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Partial Differential Equation — Linear equation with data in non standard spaces,
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ABSTRACT. — Given a finite family of Banach function spaces V, over a bounded set €,
V =11, V. and let T be an element of the dual of the Sobolev space W2V. We discuss the exis-
tence, uniqueness and regularity of the solution of the linear equation Lu = T under the Dirichlet
or Neumann condition on the boundary of Q.

Our results extend recent works on very weak solution with data in weighted distance space or
Lorentz space.
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1. INTRODUCTION

Recently, Merker J. and the author extended the study of the so called very weak
solution to the Neumann problem whose right hand side belongs to the dual
space of Lorentz-Sobolev space W2L79(Q) (see below for the exact definition).
We have shown in particular the

THEOREM 1. Let Q be a bounded open set of class C?, and let T e
(W2LP4(Q))*, with T(1) =0,1 < p< +00,1 <q < .

Then there exists a unique function u e L?>*(Q), p' is the conjugate of p,
such that

1. /u(x)dx:O.
N 0
2. —/uAgodx:<T,(p>, \R= WZLP*I(Q),a—Z:()on 0Q and
Q

||u||u’-w(g) < C(Q)||T||<W2Lp-q(g))*-

A first aim of this paper is to extend such results replacing the Lorentz space
L?4 by a family of Banach functions spaces L(p,; Q) (see below for the precise
definition).

We shall distinguish the Dirichlet and Neumann cases (although the proofs of
those cases are similar). We shall consider Q a bounded open set of class C? and

This paper is related to a talk given by the author at the Accademia dei Lincei on September 10,
2015.
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the space of bounded mean oscillation functions bmo,(€2) which coincides to the
Campanato space Z>"(Q) (see below for the definition). The main result that
we shall prove is the

THEOREM 2 (existence of v.w.s. in L'(Q) for data in Banach function spaces).
Let o= (oy,...,0n) € NY with |a| = oy +--- + ay <2, Q a bounded open set of
class C? and let L(p,; Q) be a reflexive Banach function space satisfying (Hpuma),
i.e. bmo,(Q) == L(p,; Q). We set: V =[] L(p,; Q) and

la] <2
W2V ={ve L, (Q): D*ve L(p,;Q),|o| <2}.

Then for T € (W?V)*, there exists a unique u € L' (Q) satisfying

—/ uhpdx = T(p), Vpe W?L*(Q),
o

0
with 9 =0 on 0Q (resp. a—z =0 on 0Q for Neumann problem with the additional

conditions T(1) =0 and/ u(x)dx = 0).
Q

Moreover, there exists a constant c¢(Q) > 0 such that

ul 1) < T2y

REMARK 1. We can remove the condition on the reflexivity of L(p,; Q) but in
that case, we replace the hypothesis (Hruq); by a different condition, for instance
a stronger inclusion say, for some p > 1, for all o,

LP’I(Q) < L(p,; Q) (HFund)z
In this case
(W?V)" < (W2LP1(Q))".

Therefore, the existence and uniqueness of the function u are a consequence of
Theorem 1.

A particular Banach function space L(p,; Q) that we shall consider is the so
called Generalized Gamma spaces GI'(p,m,w(:)) that we have introduced in
previous papers, [11, 12].

These spaces give a unified formulation of different spaces among other thing
the Lorentz spaces L”9(Q), the small Lebesgue spaces L(”(Q) [9, 10, 16], the
Orlicz spaces (L? Log L)(Q).

There are many applications of the notion of very weak solution. Here is an
application of Theorem 1 that we shall prove in the last paragraph:
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LEMMA 1 (of Density). Let Q be a bounded set of class C'-'. Then, the set

25y . 0P

peC(Q):—=00ndQ;=A,
on
is dense in
2 op
pe WLP(Q) :%:Oonﬁﬁ =V,

l<p<4ow,l <g<+o0.

2. NOTATION AND PRELIMINARY RESULTS

Here are some spaces that we shall use

DEFINITION 1 (of bmo(R”)) (see Goldberg in [2]). A locally integrable function
f on RY is said to be in bmo(R") if

1 1
wp /Q 100~ foldx+ sup o /Q /()] dx

0<diam(Q)<1 diam(Q) > 1

= [/ lomo(wy < +o0,

where the supremum is taken over all cube Q = RY whose sides are parallel to
the coordinates axis.

DEFINITION 2 (of bmo,(Q) and main property) [2, 3, 19]. A locally integrable
function f on a Lipschitz bounded domain Q is said to be in bmo,(Q) (r stands
for restriction) if

1
swp oo | 100 = fol st [ 1791 = o) <+

O<diam(Q)<1

where the supremum is taken over all cube Q = Q whose sides are parallel to the
coordinates axis. ~
In this case, there exists a function f € bmo(R") such that

flo=/ and ||f~||bmo([RN) < ca ||/ llbmo,@)-

EXPLANATION. The above definition is adapted to the case where the domain is
bounded, and it is equivalent to the definition given in 3, 2, 19].

The main property is due to P. W Jones [17], this extension result implies that
bmo,(Q) embeds continuously into Lex,(Q).
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DEFINITION 3 (of the Campanato space >V (Q)). A function u € #*"(Q) if

1

3
ull 2+ sup |rN u—up > dx| = [lull y2viq) < +0.
( O(x0,1)NQ

xo€Q,r>0

Here

el
Uy = —— u(x) dx.
|Q(X(); 7’) N Q| O(xp;r)NQ ( )

THEOREM 3 (Equivalence of the two definitions). For a Lipschitz bounded do-
main € one has:

22N (Q) = bmo,(Q), with equivalent norms.
This theorem is not essential for our purpose, we refer to [20] for the proof.
DEFINITION 4 (Banach function norm). Let Q be a bounded domain in RY,
L°(Q) = {f : Q — Rmeasurable}, L%(Q)={f>0,f¢eL"Q)}.

A mapping p : L(Q) — [0, +oo] is called a Banach function norm if it satisfies
the following propertles Yf, g, fpe L’ 1(Q)

1. pisanorm i.e.

p(f) =

p(Af) =Ip(f)VieRy,
p(f +g) <p(f)+p(g).
(

2. 0 <g<fae. inQ then p(g9) < p(f) (monotonicity).

3.0<f, / fae inQ, then p(f,) / p(f) (Beppo-Levi property).
4. p(1) < +o0.

5. There exists a constant ¢ > 0 such that V/ e L? (Q)

0 if and only if f =0,

/fa’x < cap(f).
Q

DEFINITION 5 (Banach function space). Let p be a function norm. Then the
linear space

L(p; Q) = {f : Q — R measurable such that p(|f|) < +o0}

is called a Banach function space (BFS), it is a Banach space endowed with the

norm ||| = p(lf1) = p(f)-
The associate norm p’ is defined on L! (Q) by

pto)=sun{ [ i s e @ <1}



LINEAR EQUATION WITH DATA IN NON STANDARD SPACES 245

p' is a Banach function norm and the BFS L(p’;Q) = L(p; Q)" is called the
associated space of L(p; Q).
Setting p” = (p’)’. Then one has

L(p";Q) = L(p; Q).
One fundamental property that we shall need is

DEFINITION 6 (Absolute continuity of the norm of function f). Let f € L(p; Q).
We shall say that it has absolutely continuous norm if, for any sequence f,, such
that 0 < f, <|f|, fu(x) — 0 a.e. one has p(f,) —— 0.

n—+oo
In other words, the dominate Lebesgue theorem is true for any sequence
pointwise convergent and dominated by | f]:

If g, — gae., |gu] <|f] then p(g, —g) —— 0.

n—-+00

The link of this definition with the reflexivity is

THEOREM 4 (Reflexivity). Let L(p; Q)" be the Banach dual space of L(p; Q).
L(p; Q)" is canonically isometrically isomorphic to the associate space L(p'; Q)
if and only if L(p; Q) has absolutely continuous norm.
In particular, L(p; Q) is reflexive if and only if L(p; Q) and L(p'; Q) have abso-
lutely continuous norms.

DEFINITION 7 (Rearrangement invariant space). The space L(p; Q) is said to be
rearrangement invariant if for all f and g in L(p; Q) and Vr € R

measure{x € Q, f(x) > ¢t} = measure{x € Q,g(x) >t} = p(f) = p(g).

REMARK 2. For convenience, we shall denote by |E| the measure of a set E. If p
is rearrangement invariant, we can associate to X = L(p; Q) the so called funda-
mental function ¢y (¢) = p(xy) whenever |E| = ¢. This function does not depend
on E. Since p’ is also rearrangement invariant, we can associate ¢y, = p’(y) to
X' =L(pQ).

One has

PRrOPOSITION 1 (see Bennett-Sharpley [1] p. 66).

ox(Dpx (1) =1Vt €0, Q.
@y is increasing, ¢y (1) = 0 iff t = 0.

1.

2.

3 Py (1)
t

4.

is decreasing.
@y is continuous except perhaps at the origin.

EXAMPLE 1. The most well-known Banach function spaces are the Lebesgue
spaces LP(Q), 1 < p < +oo, and the Lorentz spaces LP1(Q). We give a quick
definition of these last spaces.
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DEerFINITION 8 (of the Distribution function and monotone rearrangement).
Let ue L°(Q). The distribution function of u is the decreasing function
m=my,: R~ [0,]|Q[]

my,(t) = measure{x : u(x) > t} = [{u > t}|.
The generalized inverse u, of m is defined by

u(s) =inf{r: {u>1t}| <s}, s€[0,|Q|
and is called the decreasing rearrangement of u. We shall set Q. = |0, |Q][.
We recall
DEFINITION 9. Let 1 <p < +00,0< g < +c0.

e If ¢ < +oo, one defines the following norm for u € L°(Q)

1
Lra = [t"
Q,

o2

[[ullp,q = lul

Pl 0. 0= [ il 0)do

The space L74(Q) = {u € L°(Q) : ||ul|, , < +0o0} is called a Lorentz space.
If p=g=+o0, L*(Q) = L*(Q).
The dual of L11(Q) is called Lexy(Q)

The Lorentz spaces are particular cases of the Generalized Gamma spaces
GT (p,m,w).

DErINITION 10 (Gamma weight). Let 1 < p < 400, 1 <m < 400, and assume
for simplicity that |Q| = 1, and let w be a measurable nonnegative function such
that:

1. t — w(#)t7 is integrable near zero,
2. wisin L} (]0,1])

1
(/ w(a)da<+oo,Va>O>,
3. Ela>0:0<a<1,e?0si1§fw>0.

Note that 1. and 2. are equivalent to 77w € L'(]0, 1]), and the last condition avoid
w to be a trivial function.
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The spaces GI'(p, m, w) are defined by

GT(p,m,w)

1 t m %1
={feL°<sz>:||f||Gr<p.m,w>={ / w(n)( / |f|f<s>ds)"dt] isﬁnite}

is called Generalized I'-spaces
forl <p<+o,1 <m< +o0.

A striking fact that we have shown in those papers [11, 12], is that, the GI-
Sobolev spaces,

WG (p,m,w(-)) = {ve L'(Q) : Vv e GT'(p,m,w(-))}

. . . N, .
is compactly embedded in L7 (Q), p*:N—fp, I <p< N if and only

we L1(0,1).
REMARK 3. More generally, if V' is a Banach space contained in L'(Q), we set:
wv={velLl'(Q):Vve ¥V}
and
WiV =wv aw Q).

REMARK 4 (on some non compactness). Applying this result to the small
Lebesgue-Sobolev space W!L(?(Q), we have for 1 < p < N the following com-
pact embedding W'L(?(Q) - L?" (Q). If we replace the small Lebesgue space
by the closest Lorentz space L”!(Q):

LP(Q) c LP1(Q) c L (Q),
The following inclusion is not compact, anymore,
WILPY Q) = {ve LY(Q) : Vo e LM (Q)V} = LP'(Q).

The proof relies on a straight forward computation using an explicit counterex-
ample (see also [6]). We drop it since it is beyond the scope of this paper.

The resolution of Theorem 2 needs the following decomposition whose proof
will be given in the last paragraph.

THEOREM 5. Letme N, m > 1, for an o = (ay,...,ay) € NV with || < m, we
consider the Banach function space L(p,; Q) with absolutely continuous norm.
We set: V= ] L(p,;Q) and

|| <m

WV = {ve L (Q) : D*v e L(p,i Q). | < m}.
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Let T € (W™V)". Then there exists a family f, € L(pl; Q) such that
T(u) = /ﬁ,D“udx Yue W"V.
o <m
Moreover, we have:

1Tl < Maxfadl 0

1. If p € NV is such that pg Is rearrangement invariant, then

Max [ox; D1l (D) < 1T

with Xg = L(pg; Q), (0)(/;(') being the fundamental function of Xj.
2. If L(p,; Q) is reflexive for all o. then

In the above theorem, in statement 2, the reflexivity assumption on L(p,; Q) is
not necessarily useful to obtain the equality as we suggest in the following prop-
osition whose proof is given in the last paragraph.

PROPOSITION 2 (Decomposition of T e (W!'L?1(Q))*, 1 < p < 400, (L”! can
be replaced by L')). There exists

LP- =@M i 1 < p < 4o,
(QOa”'agN) € Lexp(Q)N+1 lfP: 17
L> @M i rew'LY(Q),
such that for all p € WILP1(Q) (resp p € WIL'(Q)):

N
oy
1. T(p) = d i —dx.
(p) = /ngrﬂ X+Zl/g,ax/ x
2.7, = MaX”g/HLp ~q) f p>1and ||T||, =Max;<w llg; .,
17, —MaXHgJHLm for wLY(Q)")
J<N

if p=1. (resp

3. PROOF OF THE MAIN RESULTS AND REGULARITY THEOREM

We begin this paragraph by the proof of the main theorem 2. Following the
decomposition in Theorem 5, we can write

T(p) = / 1.0, Yo € W2V, ITI. = Max £l

o] <2
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Let k € N, k > 1 and define
(1) S (x) = min(| /o (x)|; k) sign f,(x),  x € Q,

Ti(p) = /ﬂkD pdx, Vo€ W2L (Q)

o] <2
One has
LeEmMMA 2 (density and approximation).

1. For all k, Tke(WZV)*, lim Ti(p) =T(p), Vp € wav.
2. |Tie = T|l, < Max || f, — fotkHL vo) 0.

o <2 )k —+00
3. C*(Q) is dense in (W?V)".

ProOOF.
1. Let us note that W2L*(Q) = W2V since for p € W?L*(Q)
P2(D%9) < [ID%0l,pu(20) < +o0.

2. If p € W2V, then

IT(p) = T(9)

IA

/mk—ﬂ D] (x) dx

Jo| <2

< Max|lfo = fullzppon - > p.(D*p)

o] <2

249

so that we derive the inequality. The convergence to zero is a consequence of

the fact that L(p.; Q) has absolutely continuous norm.
3. For k (fixed), we consider f; € CZ(Q) such that

(@) fu(x) — fur(x) a.e. in Q
(b) |furj(x)| <k Vj and a.e. in Q.
We then have

P;(|fockj _fockD m 0.

The same argument as it is given in statement 2. shows that

| Ty — Till, < Max Hfzxkj — Jarcll Lo 0 p— 0,

where Ty (¢ / Jokj (xX)D%p(x) dx.

o] <2

We apply now these approximations to prove the existence of the very weak

solution.
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3.1. Ist case: Dirichlet condition

LeMMA 3. Let (Ty), be the sequence defined in relation (1). Then, there exists a

unique element u, € (| L % (Q) satisfying
p'<+w

©) - [ wagdy=Ti(p),
Q
Vo € W2L*(Q) n Wi LP4(Q), for all p such that 1 <p < 4+, 1 < g < +oo0.

PROOF. Let k be fixed, Ti(p) = ) / fuD*pdx Yo e W2L*(Q).
o] <2

Let fu; CZ(Q) such that f;(x )—+>f“k( x) a.e. and || fo
i
fore, for all 1 < p < 400, Vg € [1,+ 0]

< k. There-

[P

Hf;ck/ fzxk“Lﬂ’ '(Q _-+—£ 0.

The number p’ (resp. ¢') is the conjugate of p (resp. of ¢). The function
(3) Tiy=— > (=1)“D*y; e C2(Q)
o] <2

and then there exists ug; € W2 bmo,(Q) N W, bmo,(Q) for all p < +oo solution
of

—Aukj = Tkj inQ
(gkj){ u =0 on 0QQ.

This is equivalent to

—/ uiAg dx —/ Ty dx = Z /fak_,»(x)D“(p(x) dx
Q o] <2
pe W2LY(Q)n W) LY(Q).
Arguing as in the proof of Theorem 1 of [18] (see also [7, 8]), we have for
l<p<+4owo

sup [[” |uig ... (0)] < ¢ Z | foil .. 7 (Q
1<|Q| o] <2

and then, (u;); is a Cauchy sequence in L?*(Q) and we derive the existence of
ue € L?°(Q)

(g — ”k||u’-x(g) m +o0.
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And u; satisfies the equation (2). Such equation has a unique solution, since if
ve L'(Q);

—/UA(odx:O Vo e C*(Q); ¢ =0o0ndQ.
Q

Then v = 0. In particular u, € () L?"*(Q). O
p'<+w

To obtain an uniform estimate with respect to k in L'(€), we shall need the fol-
lowing hypothesis; for all o, |o] <2

(Hpma), bmo,(Q) == L(p,; Q).
We want to show that (i), is a Cauchy sequence in L!'(Q). Indeed, consider uy,

u,, two functions satisfying Lemma 3. By the result of Chang-Dafni-Stein [3, 4]
on the regularity in W2 bmo,(Q), we have ¢, € W?bmo,(Q) N H] (Q) such that

—Apy,, = sign(ug — uy,)  in Q,
P =0 on 0Q.

and 1|V\Ia)2( | D*@pmllbmo, < €(L2). By the hypothesis (Hpyq), one has
o < '

Pa(ID*Pnl) < €[ D*Pnllbmo, < ¢(€2)-

Since

- /Q(uk - unz)A¢km dx = Z /(fotk - fotm)Da(pkm dx

o) <2/ €

/ |uk —um|dx < Z ,Da fzxk facml)pacﬂDa(/)kmD

|| <2

/Q i — | dx < () S 1k — Fonll sy ———— O,

=2 (k, m)a#»oo

we conclude that there is an element u € L' (Q) such that

lim / |t —uldx =0
k—+0 Q

We pass to the limit in Lemma 3 , to get

—/uA(p—
Q

with ¢ = 0 on Q.

/]QD“godx Vo e W2L*(Q),

o] <2
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Such u is unique since two solutions uy, u, will satisfy
—/(u1 —w)Ap=0 VpeC*(Q), peC*Q), ¢=0o0ndQ
Q
so that

Uy = up.

Finally for the continuity of the mapping 7" — u, we have

[ s < @) Y Wl < @ Maxlfill

o <2

< c(Q)7T].,
from which we derive

|ul 1) < Q)T
3.2. 2™ case Neumann condition

The same argument holds for this 2"/ case with Neumann condition replacing the
set of test functions by

{(pe WZV:?:OonBQ}.
n

We only emphasize on the main changes in the proof.

LEMMA 4. There exists a unique element uy € (| L?>*(Q) satisfying

p'<+ow
/ urdy =0
Q

and
) _/ wApdx = Ti(p) - Tk(1)<][ pdx),
Q Q
21w dp
Vo e W2L*(Q) anda— =0 on 0Q.
n
SKETCH OF PROOF. There exists a unique uy; € W2 bmo,(Q) such that

—/ uAp dx = / p(x)TY(x)dx, Yo e W>L*(Q) with % _ 0 on 0Q.
o O J on
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/ u; dx = 0 where T}; is given in relation (3) and is the approximation of T}
Q
given in (1) and T,?j = Tij — ][ Tii(y) dy.

Q

Arguing as in the proof of Theorem 1 [18] (see also [7]), we have

sup [t” |uggl,. ()] < ¢ Z (| foti || o 7(Q

1=<1Q| |o] <2
and we derive the existence of (u;) satisfying (4). Since
lim Ty(p) = Ti(p), Vo€ W2L*(Q).
Joto
In particular, this convergence is true for ¢ = 1. O

We can also introduce

Ay = sign(ug — upm) — ][ sign(ue — um)(y) dy, inQ,
Q
6¢km

=0 on 09,

/ bon(¥) dy = 0.
Q

According to Theorem 5.9 of [3] (see also [4]), we know that ¢,,, € W?bmo,(Q)
and

Amll 172 bmo, < ¢(€2)  (independent of & and m).

Since W?2bmo, =. W2V, we can use ¢,,, as a test function to derive

/Q luge — | dx = — /Q(uk — U) (X) Ay (X) dx
= (Tk - Tm)(¢km)

(since /Quk(x) dx—/um( dx—/qﬁkm )dx =0)

/ (o) — Fom()) D () dix

Jor| <2
[ b=l < 2 gV~ Lo 107
Jo| <2
Z poc |fozk fotmD 0.
=2 (k,m)—~+o0

We conclude as in the Dirichlet case. O
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REMARK 5. The hypothesis (Hpuna), is satisfied if Legp(Q) == L(p,; Q) (this is a
consequence of the John-Nirenberg inequality stating that bmo(RY) - Lexp(0)
for all cube Q = RY [2, 20, 22] and with the Jones’s extension theorems we then
deduce

mer(Q) = EZ’N(Q) <> Lexp(Q)

(see for instance [1, 20])). In [1], page 382, this continuous embedding is already
used with Q = Qg a cube. This hypothesis is equivalent to

L(pl;Q) - LlogL) = L1 (Q).
For instance, one has

PRrROPOSITION 3.

1 t m
Lexp(Q) == GT(p,m,w) if and only lf/ W(Z)(/ (1— logs)pds)p dt < 40,
0 0

with |Q| = 1.

PrOOF. Assume first that the integral is finite and let v be in Lexp(€2). Then, one
has
[0].()

v = sup ———— isfinite
lolle., = sup =50

and by the definition of GT'(p, m,w) we have

m

1 t m
©  Nelorman <l [ [ w( [ 01007 as) ] <o

Conversely, if Lexp(©2) = GI'(p,m, w) then the integral is finite. Indeed, the func-
tion s — 1 —logs is decreasing and continuous on ]0, 1]. Therefore, from the
Lyapunov’s Theorem (see Chong and Rice or Benoit Simon’s thesis [5, 21]) we
have a measurable function v:Q — R such that v.(s) =1 —log(s). Thus,

U € Lexp(Q2) and |[o]| L., = 1, we conclude that

ve GL(p,m,w)

1 t m i
v ) = w(t 1 —logs)” ds ,,] m]
llomn = | [ ) [ 1~ togs)”a)
The condition that GT'(p,m, w) to be reflexive is proven in [15, 13].

PROPOSITION 4. Assume that p > 1, m > 1. Then G(p,m,w) is reflexive.
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In particular, we have:

COROLLARY 1 (of Theorem 2). Let GI'(p,m,w) be the generalized Gamma
space. If

1 t m
/ w(t)(/ (1~ logs)" ds) di < +o0, (p.m) & (1,40
0 0
then for any T € (W2GT (p,m,w))”, there exists a unique u € L' (Q) satisfies
/ uhpdx = T(p), Vo e WL"(Q)n Hi(Q).
Q

Here W*GT(p,m,w)={ve L} .(Q): D% e GI(p,m,w);|a| <2}. (resp. Vo e
0

W2L*(Q) with 6—3 =0T7T(1)=0 and/ udx = 0 for the Neumann problem.)
Q

The mapping T — u is continuous.

THEOREM 6 (Integrability in Lexy(Q)). Assume that h!(Q) == L(p,; Q), Vo. Here
h(Q) is the Hardy space satisfying
Q)" = bmo,(Q)

z

Then, the solution u found in Theorem 2 under the hypothesis (Hpuna); o (Hpuna),
belongs to Lexp(Q2) and there exists ¢(€2) > 0.

ull ., < T N2y

ProOOF. We only emphasize the main modification starting with the Dirichlet
case. We assume that |Q| = | for simplicity. Let E be a measurable subset of Q,
and ¢, in W2 bmo,(Q) satisfying

—App,, = xEsign(ux — uy,)  in Q,
O =0 on 0Q.

Then, one has from regularity result in [3, 4]:

Hngﬂkm“hZ] (Q) = C(Q)HXE Sigl’l(l/lk - um)”L(LogL)
< c(Q)|E|(1 - log|E])

/ |uk — um| dx = — / (Mk - “m)A(/)km dx
E Q

- Z /Q(fo'k _fc{m)Dugﬂkm dx

o] <2

< Z pc/{(ftxk - facm)poc(D“(ﬂkm)

la| <2
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<c Z p;(fotk - focm)HD“wkah;l

o] <2
< (Q)IE|(1 ~ ToglE) 3 s = funlliiprcy
o] <2
we deduce
|uk - Z/lm|**(l)
e =t = sup =0 2= <o) D ok = Sanlligprie 17 O

o] <2

And we conclude as before.
For the Neumann case, we consider as ¢,

Ay = sign(ug — m)s — f sign(us — )z dx
Q

%: 0 on 0Q),
on

/ Prm dx = 0.
Q

From Chang-Dafni-Stein’s regularity in [3] (see also [4]) one has ¢, €
W2 bmo,(Q) and

D% Prmllpy < c|E|(1 — log|E]).
And we conclude as in the Dirichlet case. O

REMARK 6. The embedding assumption in Theorem 6 is satisfied for instance
if L(p,: Q) = LI(Q).

More integrability result may be obtained if we replace (Hpuna); by (Hpuna)s-
THEOREM 7 (Integrability theorem in Lorentz spaces). If L71(Q) <. L(p,; Q),
Yoe NV, |of <2, for some 1 < p < +oo, 1 <q< +oo, the v.w.s. solution of
“—Au=T :in Q" given in Theorem 2 satisfies

ue L?*(Q),
and

ull . ) < N TN wayy

The proof is contained in Lemma 3, in Theorem 1 (see [18] for its proof). Besides
the GI'-spaces, one can also use variable exponent spaces.
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Indeed, in a recent paper with A. Fiorenza and C. Sbordone [14] we have
introduced the following Banach function space with absolutely continuous
norm

L(|| - [l,.():€2) = {f : @ — R measurable such that f., e L™(Q,)}

. . 1 p+(0)
Il = inf 21+ /0 do

p:Q — 1, 4+00[ measurable and bounded and p. is the decreasing rearrange-
ment

D+

with the norm

fi(0)
7

t
fuo =1 [ 1f1.0)do
Such spaces are suitable as L(p,; Q) in Theorem 2.

4. PROOFS OF LEMMA 1, THEOREM 5 AND PROPOSITION 2

We start with the proof of Lemma 1 Proof of Lemma 1

Let us consider first the case ¢ = 1.

Let Le V", s.t. Vp e Ay, L(p) =0. According to Hahn-Banach Theorem,
there is L e (W2LP1(Q))" : L(p) = L(¢p), Yo € V. According to Theorem 1, we

have an unique function u € L?"*(Q) with / u(x) dx = 0 satisfying
Q

—/Qqu)dx =L(p)=L(p) VYopeV.
Therefore,
—/QuAgodx:() Yo € A;.
Let (u,), be a sequence of C.°(Q) such that
/ng(x) dx =0, u, — uk —uk||ug|,, < 3k
with

wh = — [ uF(x)dx, uF(x) =min(u(x): k) sign(u(x)).
“‘m/g”d’ (x) = min(u(x); k) sign(u(x))
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—A§0£:u8 i}’lQ,
Consid C?(Q) such that
onsider ¢, € C*(£) such tha %:0 on 0Q.
n

Then L(p,) = 0, since ¢, € Ay, so that

/ uu, dx = 0.
Q

Letting ¢ goes to zero, we have

/u(uk—m)dx:():/uukzo.
Q Q

But uu*(x) >0 so that u(x)-uf(x)=0ae. inQ:u*(x)=0ae u=0 which
implies

L(p)=0 VepelV.

For the general case we observe that WZ2LP4(Q) . W2LP~51(Q) for any
. . . 0 ..
0<e< p—1. Since A, is dense in {go € Wsz’*s’l(Q),a—(o = 0} containing V
n

from the above result, A, is dense in the smaller space V. O

PrROOF OF THEOREM 5. It is sufficient to prove the case m = 1. The general case
is similar and the proof follows the same scheme as for the (W!'L?)" case.
We shall write

V:L(pO7Q)XXL(pNag)7 DOUZU? DjU:ajU,
W = W' L(py;...py; Q).

1. Let J be the mapping

N
W'L(pgi .5 Q) — [[ Llp; Q)
=0
u— (u;01u;...;0nu).

It is an isomorphism so that its image /mJ is a closed subset.
Let us then consider the linear continuous form

-1
. mJ ™ W L(py; .- .05, Q) SR
wi= J wies T 'w)

T*
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According to the Hahn-Banach theorem, it can be extended to linear form on

N N
all the space [] L(p;;Q) i.e. T* such that
=0

I T*|| = IT*|| = ||IT|, (sinceJ is an isometry).

_ N

Thus, T* € [] L(p;; Q)". But L(p;; Q) has absolutely continuous norm there-
i :

fore L(p; Q)" = L(pj; Q) and then there exits v; € L(p/; Q) such that

N N
T*(wo, ..., wy) = Z/ wivjdx  Y(wo,...,wy) € HL(pj;Q).
j=0 79 Jj=0

In particular,
N
(6)  T(u) =T Yu;Vu)) = T*(u,Vu) = Z/ ojuv; dx+/ uvy dx
= Je Q
Yue W'L(py;...;py; Q).

N
Z ||aju||L(pf;Q) + ||u||L(p0;Q)] )
=

17T, < %E}VXHD]'HL(/;/’;Q)'

1T (u)| < lj\g}\}HanL(@r;Q)

2. For the proof of the rearrangement invariant case, we introduce for a measur-
. sign(gx (x .
able set E the function /i(x) = sign(ge(x)) 1e(x), x € Q, where k is such that

Pi(XE)

L(p;; Q) is a rearrangement invariant space. Then

pk(h)gland/hgk(x)dx:f*(O,...O, ho,0,...,0), Tl =Tl
Q

~—
k[/l

So that:

7) /Q hgi(x) dx < | Tl ey < 171

Taking ¢ € |0, |Q|[ and |E| = 1, we derive from (7)

1 1
(8) cox'(t)—/ ngIdX=pL(xE)—/ gkl dx < || T,
tJE |E| Jg
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Then

sup [y (1)gr ()] < [IT1]...
t<|Q]

Let us end with the proof of the last statement.
3. Letke{0,...,N}: ||Uk||L(p£‘Q) = Max; < [|v[l 1,/ q), One has by definition

oll2py:0) = Sup{ ‘/Q s

Therefore, there exists a sequence ("), : pi(h") < 1, s.t.

/ vich" dx
o)

Since L(py; Q) is reflexive, there exist # and a subsequence such that

cpr(h) < 1}.

lim
n

= pr(ve)-

lim [ h"gdx = / hgdx Vg e L(p; Q)" = L(p; Q)
Q Q

n—-+oo
/h”vk dx / hvy, dx
Q Q

pr(h) < liminf p, (A") < 1.

n—+aoo

= pi(vk) = lim =

n——+oo

Moreover,

So that the supremum is achieved at /

/ o _ i
Pr(ox) = ?;a/\)/( ||U_/‘||L(p_;;Q) = ”Uk”L(p/’c;Q) = ‘/thk dx
= |T*(0,...,h,0,...)| < || T*||px(h) <||T|,, his the k™ variable.
Thus,
Max [0l pp00 = 1T (with the help of (6)). m

SKETCH OF PROOF OF PROPOSITION 2. We start with L”!1(Q), 1 < p < +0.
As in the proof of Theorem 5 we fix k such that:

Max g7l = llgell Lo

1
7

Since the fundamental function for X' = L?"* (Q) satisfies ¢ (1) = t7, applying
Theorem 5, one has:

1
gkl = Su‘g‘[”’gk**(t)] < Il < llgellLr» )
1<

which gives the result. |
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Case oF WILL1(Q)*. We choose h(x) = __sign(ge(x)) xg(x) for a measur-

Q
able set £. Then |E|(1+ Lo ||E||)
1 min(#|E])
(1) < - —————"a%
. E|(1 —|—Log‘E|)
/ \h|,.(6)dt < 1Al <1
(g7 Lol / hgedx < |17 1. < 7],
ngl**( )
sup —— =g = ITll. = Maxlg;|
i=j0/1 + Log™= L /e (62
Max (191l (@) = 171l

exp

Case oF WILY(Q)*. We choose h(x) = w for a measurable set E.
Then |||, = 1. We conclude as above. ] O
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