ � uðyÞj
jx� yjNþ1�e

dx dya 2

Z
W

juðxÞj dx
Z
W

jy�xjb1

dy

jy� xjNþ1�e

and Z
RN

jy�xjb1

dy

jy� xjNþ1�e
aC independent of e; as e ! 0:
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In the special case where u ¼ 1A, the characteristic function of a measurable set
AHW, we obtain

lim
e!0

e

Z
W

Z
W

j1AðxÞ � 1AðyÞj
jx� yjNþ1�e

dx dy ¼ KN

Z
W

j‘1Aj ¼ KN Per ðA;WÞ:ð2:22Þ

In recent years there has been much interest in the convergence of non-local func-
tionals such as (2.22) to the perimeter; see e.g. [CV] and [ADM] (it seems that the
authors of [CV] were not aware of the paper [BBM1]).

Example 2. Choose

reðrÞ ¼
ðNþ1Þr
eNþ1 if 0 < r < e;

0 if r > e:

(

We deduce from Theorem 2.1 that

lim
e!0

1

eNþ1

Z
W

Z
W

jx�yj<e

juðxÞ � uðyÞj dx dy ¼ KN

ðN þ 1Þ

Z
W

j‘uj;ð2:23Þ

and in the special case where u ¼ 1A we find

lim
e!0

1

eNþ1
meas fx a A; y a WnA; jx� yj < eg ¼ KN

2ðN þ 1Þ Per ðA;WÞ:ð2:24Þ

2.5. Where G-convergence enters

So far we have been concerned with pointwise convergence of Fe, i.e., the exis-
tence of lim

e!0
FeðuÞ for fixed u. It is natural to study the convergence of Fe in the

sense of G-convergence. Let us recall

Definition. A sequence ðFnÞ of functionals is said to be G-convergent to F0 in
L1ðWÞ if

Eu a L1ðWÞ; Eun ! u in L1ðWÞ; one has lim inf
n!l

FnðunÞbF0ðuÞðG1Þ

and

Eu a L1ðWÞ; b~uun ! u in L1ðWÞ such that lim sup
n!l

Fnð~uunÞaF0ðuÞ:ðG2Þ

Theorem 2.2 (A. Ponce [Po]). Let Fe and F0 be defined by (2.6) and (2.7), then,
as e ! 0,

Fe ! F0 in the sense of G-convergence:

229new approximations of the total variation and filters in imaging



Proof. Property ðG2Þ follows from Theorem 2.1 with the choice ~uueC u. We
now turn to the proof of ðG1Þ and for simplicity we treat only the case W ¼ RN .
Let ðmdÞ be a sequence of smooth mollifiers. By (2.18) we have

Feðmd � ueÞaFeðueÞ;ð2:25Þ

where ðueÞ is a given sequence such that ue ! u in L1ðWÞ. From (2.16) we have

jFeðmd � ueÞ �Feðmd � uÞaCN

Z
j‘ðmd � ðue � uÞÞjð2:26Þ

aCNk‘mdkL1kue � ukL1 :

On the other hand if we apply Theorem 2.1 to md � u we find that for fixed d

lim
e!0

Feðmd � uÞ ¼ KN

Z
j‘ðmd � uÞj:ð2:27Þ

Putting (2.25) and (2.27) together yields

lim
e!0

FeðueÞbKN

Z
j‘ðmd � uÞj:

Finally we let d ! 0, use the fact that

lim
e!0

Z
j‘ðmd � uÞj ¼

Z
j‘uj;

and conclude that

lim
e!0

FeðueÞbKN

Z
j‘uj:

Inspired by [GO1] and [GO2], G. Leoni and D. Spector have introduced in
[LS1] a variant of Fe: for any given pb 1, set for u a L1ðWÞ,

Ce;pðuÞ ¼
Z
W

dx

Z
W

juðxÞ � uðyÞj p

jx� yj p reðjx� yjÞ dy
� �1=p

;

C0;pðuÞ ¼
KN;p

Z
j‘uj if u a BVðWÞ;

þl otherwise;

8><
>:

where

K
p
N;p ¼

Z
SN�1

js � ej p ds ðany e a SN�1Þ:
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Following the computation in Section 2.2 we see that when W ¼ RN and pb 1,

lim
e!0

Ce;pðuÞ ¼ KN;p

Z
W

j‘uj; Eu a Cl
c ðWÞ:

However the analogue of inequality (2.15) may fail when p > 1 as noted in [LS2]
and [BN2]. In fact, the properties of the functional Ce;p are very sensitive to the
choice of re. For every p > 1, there exist (see [BN2]) special mollifiers re such that
for every w, and every e,

Ce;pðwÞaC

Z
W

j‘wðxÞj dx;

for some constant C. In this case we have

lim
e!0

Ce;pðuÞ ¼ C0;pðuÞ Eu a L1ðWÞ:

On the other hand (see [BN2]), for every p > 1, it is possible to construct molli-
fiers re and a function u a W 1;1ðWÞ such that

lim
e!0

Ce;pðuÞ ¼ þl:ð2:28Þ

In other words pointwise convergence may fail when p > 1: it is not always true
that

lim
e!0

Ce;pðuÞ ¼ C0;pðuÞ Eu a BVðWÞ:

Interestingly, in the framework of G-convergence, the ‘‘natural’’ expected con-
clusion is ‘‘restored’’ for all mollifiers:

Theorem 2.3 ([LS2]). For every pb 1

Ce;p ! C0;p in the sense of G-convergence in L1 as e ! 0:

We refer the reader to the proofs in [LS2] and [BN2]. Note that Theorem 2.3
implies in particular, in view of ðG1Þ, that

lim inf
e!0

Ce;pðuÞbC0;pðuÞ Eu a BVð2:29Þ

and we know from (2.28) that this inequality can be strict for some functions
u a BV .

2.6. Connections to filters in Image Processing

A fundamental challenge in Image Processing is to improve images of poor qual-
ity. Denoising is an immense subject, see, e.g., the excellent survey by A. Buades,
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B. Coll and J. M. Morel [BCM]. A popular strategy is to introduce a functional
F , called a filter, and use a variational formulation

inf
u

l

Z
W

ju� f j2 þ F ðuÞ
� �

;ð2:30Þ

or, alternatively, the associated Euler equation

2lðu� f Þ þ F 0ðuÞ ¼ 0:ð2:31Þ

Here f represents the given image of poor quality, l > 0 is the fidelity parameter
(fixed by experts) which governs how much the filtering is desirable. Minimizers
of (2.30) or solutions to (2.31) are the denoised images.

Many types of filters are used in Image Processing. Here we present three
filters and another one will be described in Section 3. The first one is the cele-
brated ROF filter due L. Rudin, S. Osher and E. Fatemi [ROF]:

FðuÞ ¼
Z
W

j‘uj

and the corresponding minimization problem is

min
u

l

Z
W

ju� f j2 þ
Z
W

j‘uj
� �

:ðROFÞ

Clearly, the functional in ðROFÞ is strictly convex. It follows from standard
Functional Analysis that, given f a L2ðWÞ, there exists a unique minimizer u0 a
BVðWÞBL2ðWÞ of ðROFÞ.

The second filter has been proposed by G. Aubert and P. Kornprobst in [AK].
Set

F ðuÞ ¼ FeðuÞ ¼
Z
W

Z
W

juðxÞ � uðyÞj
jx� yj reðjx� yjÞ dx dy;

where re is a sequence of radial mollifiers as in Section 2.1. The corresponding
minimization problem is

min
u

l

Z
W

ju� f j2 þ
Z
W

Z
W

juðxÞ � uðyÞj
jx� yj reðjx� yjÞ dx dy

� �
:ðAKeÞ

As above, ðAKeÞ admits a unique minimizer ue. In [AK] it is established (using the
same strategy as in the proof of Theorem 2.2), that as e ! 0, ðueÞ converges to the
solution of ðROFKN

Þ where KN is the constant defined in (2.8).
The third filter, due to G. Gilboa and S. Osher [GO1] (see also [GO2]), has the

form

FðuÞ ¼
Z
W

�Z
W

juðxÞ � uðyÞj2

jx� yj2
wðx; yÞ dy

�1=2
dx:
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and the corresponding minimization problem is

min
u

l

Z
W

ju� f j2 þ
Z
W

�Z
W

juðxÞ � uðyÞj2

jx� yj2
wðx; yÞ dy

�1=2
dx

( )
:ðGOÞ

The functional in ðGOÞ is strictly convex. Again by standard Functional
Analysis, there exists a unique minimiser u of ðGOÞ. Using Theorem 2.3 and a
few additional ingredients, one can show (see [BN2]) that if wðx; yÞ ¼ reðjx� yjÞ,
where re is any sequence of radial mollifiers, then the corresponding minimizers
ðueÞ of ðGOeÞ (i.e., ðGOÞ with wðx; yÞ ¼ reðjx� yjÞ) converge, as e ! 0, to the
unique solution of the ðROFkÞ problem

min
u

l

Z
W

ju� f j2 þ k

Z
W

j‘uj
� �

;ðROFkÞ

where k ¼ KN;2 is defined above.

3. A non-convex non-local approximation of the total variation

Throughout this section we asume that j : ½0;þlÞ ! ½0;þlÞ satisfies the fol-
lowing properties

j is non-decreasing;ð3:1Þ
jðtÞa at2 Et a ½0; 1�; for some positive constant a;ð3:2Þ

jðtÞa b Etb 0; for some positive constant b;ð3:3Þ
j is continuous on ½0;þlÞ except at a finite number of points in ð0;þlÞ;ð3:4Þ

jðtÞ ¼ jðt�Þ Et > 0;ð3:5Þ

and the normalization condition

KN

Z l

0

jðtÞt�2 dt ¼ 1ð3:6Þ

where KN has been defined in (2.8).
Here are three particular functions j of interest. Take j ¼ ji ¼ ci ~jji, i ¼ 1; 2; 3,

where ~jji is one of the functions defined below and ci is chosen so that the normal-
ization condition (3.6) holds.

Example 1.

~jj1ðtÞ ¼
0 if ta 1;

1 if t > 1:

�

Example 2.

~jj2ðtÞ ¼
t2 if ta 1;

1 if t > 1:

�
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Example 3.

~jj3ðtÞ ¼ 1� e�t2 Etb 0:

Given a measurable function u on W and a small parameter d > 0 set

LðuÞ ¼
Z
W

Z
W

jðjuðxÞ � uðyÞjÞ
jx� yjNþ1

dx dy and LdðuÞ ¼ dLðu=dÞ:ð3:7Þ

Note that LdðuÞ < l, e.g. if u a C1
c ðWÞ. Our goal is to show that LdðuÞ con-

verges as d ! 0 to a multiple of

Z
W

j‘uj. But the mode of convergence is ex-
tremely delicate.

3.1. Another suggestive computation

We start with the simple case where u a C1
c ðWÞ.

Theorem 3.1. We have

lim
d!0

LdðuÞ ¼
Z
W

j‘uj Eu a C1
c ðWÞ:

Sketch of proof. For simplicity we take now W ¼ RN . Write

LdðuÞ ¼ Ad þ Bd

where

Ad ¼ d

ZZ
jx�yj<da

� � � and Bd ¼ d

ZZ
jx�yjbda

� � � ;

with 0 < a < 1.
Let M > 0 be such that supp uHBM . Clearly

Bd ¼ d

ZZ
jyjaM

jx�yjbda

� � � þ d

ZZ
jyjbM
jxjaM

jx�yjbda

� � �a 2d

ZZ
jyjaM

jx�yjbda

� � �

aCd

Z
jyjaM

dy

Z
jx�yjbda

dx

jx� yjNþ1
:

(Here we have used assumption (3.3)). Therefore Bd aCd1�a and it remains to

prove that lim
d!0

Ad ¼
Z
W

j‘uj.
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Rewrite Ad as

Ad ¼ d

Z
jxjaMþ1

dx

Z
jhj<da

j
�juðxþ hÞ � uðxÞj

d

� 1

jhjNþ1
dh:

Taylor’s expansion gives

juðxþ hÞ � uðxÞj ¼ jh � ‘uðxÞj þOðjhj2Þ

Next, we assume that j is Lipschitz (the general case is slightly more complicated,
see [BN1]) and we deduce that

Ad ¼ d

Z
jxjaMþ1

dx

Z
jhj<da

j
�jh � ‘uðxÞj

d

� 1

jhjNþ1
dhþOðdaÞ:ð3:8Þ

As in Section 2.2 we compute the integral on the RHS of (3.8) using polar
coordinates:Z

jhj<da
j
�jh � ‘uðxÞj

d

� 1

jhjNþ1
dh ¼

Z
SN�1

ds

Z da

0

j
�rjs � ‘uðxÞj

d

� 1

r2
dr:ð3:9Þ

Making the change of variable s ¼ rjs�‘uðxÞj
d

we obtain

Z da

0

j
�rjs � ‘uðxÞj

d

� 1

r2
drð3:10Þ

¼ js � ‘uðxÞj
d

Z da�1js�‘uðxÞj

0

jðsÞ
s2

ds

¼ js � ‘uðxÞj
d

Z l

0

jðsÞ
s2

dsþO
� 1

da�1js � ‘uðxÞj

�" #
:

Therefore Z da

0

j
�rjs � ‘uðxÞj

d

� 1

r2
dr ¼ js � ‘uðxÞj

d

Z l

0

jðsÞ
s2

dsþO
� 1

da

�
:ð3:11Þ

Combining (3.9), (3.11), (2.12) and (3.6) yieldsZ
jhj<da

j
�jh � ‘uðxÞj

d

� 1

jhjNþ1
dh ¼ 1

d
j‘uðxÞj þO

� 1

da

�
:ð3:12Þ

Inserting (3.12) in (3.8) we find

Ad ¼
Z
W

j‘uðxÞj dxþOðd1�aÞ;

which completes the proof of Theorem 3.1.
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3.2. Pointwise convergence of Ld

In view of Theorem 3.1, and by analogy with Theorem 2.1, one might have
expected that

lim
d!0

LdðuÞ ¼
Z
W

j‘uj Eu a L1ðWÞ:ð3:13Þ

Assertion (3.13) is definitely wrong. In fact, the study of the asymptotic behavior
of Ld as d ! 0 is extremely delicate. Two basic properties satisfied by Fe are not
fulfilled by Ld:

• there is no constant C such that LdðuÞaC

Z
W

j‘uj Ed > 0, Eu a Cl
c ðWÞ, de-

spite the fact that lim
d!0

LdðuÞ ¼
Z
W

j‘uj Eu a Cl
c ðWÞ,

• Ld is not a convex functional.

The following result summarizes what is known about the pointwise conver-
gence of Ld.

Theorem 3.2. One has

lim inf
d!0

LdðuÞb
Z
W

j‘uj Eu a W 1;1ðWÞ:ð3:14Þ

and

lim sup
d!0

LdðuÞb
Z
W

j‘uj Eu a L1ðWÞ:ð3:15Þ

There is a constant k a ð0; 1� depending on j such that

lim inf
d!0

LdðuÞb k

Z
W

j‘uj Eu a L1ðWÞ:ð3:16Þ

The proofs of (3.14) and (3.15) are presented in [BN1]. The proof of (3.16)
is delicate; this assertion is basically due to J. Bourgain and H.-M. Nguyen
[BoNg]. Alternatively, (3.16) can also be viewed as a special case of the (deep)
G-convergence result described in Section 3.3.

Remark 3.1. Many pathologies may occur:

(1) As already mentioned, one can construct a function u a W 1;1ðRNÞ with com-
pact support such that

lim inf
d!0

LdðuÞ ¼ þl:
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This example, originally discovered by A. Ponce, is presented in [Ng1] for
j ¼ j1; see also [BN1]. Theorem 3.2 raises many open problems. For example,

can one characterize the functions u for which lim
d!0

LdðuÞ ¼
Z
W

j‘uj, resp.
lim inf
d!0

LdðuÞ is finite?
(2) One can construct functions j and u a BVðWÞBCðWÞ such that

lim inf
d!0

LdðuÞ <
Z
W

j‘uj;

see [BN1].

3.3. Where G-convergence saves the situation

It turns out that G-convergence is perfectly suited to analyze the asymptotic be-
havior of Ld as d ! 0. The principal result is the following.

Theorem 3.3 ([BN1]). There exists a constant k a ð0; 1� such that, as d ! 0,

Ld ! L0 in the sense of G-convergence in L1ðWÞ;

where

L0ðuÞ ¼
k

Z
W

j‘uj if u a BVðWÞ;

þl otherwise:

8<
:

Moreover k depends only on j and N.

Remark 3.2. The proof of Theorem 3.3 is quite complicated (see [BN1]) and
relies on ingredients developed by H.-M. Nguyen ([Ng2], [Ng3]), who established
the same conclusion for j ¼ c1 ~jj1 (see Example 1 above) with a constant k < 1.
This result provides an interesting situation where the pointwise limit and the
G-limit are quite di¤erent. I must admit that the appearance of the constant k,
with possibly k < 1, remains mysterious. It is not known whether k < 1 when
j ¼ c2 ~jj2 or j ¼ c3 ~jj3. In fact, it is a challenging open problem to decide whether
k < 1 for every j.

3.4. Connection to the Yaroslavsky filter in Image Processing

We now return to the setting of Section 2.6 and discuss another type of filter
originally introduced by Yaroslavsky in [Y1], [Y2] and subsequently revisited by
many authors (see e.g. [BCM], [KOJ]) under the name neighborhood filters. Such
filters are of the form

F ðuÞ ¼
Z
W

Z
W

j
�juðxÞ � uðyÞj

d

�
wðjx� yjÞ dx dy
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where j ¼ ~jj3, w is an appropriate weight function, and d is a small parameter. As
in Section 2.6 we consider the minimization problem

inf
u

l

Z
W

ju� f j2 þ F ðuÞ
� �

ð3:17Þ

Since F is not convex, uniqueness may fail and existence is problematic. In-
deed the standard approach for existence relies either on convexity or on some
form of compactness which is not transparent since F involves no derivative. In
what follows we choose F ¼ Ld defined by (3.7), and we consider the minimiza-
tion problem

inf
u

l

Z
W

ju� f j2 þLdðuÞ
� �

:ð3:18dÞ

To the best of our knowledge there is no result in the literature concerning the
existence of a minimizer for (3:18d). Our main contribution is twofold:

(a) We establish the existence of a minimizer ud in (3.18d) for every d > 0 under
the additional assumption

jðtÞ > 0 Et > 0:ð3:19Þ

(b) We establish the ‘‘convergence’’ as d ! 0, of the Yaroslavsky-type filter Ld to
the ROF filter—a fact which seems to have been overlooked by the experts of
Imaging. For practical purposes it may be useful to keep d > 0 not too small.
But it is gratifying to be aware of the underlying ‘‘hierarchy’’ in the models—
as in the Euler-Boltzmann equations.

Our main result is the following.

Theorem 3.4 ([BN1]). Assume that j satisfies (3.18) (in addition to the standard
assumptions (3.1)–(3.6)). Then for every d > 0 and every f a L2ðWÞ there exists a
minimizer of (3.18d). Let ud be any such minimizer. Then ud ! u0 in L2ðWÞ as
d ! 0, where u0 is the unique minimizer of

min
u

l

Z
W

ju� f j2 þ k

Z
W

j‘uj
� �

ðROFkÞ

and k > 0 is the constant introduced in Theorem 3.3.

The proof of the convergence of ud relies heavily on Theorem 3.3 combined
with a few additional ingredients. While the proof of existence of a minimizer is
derived from the following new compactness result. This result is valid for any
fixed d > 0 and we may as well take d ¼ 1, i.e., Ld ¼ L.

Theorem 3.5 ([BN1]). Assume that W is smooth and bounded, and that j satisfies
(3.1) and (3.18). Let ðunÞ be a bounded sequence in L1ðWÞ such that supn LðunÞ <
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þl: Then there exists a subsequence ðunkÞ of ðunÞ and u a L1ðWÞ such that ðunkÞ
converges to u in L1ðWÞ.

The proof of Theorem 3.5 rests on an intriguing inequality due to H.-M.
Nguyen (with roots in [BoNg]):

Lemma 3.6 ([Ng4]). Let B1 be the unit ball (or cube) of R
N, Nb 1. There exists

a positive constant CN, depending only on N, such that, for every function u in
L1ðB1Þ, one hasZ

B1

Z
B1

juðxÞ � uðyÞj dx dyaCN

� Z
B1

Z
B1

juðxÞ�uðyÞj>1

1

jx� yjNþ1
dx dyþ 1

�
:
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