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ABSTRACT. — If Qis a bounded domainin R", 1 <¢< p<ooands=0,1,2,..., then we clearly
have W*7(Q) = W54(Q). We prove that this property does not hold when s in not an integer.*
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1. A NON EMBEDDING

In connection with his work on distributional Jacobians [3], H. Brezis asked us
whether

(1) the inclusion W'/23((0,1)) =« WY%2((0,1)) holds.

The answer is negative. This is counterintuitive at first sight, since L3((0,1))
L?*((0,1)) and W'3((0,1)) = W2((0,1)); thus, by “1/2 interpolation”, we
would expect (1) to hold.

Below we shall formulate our main result in a little bit greater generality. The
class of fractional Sobolev spaces we have in mind is defined as follows. Let Q
be a nontrivial open subset of R”. Let | < p < co. With s =m + g, m € Ny (the
natural numbers including 0), and 0 < ¢ < 1, the fractional Sobolev space
W#*P(Q) is the collection of all f € L?(Q) such that its distributional derivatives
D*f, o < m, are regular and

D% (x) = D*f (y)|”
(2) max/Q/Q x dxdy < 0.

n+a,
|ot|=m — y| 4

In this note, we give several proofs of the following

THEOREM 1.1. Let s > 0 be a non integer, and let 1 < g < p < co. Then there
exists some in Q compactly supported function [ such that f e W*P(Q) but

L)

! Presented by H. Brezis.
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The same result was obtained independently by J. Van Schaftingen [12], using
a proof similar to our second one.

Below we shall discuss three examples, all having their own advantages and
disadvantages. In two examples we shall work with a periodic background, in
the remaining with a non-periodic one. In the first example we shall work with
the Gagliardo semi-norm itself (see (2)). In the other cases our computations
will rely on norm equivalences whose proofs are sometimes delicate.

2. THE FIRST EXAMPLE

We shall work with the Gagliardo semi-norm. In some sense the first example is
elementary.

Before proceeding, let us note that it suffices to establish the following fact:
with s, p, ¢ as above and with T = R/(2nZ) the standard torus,

(3) there exists some g € WS7(T)\W*4(T).

PrOOF OF ““(3) IMPLIES THEOREM 1.17°. Let g € W*?(T)\W*4(T). Using a
partition of unity on T, we find that for some ¢ € C* supported in some interval
of length < 27, the function /1 := ¢ f isin W*?(T)\W*4(T). By the choice of ¢, 1
can be identified with a compactly supported function in W7 (R)\ W*4(R).

Consider next some function y € C‘f‘(R"‘l), Y # 0. Then clearly f:=y ®h
is compactly supported, and belongs to W*7(R")\ W*4(R").

For all A > 0 and all xy € R", the mapping f +— f(A(- — xo)) leaves the space
WP(R") invariant. Applying this argument our construction yields a function
supported in a ball whose radius and centre are at our disposal. |

For s=m+ a0, m e Ny and 0 < ¢ < 1, the periodic fractional order Sobolev
space W*?(T) can be normed with

|ALf ™ (x)]” 1/p
L/:+(/T/T TG dh )

(obvious modification when p = o). Here, Ayg(x) := g(x +h) — g(x).
We will rely on the Brezis-Lieb lemma [2] that we recall here: if 1 < p < o0,
fr — fae and || f||,, < C, then

4) 1A ey = (11

LNy = WAL + 112 = fUIZs +o(1) as s — oo

We also rely on the following straightforward.
LEmMaA 2.1. We have

(5) X = || oy ~ 5 ast — .
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PrROOF. The case p = oo being left to the reader, we assume that 1 < p < oo.

Clearly, it is enough to consider 0 < s < 1. Set f;(x) = e¢**. Since || f/||;, ~ 1, in
order to prove the lemma it suffices to prove that

A P
om [ [ e
TJr  |h|7

This follows from the identity

(6) I = 2m/¥ /M il |
(= 2T o i
0 |é|5p+l
and the fact that the integral in (6) has a positive finite limit as / — oo. O

FIrsT PROOF OF THEOREM 1.1. We let to the reader the case where p = oo,
which is obtained by a rather straightforward modification of the argument
below. We thus assume that p < oo.

We will construct by induction on j sequences 4; and ¢; such that

7 X g(x) = J;e'  belongs to W*? but not to W*4.
‘j
j=1

We pick 41 =1, /1 = 1. Assuming 4y,...,4;, /1,...,¢; already constructed,
let

, 1
f/(x) = We

WX

On the other hand, if we write s = m + ¢ then we have f; — 0 and f/(m) — 0
pointwise as / — oo. By the Brezis-Lieb lemma, for 1 <r < co we have, as

{ — o0,
r r

+ 1ol + o(1).

J
X — Z)Lke”)"x + f7(x)
k=1

J
X = E A~
k=1

W W
Thus, for large 7/, we have
J / ’ J 7 ki
(8) X — Z de" ™ + f(x) <|[x+— Z Jge + I
k=1 Wep k=1 Wer
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and
J q j q ko
©) X e+ ()| = xe Y e 42
k=1 Ws.q k=1 Wsa J
Using (8) and (9), we construct 4; and /; such that
» 1
HgHW&P < Cp + ki ZW
j=2/
and
q 1
lolfye = ho 371,
=2/
and thus ¢ satisfies (7). 0

3. THE SECOND EXAMPLE

We shall work with lacunary series and Fourier-analytical characterizations of
W (T).

Therefore we recall the following characterization of W*?(T) in terms of
Fourier series, see [6, Theorem 3.5.3]. If f(x) = >_ fre"~, set

=t )= Y fe™ Vizl

21|/ <24
If 1 < p < o0, then
o) pie )77
(10) 1 weory ~ (3227107080 )
j=0

To incorporate the extremal cases p = 1 and p = oo we need the following a little
bit more technical modification. Let i be an infinitely differentiable compactly
supported function such that (x) = 1 if |x| < 1. We define

0o(x) = Y(x), 9 (%) = Y(27x) =Y (27 x), =12,

This results in a smooth dyadic decomposition of unity, i.e.,

o0

Zgoj(x) =1 forall xeR.

Jj=0
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If we assume in addition suppy < [—2,2], then goj(2f )=1and
suppg; = 277, =2/ 7 20 =12,

follow. Just from the Fourier-analytic definition used in [6, Chapt. 3] we derive

P 1/p
(11) W ey ~ (D 2717712, )
j=0
where
~ . S
fl(x) = Z f)goj(/)e”", j=0,1,...,
/=—w0

and (11) holds for all p € [1, o0].
SECOND PROOF OF THEOREM 1.1. We choose

1

A = 2w Vi=1,

and put

g(x) := Z /ljemx.

j=1

Using either (10) (if 1 < p < ) or (11) (for p = 1 or p = ), we clearly have
g e WHP(T)\W*4(T). O

Note that the above yields an explicit version of our first example, in the sense
that the /;’s and the /;’s are given by explicit formulas.

4. THE THIRD EXAMPLE

In this example we apply wavelets. We follow [11, Section 1.7], but see also
Meyer [5].
In this perspective, it will be more convenient to construct some

(12) g such that g € W?(R) but g ¢ W>4(R),

i.e., we work in the non-periodic context from the very beginning.
Let k > s+ 2 be an integer, and consider father and mother Daubechies wave-
lets Y and y/,,, compactly supported and of class C¥. Let, for j e N and m € Z,

j Vip(x —m), if j=0andme Z
lpm(x) = (j-1)/2 i—1 . .
24 Yy (277 x—m), if j>landmeZ
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Set (assuming say g € L} )
o = [ W) d
Then

(13) wwp(ZWWWIZm|)

meZ

with the obvious modification when p = 0.

THIRD PROOF OF THEOREM 1.1. The generators of the wavelet basis are com-
pactly supported. Without loss of generality we may assume

(14) supp iy, < [0, N]

for some N = N(s) sufficiently large. We put

: 1 .
(15) /Lj.:m, j=12,...
Define
0 271
(16) g:= Z:,lj Z)lp,"’.
=1 m=

By (15) and the fact that the y,"’s define an orthonormal basis in L*(R), we
find that g € L?(R), and in particular we have

. Ji, iff j>land0<m<2/—1
(17) g, :{/ J

0, otherwise.

By (14) and (16) we have suppg < [0, N + 1]. Finally, by (13), (15) and (17) we
find that ¢ satisfies (12). O

5. BESOV SPACES AND THE INTERPOLATION ARGUMENT

Unlike the first proof, the second and the third one are suited to the scale of
Besov or Triebel-Lizorkin spaces. This goes beyond the scope of this note.
However, we would like to mention that in Example 2 and 3 we already used
the identification of our fractional Sobolev spaces as special cases of Besov
spaces. More exactly

WSP(T) = B;ﬁp(T) and W*P(R") = B;’p([l%”),
s>0,s¢N,1<p< oo, see[6,3.54] and [10, 2.5.12].
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In the framework of Besov spaces a straightforward adaptation of the second
proof lead to the following improvement of (3):

(18) WP (T) & B (T) if p=qandr < p.

Completely analoguous, Example 3 yields the following counterpart for non-
periodic spaces

(19) wer(Q) ¢ B, ,(Q) if p>qgandr<p.

Here the Besov space on the domain Q is defined by restriction, i.e., f € LY(Q)
belongs to By () if there exists some g € By ,(R") such that

f=g onQ.

Some comments to the literature. Necessary and sufficient conditions for embed-
dings of one Besov space into another can be found in Taibleson [§], S., Triebel
[7] and Haroske, Skrzypczak [4]. Whereas in [7] the authors were dealing with the
situation on R”, Taibleson [8] also considered the periodic case. E.g., (18) can be
found in [8, Thm. 19(b)]. For smooth domains Q Haroske and Skrzypczak [4]
have proved (19) in the much more general context of Besov-Morrey spaces.

Finally, for convenience of the reader, we will comment on the “interpolation
argument” from page 1. We restrict ourselves to real and complex interpolation.
It is known that

(L“(0,1), W"(0,1)), 5., = BY2(0,1), 1 <r< o0,
Now, choosing u = r = 3 we conclude
W230,1) = (L*(0,1), W"3(0, 1)), 5
= (L(0,1), W"2(0,1)), 5. = B3 (0, 1).

The Besov space B;/ 32 (0,1) does not belong to the scale of fractional Sobolev
spaces under consideration, it is just a space containing W'/%2(0,1) = le/ 22 (0,1).
Similarly for the complex method we obtain that

[L"(0, 1), Wh(0,1)] ), = F,5(0,1), 1 <u< .

Here Ful‘/zz(O,l) denotes a Lizorkin-Triebel space. Again choosing u =3 we
conclude

EZ(0,1) = [L2(0,1), W0, 1),
— [L2(0,1), W"3(0,1)] , = W22(0,1).
The Lizorkin-Triebel space F31’/22(0, 1) does also not belong to the scale of frac-

tional Sobolev spaces, it is just a space embedded into W1/22(0,1). For all this
we refer to [1, 6.4] and [9, 2.4].
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