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Functional Analysis — A Sobolev non embedding, by Petru Mironescu and
Winfried Sickel, communicated on 13 March 2015.

Abstract. — If W is a bounded domain in Rn, 1a q < pal and s ¼ 0; 1; 2; . . . , then we clearly

have W s; pðWÞHW s; qðWÞ. We prove that this property does not hold when s in not an integer.1
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1. A non embedding

In connection with his work on distributional Jacobians [3], H. Brezis asked us
whether

the inclusion W 1=2;3ðð0; 1ÞÞHW 1=2;2ðð0; 1ÞÞ holds:ð1Þ

The answer is negative. This is counterintuitive at first sight, since L3ðð0; 1ÞÞH
L2ðð0; 1ÞÞ and W 1;3ðð0; 1ÞÞHW 1;2ðð0; 1ÞÞ; thus, by ‘‘1/2 interpolation’’, we
would expect (1) to hold.

Below we shall formulate our main result in a little bit greater generality. The
class of fractional Sobolev spaces we have in mind is defined as follows. Let W
be a nontrivial open subset of Rn. Let 1a pal. With s ¼ mþ s, m a N0 (the
natural numbers including 0), and 0 < s < 1, the fractional Sobolev space
Ws;pðWÞ is the collection of all f a LpðWÞ such that its distributional derivatives
Daf , aam, are regular and

max
jaj¼m

Z
W

Z
W

jDaf ðxÞ �Daf ðyÞj p

jx� yjnþsp dx dy < l:ð2Þ

In this note, we give several proofs of the following

Theorem 1.1. Let s > 0 be a non integer, and let 1a q < pal. Then there
exists some in W compactly supported function f such that f a Ws;pðWÞ but
f B Ws;qðWÞ.

1Presented by H. Brezis.



The same result was obtained independently by J. Van Schaftingen [12], using
a proof similar to our second one.

Below we shall discuss three examples, all having their own advantages and
disadvantages. In two examples we shall work with a periodic background, in
the remaining with a non-periodic one. In the first example we shall work with
the Gagliardo semi-norm itself (see (2)). In the other cases our computations
will rely on norm equivalences whose proofs are sometimes delicate.

2. The first example

We shall work with the Gagliardo semi-norm. In some sense the first example is
elementary.

Before proceeding, let us note that it su‰ces to establish the following fact:
with s, p, q as above and with T ¼ R=ð2pZÞ the standard torus,

there exists some g a Ws;pðTÞnWs;qðTÞ:ð3Þ

Proof of ‘‘(3) implies Theorem 1.1’’. Let g a Ws;pðTÞnWs;qðTÞ. Using a
partition of unity on T, we find that for some j a Cl supported in some interval
of length < 2p, the function h :¼ j f is in Ws;pðTÞnWs;qðTÞ. By the choice of j, h
can be identified with a compactly supported function in Ws;pðRÞnWs;qðRÞ.

Consider next some function c a Cl
c ðRn�1Þ, c2 0. Then clearly f :¼ cn h

is compactly supported, and belongs to Ws;pðRnÞnWs;qðRnÞ.
For all l > 0 and all x0 a Rn, the mapping f 7! f ðlð� � x0ÞÞ leaves the space

Ws;pðRnÞ invariant. Applying this argument our construction yields a function
supported in a ball whose radius and centre are at our disposal. r

For s ¼ mþ s, m a N0 and 0 < s < 1, the periodic fractional order Sobolev
space Ws;pðTÞ can be normed with

k f kW s; pðTÞ :¼ k f kL p þ
�Z

T

Z
T

jDh f
ðmÞðxÞj p

jhjspþ1
dh dx

�1=p
ð4Þ

(obvious modification when p ¼ l). Here, DhgðxÞ :¼ gðxþ hÞ � gðxÞ.
We will rely on the Brezis-Lieb lemma [2] that we recall here: if 1a p < l,

fl ! f a.e. and k flkL p aC, then

k flk p
L p ¼ k f k p

L p þ k fl � f k p
L p þ oð1Þ as l ! l:

We also rely on the following straightforward.

Lemma 2.1. We have

kx 7! e {lxkW s; p P ls as l ! l:ð5Þ
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Proof. The case p ¼ l being left to the reader, we assume that 1a p < l.
Clearly, it is enough to consider 0 < s < 1. Set flðxÞ ¼ e {lx. Since k flkL p P 1, in
order to prove the lemma it su‰ces to prove that

Il :¼
Z
T

Z
T

jDh flðxÞj p

jhjspþ1
dh dxP lsp:

This follows from the identity

Il ¼ 2plsp

Z 2lp

0

je {x � 1j p

jxjspþ1
dxð6Þ

and the fact that the integral in (6) has a positive finite limit as l ! l. r

First proof of Theorem 1.1. We let to the reader the case where p ¼ l,
which is obtained by a rather straightforward modification of the argument
below. We thus assume that p < l.

We will construct by induction on j sequences lj and lj such that

x 7! gðxÞ :¼
X
jb1

lje
{ljx belongs to Ws;p but not to Ws;q:ð7Þ

We pick l1 ¼ 1, l1 ¼ 1. Assuming l1; . . . ; lj , l1; . . . ; lj already constructed,
let

flðxÞ :¼
1

j1=qls e
{lx:

By Lemma 5, we have

k flkW s; r P
1

j1=q
; E1a r < l:

On the other hand, if we write s ¼ mþ s then we have fl ! 0 and f
ðmÞ
l ! 0

pointwise as l ! l. By the Brezis-Lieb lemma, for 1a r < l we have, as
l ! l,

x 7!
Xj

k¼1

lke
{lkx þ flðxÞ

�����
�����
r

W s; r

¼ x 7!
Xj

k¼1

lke
{lkx

�����
�����
r

W s; r

þ k flkr
W s; r þ oð1Þ:

Thus, for large l, we have

x 7!
Xj

k¼1

lke
{lkx þ flðxÞ

�����
�����
p

W s; p

a x 7!
Xj

k¼1

lke
{lkx

�����
�����
p

W s; p

þ k1

j p=q
ð8Þ
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and

x 7!
Xj

k¼1

lke
{lkx þ flðxÞ

�����
�����
q

W s; q

b x 7!
Xj

k¼1

lke
{lkx

�����
�����
q

W s; q

þ k2

j
:ð9Þ

Using (8) and (9), we construct lj and lj such that

kgk p
W s; p aCp þ k1

X
jb2

1

j p=q

and

kgkq
W s; q b k2

X
jb2

1

j
;

and thus g satisfies (7). r

3. The second example

We shall work with lacunary series and Fourier-analytical characterizations of
Ws;pðTÞ.

Therefore we recall the following characterization of Ws;pðTÞ in terms of
Fourier series, see [6, Theorem 3.5.3]. If f ðxÞ ¼

P
fle

{lx, set

f 0 ¼ f0; f jðxÞ ¼
X

2 j�1<jlja2 j

fle
{lx; E jb 1:

If 1 < p < l, then

k f kW s; pðTÞ P
�X

jb0

2sjpk f jk p
L p

�1=p
:ð10Þ

To incorporate the extremal cases p ¼ 1 and p ¼ l we need the following a little
bit more technical modification. Let c be an infinitely di¤erentiable compactly
supported function such that cðxÞ ¼ 1 if jxja 1. We define

j0ðxÞ :¼ cðxÞ; jjðxÞ :¼ cð2�jxÞ � cð2�jþ1xÞ; j ¼ 1; 2; . . . :

This results in a smooth dyadic decomposition of unity, i.e.,

Xl
j¼0

jjðxÞ ¼ 1 for all x a R:
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If we assume in addition suppcH ½�2; 2�, then jjð2 jÞ ¼ 1 and

supp jj H ½�2 jþ1;�2 j�1�A ½2 j�1; 2 jþ1�; j ¼ 1; 2; . . . ;

follow. Just from the Fourier-analytic definition used in [6, Chapt. 3] we derive

k f kW s; pðTÞ P
�X

jb0

2sjpk ~ff jk p
L p

�1=p
;ð11Þ

where

~ff jðxÞ ¼
Xl
l¼�l

fljjðlÞe {lx; j ¼ 0; 1; . . . ;

and (11) holds for all p a ½1;l�.

Second proof of Theorem 1.1. We choose

lj :¼
1

2sjj1=q
; E jb 1;

and put

gðxÞ :¼
X
jb1

lje
{2 jx:

Using either (10) (if 1 < p < l) or (11) (for p ¼ 1 or p ¼ l), we clearly have
g a Ws;pðTÞnWs;qðTÞ. r

Note that the above yields an explicit version of our first example, in the sense
that the lj’s and the lj’s are given by explicit formulas.

4. The third example

In this example we apply wavelets. We follow [11, Section 1.7], but see also
Meyer [5].

In this perspective, it will be more convenient to construct some

g such that g a Ws;p
c ðRÞ but g B Ws;q

c ðRÞ;ð12Þ

i.e., we work in the non-periodic context from the very beginning.
Let k > sþ 2 be an integer, and consider father and mother Daubechies wave-

lets cF and cM , compactly supported and of class Ck. Let, for j a N and m a Z,

c j
mðxÞ ¼

cF ðx�mÞ; if j ¼ 0 and m a Z

2ð j�1Þ=2cMð2 j�1x�mÞ; if jb 1 and m a Z

�
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Set (assuming say g a L1
loc)

gm
j ¼

Z
R

cm
j ðxÞgðxÞ dx:

Then

kgkW s; p P
�Xl

j¼0

2 jðspþp=2�1Þ
X
m AZ

jgm
j j

p
�1=p

;ð13Þ

with the obvious modification when p ¼ l.

Third proof of Theorem 1.1. The generators of the wavelet basis are com-
pactly supported. Without loss of generality we may assume

suppcM H ½0;N�ð14Þ

for some N ¼ NðsÞ su‰ciently large. We put

lj :¼
1

2 jðsþ1=2Þj1=q
; j ¼ 1; 2; . . .ð15Þ

Define

g :¼
Xl
j¼1

lj
X2 j�1

m¼0

cm
j :ð16Þ

By (15) and the fact that the cm
j ’s define an orthonormal basis in L2ðRÞ, we

find that g a L2ðRÞ, and in particular we have

gm
j ¼ lj; if jb 1 and 0ama 2 j � 1

0; otherwise:

�
ð17Þ

By (14) and (16) we have supp gH ½0;N þ 1�. Finally, by (13), (15) and (17) we
find that g satisfies (12). r

5. Besov spaces and the interpolation argument

Unlike the first proof, the second and the third one are suited to the scale of
Besov or Triebel-Lizorkin spaces. This goes beyond the scope of this note.
However, we would like to mention that in Example 2 and 3 we already used
the identification of our fractional Sobolev spaces as special cases of Besov
spaces. More exactly

Ws;pðTÞ ¼ Bs
p;pðTÞ and Ws;pðRnÞ ¼ Bs

p;pðRnÞ;

s > 0, s B N, 1a pal, see [6, 3.5.4] and [10, 2.5.12].
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In the framework of Besov spaces a straightforward adaptation of the second
proof lead to the following improvement of (3):

Ws;pðTÞQBs
q; rðTÞ if pb q and r < p:ð18Þ

Completely analoguous, Example 3 yields the following counterpart for non-
periodic spaces

Ws;pðWÞQBs
q; rðWÞ if pb q and r < p:ð19Þ

Here the Besov space on the domain W is defined by restriction, i.e., f a LqðWÞ
belongs to Bs

q; rðWÞ if there exists some g a Bs
q; rðRnÞ such that

f ¼ g on W:

Some comments to the literature. Necessary and su‰cient conditions for embed-
dings of one Besov space into another can be found in Taibleson [8], S., Triebel
[7] and Haroske, Skrzypczak [4]. Whereas in [7] the authors were dealing with the
situation on Rn, Taibleson [8] also considered the periodic case. E.g., (18) can be
found in [8, Thm. 19(b)]. For smooth domains W Haroske and Skrzypczak [4]
have proved (19) in the much more general context of Besov-Morrey spaces.

Finally, for convenience of the reader, we will comment on the ‘‘interpolation
argument’’ from page 1. We restrict ourselves to real and complex interpolation.
It is known that

ðLuð0; 1Þ;W 1;uð0; 1ÞÞ1=2; r ¼ B1=2
u; r ð0; 1Þ; 1a ral:

Now, choosing u ¼ r ¼ 3 we conclude

W 1=2;3ð0; 1Þ ¼ ðL3ð0; 1Þ;W 1;3ð0; 1ÞÞ1=2;3
,! ðL2ð0; 1Þ;W 1;2ð0; 1ÞÞ1=2;3 ¼ B

1=2
2;3 ð0; 1Þ:

The Besov space B
1=2
2;3 ð0; 1Þ does not belong to the scale of fractional Sobolev

spaces under consideration, it is just a space containing W 1=2;2ð0; 1Þ ¼ B
1=2
2;2 ð0; 1Þ.

Similarly for the complex method we obtain that

½Luð0; 1Þ;W 1;uð0; 1Þ�1=2 ¼ F
1=2
u;2 ð0; 1Þ; 1 < u < l:

Here F
1=2
u;2 ð0; 1Þ denotes a Lizorkin-Triebel space. Again choosing u ¼ 3 we

conclude

F
1=2
3;2 ð0; 1Þ ¼ ½L3ð0; 1Þ;W 1;3ð0; 1Þ�1=2

,! ½L2ð0; 1Þ;W 1;2ð0; 1Þ�1=2 ¼ W 1=2;2ð0; 1Þ:

The Lizorkin-Triebel space F
1=2
3;2 ð0; 1Þ does also not belong to the scale of frac-

tional Sobolev spaces, it is just a space embedded into W 1=2;2ð0; 1Þ. For all this
we refer to [1, 6.4] and [9, 2.4].
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[7] W. Sickel - H. Triebel, Hölder inequalities and sharp embeddings in function spaces

of Bs
p; q and F s

p; q type, Z. Anal. Anwendungen 14:105–140, 1995.

[8] M. H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean

n-space. I. Principal properties, J. Math. Mech. 13:407–479, 1964.

[9] H. Triebel, Interpolation theory, function spaces, di¤erential operators, North
Holland, Amsterdam, 1978.

[10] H. Triebel, Theory of function spaces. volume 78 of Monographs in Mathematics,
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Université de Lyon, CNRS UMR 5208
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