
Rend. Lincei Mat. Appl. 26 (2015), 241–262
DOI 10.4171/RLM/705

Partial Di¤erential Equation — Linear equation with data in non standard spaces,
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Abstract. — Given a finite family of Banach function spaces Va over a bounded set W,

V ¼
Q

a Va, and let T be an element of the dual of the Sobolev space W 2V . We discuss the exis-
tence, uniqueness and regularity of the solution of the linear equation Lu ¼ T under the Dirichlet

or Neumann condition on the boundary of W.
Our results extend recent works on very weak solution with data in weighted distance space or

Lorentz space.
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1. Introduction

Recently, Merker J. and the author extended the study of the so called very weak
solution to the Neumann problem whose right hand side belongs to the dual
space of Lorentz-Sobolev space W 2Lp;qðWÞ (see below for the exact definition).
We have shown in particular the

Theorem 1. Let W be a bounded open set of class C2, and let T a
ðW 2Lp;qðWÞÞ�, with Tð1Þ ¼ 0, 1 < p < þl, 1a q < l.

Then there exists a unique function u a Lp 0;lðWÞ, p 0 is the conjugate of p,
such that

1.

Z
W

uðxÞ dx ¼ 0.

2. �
Z
W

uDj dx ¼ 3T ; j4, Ej a W 2Lp;1ðWÞ, qj
qn

¼ 0 on qW and

kukL p 0 ;lðWÞ a cðWÞkTkðW 2L p; qðWÞÞ� :

A first aim of this paper is to extend such results replacing the Lorentz space
Lp;q by a family of Banach functions spaces Lðra;WÞ (see below for the precise
definition).

We shall distinguish the Dirichlet and Neumann cases (although the proofs of
those cases are similar). We shall consider W a bounded open set of class C2 and
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the space of bounded mean oscillation functions bmorðWÞ which coincides to the
Campanato space L2;NðWÞ (see below for the definition). The main result that
we shall prove is the

Theorem 2 (existence of v.w.s. in L1ðWÞ for data in Banach function spaces).
Let a ¼ ða1; . . . ; aNÞ a NN with jaj ¼ a1 þ � � � þ aN a 2, W a bounded open set of
class C2 and let Lðra;WÞ be a reflexive Banach function space satisfying ðHFundÞ1
i.e. bmorðWÞH> Lðra;WÞ. We set: V ¼

Q
jaja2

Lðra;WÞ and

W 2V ¼ fv a L1
locðWÞ : Dav a Lðra;WÞ; jaja 2g:

Then for T a ðW 2VÞ�, there exists a unique u a L1ðWÞ satisfying

�
Z
W

uDj dx ¼ TðjÞ; Ej a W 2LlðWÞ;

with j ¼ 0 on qW (resp.
qj

qn
¼ 0 on qW for Neumann problem with the additional

conditions Tð1Þ ¼ 0 and

Z
W

uðxÞ dx ¼ 0).

Moreover, there exists a constant cðWÞ > 0 such that

jujL1ðWÞ a cðWÞkTkðW 2VÞ�:

Remark 1. We can remove the condition on the reflexivity of Lðra;WÞ but in
that case, we replace the hypothesis ðHFundÞ1 by a di¤erent condition, for instance
a stronger inclusion say, for some p > 1, for all a,

Lp;1ðWÞH> Lðra;WÞ ðHFundÞ2

In this case

ðW 2VÞ� H ðW 2Lp;1ðWÞÞ�:

Therefore, the existence and uniqueness of the function u are a consequence of
Theorem 1.

A particular Banach function space Lðra;WÞ that we shall consider is the so
called Generalized Gamma spaces GGðp;m;wð�ÞÞ that we have introduced in
previous papers, [11, 12].

These spaces give a unified formulation of di¤erent spaces among other thing
the Lorentz spaces Lp;qðWÞ, the small Lebesgue spaces Lð pðWÞ [9, 10, 16], the
Orlicz spaces ðLp LogLÞðWÞ.

There are many applications of the notion of very weak solution. Here is an
application of Theorem 1 that we shall prove in the last paragraph:
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Lemma 1 (of Density). Let W be a bounded set of class C1;1. Then, the set

j a C2ðWÞ : qj
qn

¼ 0 on qW

� �
¼ D2

is dense in

j a W 2Lp;qðWÞ : qj
qn

¼ 0 on qW

� �
¼ V ;

1 < p < þl, 1a qaþl.

2. Notation and preliminary results

Here are some spaces that we shall use

Definition 1 (of bmoðRNÞ) (see Goldberg in [2]). A locally integrable function
f on RN is said to be in bmoðRNÞ if

sup
0<diamðQÞ<1

1

jQj

Z
Q

j f ðxÞ � fQj dxþ sup
diamðQÞb1

1

jQj

Z
Q

j f ðxÞj dx

C k f kbmoðRN Þ < þl;

where the supremum is taken over all cube QHRN whose sides are parallel to
the coordinates axis.

Definition 2 (of bmorðWÞ and main property) [2, 3, 19]. A locally integrable
function f on a Lipschitz bounded domain W is said to be in bmorðWÞ (r stands
for restriction) if

sup
0<diamðQÞ<1

1

jQj

Z
Q

j f ðxÞ � fQj dxþ
Z
W

j f ðxÞj dxC k f kbmorðWÞ < þl;

where the supremum is taken over all cube QHW whose sides are parallel to the
coordinates axis.

In this case, there exists a function ~ff a bmoðRNÞ such that

~ff jW ¼ f and k ~ff kbmoðRN Þ a cW � k f kbmorðWÞ:

Explanation. The above definition is adapted to the case where the domain is
bounded, and it is equivalent to the definition given in [3, 2, 19].

The main property is due to P. W Jones [17], this extension result implies that
bmorðWÞ embeds continuously into LexpðWÞ.
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Definition 3 (of the Campanato space L2;NðWÞ). A function u a L2;NðWÞ if

kukL2ðWÞ þ sup
x0 AW; r>0

r�N

Z
Qðx0; rÞBW

ju� urj2 dx
" #1

2

¼ kukL2;N ðWÞ < þl:

Here

ur ¼
1

jQðx0; rÞBWj

Z
Qðx0; rÞBW

uðxÞ dx:

Theorem 3 (Equivalence of the two definitions). For a Lipschitz bounded do-
main W one has:

L2;NðWÞ ¼ bmorðWÞ; with equivalent norms:

This theorem is not essential for our purpose, we refer to [20] for the proof.

Definition 4 (Banach function norm). Let W be a bounded domain in RN ,

L0ðWÞ ¼ f f : W ! R measurableg; L0
þðWÞ ¼ f f b 0; f a L0ðWÞg:

A mapping r : L0
þðWÞ ! ½0;þl� is called a Banach function norm if it satisfies

the following properties: E f , g, fn a L0
þðWÞ

1. r is a norm i.e.

rð f Þ ¼ 0 if and only if f ¼ 0;

rðl f Þ ¼ lrð f Þ El a Rþ;

rð f þ gÞa rð f Þ þ rðgÞ:

8><
>:

2. 0a ga f a.e. in W then rðgÞa rð f Þ (monotonicity).
3. 0a fn % f a.e. in W, then rð fnÞ % rð f Þ (Beppo-Levi property).
4. rð1Þ < þl.
5. There exists a constant cW > 0 such that Ef a L0

þðWÞZ
W

f dxa cWrð f Þ:

Definition 5 (Banach function space). Let r be a function norm. Then the
linear space

Lðr;WÞ ¼ f f : W ! R measurable such that rðj f jÞ < þlg

is called a Banach function space (BFS), it is a Banach space endowed with the
norm k f k ¼ rðj f jÞ ¼ rð f Þ.

The associate norm r 0 is defined on L0
þðWÞ by

r 0ðgÞ ¼ sup

Z
W

fg dx : f a L0
þðWÞ; rð f Þa 1

� �
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r 0 is a Banach function norm and the BFS Lðr 0;WÞ ¼ Lðr;WÞ0 is called the
associated space of Lðr;WÞ.

Setting r 00 ¼ ðr 0Þ0. Then one has

Lðr 00;WÞ ¼ Lðr;WÞ:

One fundamental property that we shall need is

Definition 6 (Absolute continuity of the norm of function f ). Let f a Lðr;WÞ.
We shall say that it has absolutely continuous norm if, for any sequence fn such
that 0a fn a j f j, fnðxÞ ! 0 a.e. one has rð fnÞ ���!

n!þl
0.

In other words, the dominate Lebesgue theorem is true for any sequence
pointwise convergent and dominated by j f j:

If gn ! g a:e:; jgnja j f j then rðgn � gÞ ���!
n!þl

0:

The link of this definition with the reflexivity is

Theorem 4 (Reflexivity). Let Lðr;WÞ� be the Banach dual space of Lðr;WÞ.
Lðr;WÞ� is canonically isometrically isomorphic to the associate space Lðr 0;WÞ

if and only if Lðr;WÞ has absolutely continuous norm.
In particular, Lðr;WÞ is reflexive if and only if Lðr;WÞ and Lðr 0;WÞ have abso-

lutely continuous norms.

Definition 7 (Rearrangement invariant space). The space Lðr;WÞ is said to be
rearrangement invariant if for all f and g in Lðr;WÞ and Et a R

measurefx a W; f ðxÞ > tg ¼ measurefx a W; gðxÞ > tg ) rð f Þ ¼ rðgÞ:

Remark 2. For convenience, we shall denote by jEj the measure of a set E. If r
is rearrangement invariant, we can associate to X ¼ Lðr;WÞ the so called funda-
mental function jX ðtÞ ¼ rðwEÞ whenever jEj ¼ t. This function does not depend
on E. Since r 0 is also rearrangement invariant, we can associate jX 0 ¼ r 0ðwÞ to
X 0 ¼ Lðr 0;WÞ.

One has

Proposition 1 (see Bennett-Sharpley [1] p. 66).

1. jX ðtÞjX 0 ðtÞ ¼ t, Et a �0; jWj½.
2. jX is increasing, jX ðtÞ ¼ 0 i¤ t ¼ 0.

3.
jX ðtÞ
t

is decreasing.

4. jX is continuous except perhaps at the origin.

Example 1. The most well-known Banach function spaces are the Lebesgue
spaces L pðWÞ, 1a paþl, and the Lorentz spaces L p;qðWÞ. We give a quick
definition of these last spaces.
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Definition 8 (of the Distribution function and monotone rearrangement).
Let u a L0ðWÞ. The distribution function of u is the decreasing function
m ¼ mu : R 7! ½0; jWj�

muðtÞ ¼ measurefx : uðxÞ > tg ¼ jfu > tgj:

The generalized inverse u� of m is defined by

u�ðsÞ ¼ infft : jfu > tgja sg; s a ½0; jWj½

and is called the decreasing rearrangement of u. We shall set W� ¼ �0; jWj½.

We recall

Definition 9. Let 1a paþl, 0 < qaþl.

• If q < þl, one defines the following norm for u a L0ðWÞ

kukp;q ¼ kukL p; q ¼
Z
W�

½t 1pjuj��ðtÞ�
q dt

t

� �1
q

:

• If q ¼ þl,

kukp;l ¼ sup
0<tajWj

t
1
qjuj��ðtÞ; juj��ðtÞ ¼

1

t

Z t

0

juj�ðsÞ ds:

The space Lp;qðWÞ ¼ fu a L0ðWÞ : kukp;q < þlg is called a Lorentz space.

If p ¼ q ¼ þl, Ll;lðWÞ ¼ LlðWÞ.
The dual of L1;1ðWÞ is called LexpðWÞ

The Lorentz spaces are particular cases of the Generalized Gamma spaces
GGðp;m;wÞ.

Definition 10 (Gamma weight). Let 1a p < þl, 1am < þl, and assume
for simplicity that jWj ¼ 1, and let w be a measurable nonnegative function such
that:

1. t ! wðtÞtmp is integrable near zero,
2. w is in L1

locð�0; 1�Þ �Z 1

a

wðsÞ ds < þl; Ea > 0
�
;

3. ba > 0 : 0 < a < 1, essinf
ð0;aÞ

w > 0.

Note that 1. and 2. are equivalent to t
m
pw a L1ð�0; 1½Þ, and the last condition avoid

w to be a trivial function.
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The spaces GGðp;m;wÞ are defined by

GGðp;m;wÞ

¼
(
f a L0ðWÞ : k f kGGðp;m;wÞ ¼

Z 1

0

wðtÞ
�Z t

0

j f j p� ðsÞ ds
�m

p

dt

� �1
m

is finite

)

is called Generalized G-spaces

for 1a p < þl, 1am < þl.

A striking fact that we have shown in those papers [11, 12], is that, the GG-
Sobolev spaces,

W 1GGðp;m;wð�ÞÞ ¼ fv a L1ðWÞ : ‘v a GGðp;m;wð�ÞÞNg

is compactly embedded in Lp�ðWÞ, p� ¼ Np

N � p
, 1a p < N if and only

w B L1ð0; 1Þ.

Remark 3. More generally, if V is a Banach space contained in L1ðWÞ, we set:

W 1V ¼ fv a L1ðWÞ : ‘v a VNg

and

W 1
0V ¼ W 1V BW

1;1
0 ðWÞ:

Remark 4 (on some non compactness). Applying this result to the small
Lebesgue-Sobolev space W 1Lð pðWÞ, we have for 1 < p < N the following com-
pact embedding W 1Lð pðWÞ c

H> Lp�ðWÞ. If we replace the small Lebesgue space
by the closest Lorentz space Lp;1ðWÞ:

Lð pðWÞHLp;1ðWÞHLpðWÞ;

The following inclusion is not compact, anymore,

W 1Lp;1ðWÞ ¼ fv a L1ðWÞ : ‘v a Lp;1ðWÞNgHLp�ðWÞ:

The proof relies on a straight forward computation using an explicit counterex-
ample (see also [6]). We drop it since it is beyond the scope of this paper.

The resolution of Theorem 2 needs the following decomposition whose proof
will be given in the last paragraph.

Theorem 5. Let m a N, mb 1, for an a ¼ ða1; . . . ; aNÞ a NN with jajam, we
consider the Banach function space Lðra;WÞ with absolutely continuous norm.

We set: V ¼
Q

jajam

Lðra;WÞ and

WmV ¼ fv a L1
locðWÞ : Dav a Lðra;WÞ; jajamg:
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Let T a ðWmVÞ�. Then there exists a family fa a Lðr 0
a;WÞ such that

TðuÞ ¼
X
jajam

Z
W

faD
au dx Eu a WmV :

Moreover, we have:

kTk� a Max
jajam

k fakLðr 0
a;WÞ

1. If b a NN is such that rb is rearrangement invariant, then

Max
tajWj

½jX 0
b
ðtÞj fbj��ðtÞ�a kTk�;

with Xb ¼ Lðrb;WÞ, jX 0
b
ð�Þ being the fundamental function of X 0

b.

2. If Lðra;WÞ is reflexive for all a then

kTk� ¼ Max
jajam

k fakLðr 0
a;WÞ:

In the above theorem, in statement 2, the reflexivity assumption on Lðra;WÞ is
not necessarily useful to obtain the equality as we suggest in the following prop-
osition whose proof is given in the last paragraph.

Proposition 2 (Decomposition of T a ðW 1Lp;1ðWÞÞ�, 1a p < þl, (Lp;1 can
be replaced by L1)). There exists

ðg0; . . . ; gNÞ a
Lp 0;lðWÞNþ1

if 1 < p < þl;

LexpðWÞNþ1
if p ¼ 1;

LlðWÞNþ1
if T a W 1L1ðWÞ�;

8><
>:

such that for all j a W 1Lp;1ðWÞ (resp j a W 1L1ðWÞ):

1. TðjÞ ¼
Z
W

g0j dxþ
XN
j¼1

Z
W

gj
qj

qxj
dx.

2. kTk� ¼ Max
jaN

kgjkL p 0 ;lðWÞ if p > 1 and kTk� ¼ MaxjaN kgjkLexp
if p ¼ 1. (resp

kTk� ¼ Max
jaN

kgjkLlðWÞ for W
1L1ðWÞ�)

3. Proof of the main results and regularity theorem

We begin this paragraph by the proof of the main theorem 2. Following the
decomposition in Theorem 5, we can write

TðjÞ ¼
X
jaja2

Z
W

faD
aj; Ej a W 2V ; kTk� ¼ Max

jajam
k fakLðr 0

a;WÞ:

248 j. m. rakotoson



Let k a N, kb 1 and define

fakðxÞ ¼ minðj faðxÞj; kÞ sign faðxÞ; x a W;ð1Þ

TkðjÞ ¼
X
jaja2

Z
W

fakD
aj dx; Ej a W 2L1ðWÞ: r

One has

Lemma 2 (density and approximation).

1. For all k, Tk a ðW 2VÞ�, lim
k!þl

TkðjÞ ¼ TðjÞ, Ej a W 2V.

2. kTk � Tk� a Max
jaja2

k fa � fakkLðr 0
a;WÞ ���!

k!þl
0.

3. Cl
c ðWÞ is dense in ðW 2VÞ�.

Proof.

1. Let us note that W 2LlðWÞHW 2V since for j a W 2LlðWÞ

raðDajÞa kDajklraðwWÞ < þl:

2. If j a W 2V , then

jTkðjÞ � TðjÞja
X
jaja2

Z
W

j fak � fajðxÞjDajjðxÞ dx

a Max
jaja2

k fak � fakLðr 0
a;WÞ �

X
jaja2

raðDajÞ;

so that we derive the inequality. The convergence to zero is a consequence of
the fact that Lðr 0

a;WÞ has absolutely continuous norm.
3. For k (fixed), we consider fakj a Cl

c ðWÞ such that
(a) fakjðxÞ ! fakðxÞ a:e: in W
(b) j fakjðxÞja k Ej and a:e: in W.
We then have

r 0
aðj fakj � fakjÞ ���!

j!þl
0:

The same argument as it is given in statement 2. shows that

kTkj � Tkk� a Max
jaja2

k fakj � fakkLðr 0
a;WÞ ���!

j!þl
0;

where TkjðjÞ ¼
X
jaja2

Z
W

fakjðxÞDajðxÞ dx. r

We apply now these approximations to prove the existence of the very weak
solution.
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3.1. 1st case: Dirichlet condition

Lemma 3. Let ðTkÞk be the sequence defined in relation (1). Then, there exists a
unique element uk a

T
p 0<þl

Lp 0;lðWÞ satisfying

�
Z
W

ukDj dx ¼ TkðjÞ;ð2Þ

Ej a W 2LlðWÞBW 1
0 L

p;qðWÞ, for all p such that 1a p < þl, 1a q < þl.

Proof. Let k be fixed, TkðjÞ ¼
X
jaja2

Z
W

fakD
aj dx Ej a W 2LlðWÞ.

Let fakj Cl
c ðWÞ such that fakjðxÞ ���!

j!þl
fakðxÞ a:e: and k fakjkl a k. There-

fore, for all 1 < p < þl, Eq a ½1;þl½

k fakj � fakkL p 0 ; q 0 ðWÞ ���!
j!þl

0:

The number p 0 (resp. q 0) is the conjugate of p (resp. of q). The function

Tkj ¼ �
X
jaja2

ð�1ÞjajDafakj a Cl
c ðWÞð3Þ

and then there exists ukj a W 2 bmorðWÞBW 1
0 bmorðWÞ for all p < þl solution

of

ðLkjÞ
�Dukj ¼ Tkj in W

ukj ¼ 0 on qW:

�

This is equivalent to

�
Z
W

ukjDj dx ¼
Z
W

Tkjj dx ¼
X
jaja2

Z
W

fakjðxÞDajðxÞ dx

j a W 2L1ðWÞBW 1
0 L

1ðWÞ.
Arguing as in the proof of Theorem 1 of [18] (see also [7, 8]), we have for

1 < p < þl

sup
tajWj

½t
1
p 0 jukjj��ðtÞ�a c

X
jaja2

k fakjkL p 0 ; q 0 ðWÞ;

and then, ðukjÞj is a Cauchy sequence in Lp 0;lðWÞ and we derive the existence of
uk a Lp 0;lðWÞ

kukj � ukkL p 0 ;lðWÞ ���!
j!þl

þl:
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And uk satisfies the equation (2). Such equation has a unique solution, since if
v a L1ðWÞ;

�
Z
W

vDj dx ¼ 0 Ej a C2ðWÞ; j ¼ 0 on qW:

Then v ¼ 0. In particular uk a
T

p 0<þl
Lp 0;lðWÞ. r

To obtain an uniform estimate with respect to k in L1ðWÞ, we shall need the fol-
lowing hypothesis; for all a, jaja 2

ðHFundÞ1 bmorðWÞH> Lðra;WÞ:

We want to show that ðukÞk is a Cauchy sequence in L1ðWÞ. Indeed, consider uk,
um two functions satisfying Lemma 3. By the result of Chang-Dafni-Stein [3, 4]
on the regularity in W 2 bmorðWÞ, we have jkm a W 2 bmorðWÞBH 1

0 ðWÞ such that

�Djkm ¼ signðuk � umÞ in W;

jkm ¼ 0 on qW:

�

and Max
jaja2

kDajkmkbmor
a cðWÞ. By the hypothesis ðHFundÞ1 one has

raðjDajkmjÞa ckDajkmkbmor
a cðWÞ:

Since

�
Z
W

ðuk � umÞDjkm dx ¼
X
jaja2

Z
W

ð fak � famÞDajkm dx

Z
W

juk � umj dxa
X
jaja2

r 0
aðj fak � famjÞraðjDajkmjÞ

Z
W

juk � umj dxa cðWÞ
X
jaja2

k fak � famkLðr 0
a;WÞ ������!ðk;mÞ!þl

0;

we conclude that there is an element u a L1ðWÞ such that

lim
k!þl

Z
W

juk � uj dx ¼ 0:

We pass to the limit in Lemma 3 , to get

�
Z
W

uDj ¼
X
jaja2

Z
W

faD
aj dx Ej a W 2LlðWÞ;

with j ¼ 0 on W.
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Such u is unique since two solutions u1, u2 will satisfy

�
Z
W

ðu1 � u2ÞDj ¼ 0 Ej a C2ðWÞ; j a C2ðWÞ; j ¼ 0 on qW

so that

u1 ¼ u2:

Finally for the continuity of the mapping T ! u, we haveZ
W

jukj dxa cðWÞ
X
jaja2

k fakkLðr 0
a;WÞ a cðWÞMaxk fakLðr 0

a;WÞ

a cðWÞkTk�;

from which we derive

jujL1ðWÞ a cðWÞkTk�:

3.2. 2nd case Neumann condition

The same argument holds for this 2nd case with Neumann condition replacing the
set of test functions by

j a W 2V :
qj

qn
¼ 0 on qW

� �
:

We only emphasize on the main changes in the proof.

Lemma 4. There exists a unique element uk a
T

p 0<þl
Lp 0;lðWÞ satisfying

Z
W

uk dy ¼ 0

and

�
Z
W

ukDj dx ¼ TkðjÞ � Tkð1Þ
�Z

W

j dx
�
;ð4Þ

Ej a W 2LlðWÞ and qj

qn
¼ 0 on qW.

Sketch of proof. There exists a unique ukj a W 2 bmorðWÞ such that

�
Z
W

ukjDj dx ¼
Z
W

jðxÞT 0
kjðxÞ dx; Ej a W 2LlðWÞ with qj

qn
¼ 0 on qW:
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Z
W

ukj dx ¼ 0 where Tkj is given in relation (3) and is the approximation of Tk

given in (1) and T 0
kj ¼ Tkj �

Z
W

TkjðyÞ dy.

Arguing as in the proof of Theorem 1 [18] (see also [7]), we have

sup
tajWj

½t
1
p 0 jukj j��ðtÞ�a c

X
jaja2

k fakjkL p 0 ; q 0 ðWÞ

and we derive the existence of ðukÞ satisfying (4). Since

lim
j!þl

TkjðjÞ ¼ TkðjÞ; Ej a W 2LlðWÞ:

In particular, this convergence is true for j ¼ 1. r

We can also introduce

�Dfkm ¼ signðuk � umÞ �
Z
W

signðuk � umÞðyÞ dy; in W;

qfkm
qn

¼ 0 on qW;Z
W

fkmðyÞ dy ¼ 0:

8>>>>>>><
>>>>>>>:

According to Theorem 5.9 of [3] (see also [4]), we know that fkm a W 2 bmorðWÞ
and

kfkmkW 2 bmor
a cðWÞ ðindependent of k and mÞ:

Since W 2 bmor H> W 2V , we can use fkm as a test function to deriveZ
W

juk � umj dx ¼ �
Z
W

ðuk � umÞðxÞDfkmðxÞ dx

¼ ðTk � TmÞðfkmÞ

ðsince
Z
W

ukðxÞ dx ¼
Z
W

umðxÞ dx ¼
Z
W

fkmðxÞ dx ¼ 0Þ

¼
X
jaja2

Z
W

ð fakðxÞ � famðxÞÞDafkmðxÞ dx:Z
W

juk � umj dxa
X
jaja2

r 0
aðj fak � famjÞraðjDafkmjÞ

a cðWÞ
X
jaja2

r 0
aðj fak � famjÞ ������!

ðk;mÞ!þl
0:

We conclude as in the Dirichlet case. r
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Remark 5. The hypothesis ðHFundÞ1 is satisfied if LexpðWÞH> Lðra;WÞ (this is a
consequence of the John-Nirenberg inequality stating that bmoðRNÞH> LexpðQÞ
for all cube QHRN [2, 20, 22] and with the Jones’s extension theorems we then
deduce

bmorðWÞ ¼ L2;NðWÞH> LexpðWÞ

(see for instance [1, 20])). In [1], page 382, this continuous embedding is already
used with W ¼ Q0 a cube. This hypothesis is equivalent to

Lðr 0
a;WÞH> LðlogLÞ ¼ L1;1ðWÞ:

For instance, one has

Proposition 3.

LexpðWÞH> GGðp;m;wÞ if and only if

Z 1

0

wðtÞ
�Z t

0

ð1� log sÞ p ds
�m

p

dt < þl;

with jWj ¼ 1.

Proof. Assume first that the integral is finite and let v be in LexpðWÞ. Then, one
has

kvkLexp
¼ sup

sajWj¼1

jvj�ðsÞ
1� log s

is finite

and by the definition of GGðp;m;wÞ we have

kvkGGðp;m;wÞ a kvkLexp

Z 1

0

wðtÞ
�Z t

0

ð1� log sÞ p ds
�m

p

� �1
m

< þl:ð5Þ

Conversely, if LexpðWÞHGGðp;m;wÞ then the integral is finite. Indeed, the func-
tion s ! 1� log s is decreasing and continuous on �0; 1�. Therefore, from the
Lyapunov’s Theorem (see Chong and Rice or Benoit Simon’s thesis [5, 21]) we
have a measurable function v : W ! R such that v�ðsÞ ¼ 1� logðsÞ. Thus,
v a LexpðWÞ and kvkLexp

¼ 1; we conclude that

v a GGðp;m;wÞ

kvkGGðp;m;wÞ ¼
Z 1

0

wðtÞ
�Z t

0

ð1� log sÞ p ds
�m

p

� �1
m

r

The condition that GGðp;m;wÞ to be reflexive is proven in [15, 13].

Proposition 4. Assume that p > 1, m > 1. Then Gðp;m;wÞ is reflexive.
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In particular, we have:

Corollary 1 (of Theorem 2). Let GGðp;m;wÞ be the generalized Gamma
space. If Z 1

0

wðtÞ
�Z t

0

ð1� log sÞ p ds
�m

p

dt < þl; ðp;mÞ a ð1;þlÞ2;

then for any T a ðW 2GGðp;m;wÞÞ�, there exists a unique u a L1ðWÞ satisfies

�
Z
W

uDj dx ¼ TðjÞ; Ej a W 2LlðWÞBH 1
0 ðWÞ:

Here W 2GGðp;m;wÞ ¼ fv a L1
locðWÞ : Dav a GGðp;m;wÞ; jaja 2g. (resp. Ej a

W 2LlðWÞ with qj

qn
¼ 0 Tð1Þ ¼ 0 and

Z
W

u dx ¼ 0 for the Neumann problem.)

The mapping T ! u is continuous.

Theorem 6 (Integrability in LexpðWÞ). Assume that h1z ðWÞH> Lðra;WÞ, Ea. Here
h1z ðWÞ is the Hardy space satisfying

h1z ðWÞ� ¼ bmorðWÞ

Then, the solution u found in Theorem 2 under the hypothesis ðHFundÞ1 or ðHFundÞ2
belongs to LexpðWÞ and there exists cðWÞ > 0:

kukLexp
a cðWÞkTkðW 2VÞ� :

Proof. We only emphasize the main modification starting with the Dirichlet
case. We assume that jWj ¼ 1 for simplicity. Let E be a measurable subset of W,
and jkm in W 2 bmorðWÞ satisfying

�Djkm ¼ wE signðuk � umÞ in W;

jkm ¼ 0 on qW:

�
Then, one has from regularity result in [3, 4]:

kD2jkmkh1z ðWÞ a cðWÞkwE signðuk � umÞkLðLogLÞ
a cðWÞjEjð1� logjEjÞZ

E

juk � umj dx ¼ �
Z
W

ðuk � umÞDjkm dx

¼
X
jaja2

Z
W

ð fak � famÞDajkm dx

a
X
jaja2

r 0
að fak � famÞraðDajkmÞ
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a c
X
jaja2

r 0
að fak � famÞkDajkmkh1z

a cðWÞjEjð1� logjEjÞ
X
jaja2

k fak � famkLðr 0
a;WÞ

we deduce

kuk � umkLexp
¼ sup

ta1

juk � umj��ðtÞ
1� log t

a cðWÞ
X
jaja2

k fak � famkLðr 0
a;WÞ �!

k;m
0:

And we conclude as before.
For the Neumann case, we consider as jkm

�Djkm ¼ signðuk � umÞwE �
Z
W

signðuk � unÞwE dx

qjkm
qn

¼ 0 on qW;Z
W

jkm dx ¼ 0:

8>>>>>>><
>>>>>>>:

From Chang-Dafni-Stein’s regularity in [3] (see also [4]) one has jkm a
W 2 bmorðWÞ and

kDajkmkh1z a cjEjð1� logjEjÞ:

And we conclude as in the Dirichlet case. r

Remark 6. The embedding assumption in Theorem 6 is satisfied for instance
if Lðra;WÞ ¼ L1ðWÞ.

More integrability result may be obtained if we replace ðHFundÞ1 by ðHFundÞ2.

Theorem 7 (Integrability theorem in Lorentz spaces). If L p;qðWÞH> Lðra;WÞ,
Ea a NN, jaja 2, for some 1 < p < þl, 1a q < þl, the v.w.s. solution of
‘‘�Du ¼ T : in W’’ given in Theorem 2 satisfies

u a Lp 0;lðWÞ;

and

kukL p 0 ;lðWÞ a cðWÞkTkðW 2VÞ� :

The proof is contained in Lemma 3, in Theorem 1 (see [18] for its proof ). Besides
the GG-spaces, one can also use variable exponent spaces.
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Indeed, in a recent paper with A. Fiorenza and C. Sbordone [14] we have
introduced the following Banach function space with absolutely continuous
norm

Lðk � kp�ð�Þ;WÞ ¼ f f : W ! R measurable such that f�� a Lp�ð�ÞðW�Þg

with the norm

k f kp�ð�Þ ¼ inf
l>0

l 1þ
Z 1

0

f��ðsÞ
l

����
���� p�ðsÞ ds

 !

p : W ! �1;þl½ measurable and bounded and p� is the decreasing rearrange-
ment

f��ðtÞ ¼ t�1

Z t

0

j f j�ðsÞ ds:

Such spaces are suitable as Lðra;WÞ in Theorem 2.

4. Proofs of Lemma 1, Theorem 5 and Proposition 2

We start with the proof of Lemma 1 Proof of Lemma 1
Let us consider first the case q ¼ 1.
Let L a V �, s.t. Ej a D2, LðjÞ ¼ 0. According to Hahn-Banach Theorem,

there is ~LL a ðW 2Lp;1ðWÞÞ� : ~LLðjÞ ¼ LðjÞ, Ej a V . According to Theorem 1, we

have an unique function u a Lp 0;lðWÞ with
Z
W

uðxÞ dx ¼ 0 satisfying

�
Z
W

uDj dx ¼ ~LLðjÞ ¼ LðjÞ Ej a V :

Therefore,

�
Z
W

uDj dx ¼ 0 Ej a D2:

Let ðueÞe be a sequence of Cl
c ðWÞ such that

Z
W

ueðxÞ dx ¼ 0; ue �!
e!0

uk � uk; kuekl a 3k

with

uk ¼ 1

jWj

Z
W

ukðxÞ dx; ukðxÞ ¼ minðuðxÞ; kÞ signðuðxÞÞ:
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Consider je a C2ðWÞ such that

�Dje ¼ ue in W;

qje
qn

¼ 0 on qW:

8<
:

Then LðjeÞ ¼ 0, since je a D2, so that

Z
W

uue dx ¼ 0:

Letting e goes to zero, we have

Z
W

uðuk � ukÞ dx ¼ 0 :

Z
W

uuk ¼ 0:

But uukðxÞb 0 so that uðxÞ � ukðxÞC 0 a:e: in W : u2ðxÞ ¼ 0 a:e: uC 0 which
implies

LðjÞ ¼ 0 Ej a V :

For the general case we observe that W 2Lp;qðWÞH> W 2Lp�e;1ðWÞ for any

0 < e < p� 1. Since D2 is dense in j a W 2Lp�e;1ðWÞ; qj
qn

¼ 0

� �
containing V

from the above result, D2 is dense in the smaller space V . r

Proof of Theorem 5. It is su‰cient to prove the case m ¼ 1. The general case
is similar and the proof follows the same scheme as for the ðW 1LpÞ� case.

We shall write

V ¼ Lðr0;WÞ � � � � � LðrN ;WÞ; D0v ¼ v; Djv ¼ qjv;

W 1V ¼ W 1Lðr0; . . . rN ;WÞ:

1. Let J be the mapping

W 1Lðr0; . . . ; rN ;WÞ !
YN
j¼0

Lðrj;WÞ

u 7! ðu; q1u; . . . ; qNuÞ:

It is an isomorphism so that its image Im J is a closed subset.
Let us then consider the linear continuous form

T � :
Im J !J

�1

W 1Lðr0; . . . ; rN ;WÞ !T R

w 7! J�1w 7! TðJ�1wÞ
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According to the Hahn-Banach theorem, it can be extended to linear form on

all the space
QN
j¼0

Lðrj;WÞ i.e. ~TT � such that

k ~TT �k ¼ kT �k ¼ kTk� ðsince J is an isometryÞ:

Thus, ~TT � a
QN
j¼0

Lðrj;WÞ�. But Lðrj;WÞ has absolutely continuous norm there-

fore Lðrj;WÞ� ¼ Lðr 0
j ;WÞ and then there exits vj a Lðr 0

j ;WÞ such that

~TT �ðw0; . . . ;wnÞ ¼
XN
j¼0

Z
W

wjvj dx Eðw0; . . . ;wNÞ a
YN
j¼0

Lðrj;WÞ:

In particular,

TðuÞ ¼ TðJ�1ðu;‘uÞÞ ¼ T �ðu;‘uÞ ¼
XN
j¼1

Z
W

qjuvj dxþ
Z
W

uv0 dxð6Þ

Eu a W 1Lðr0; . . . ; rN ;WÞ:

jTðuÞja Max
jaN

kvjkLðr 0
j
;WÞ

XN
j¼1

kqjukLðrj ;WÞ þ kukLðr0;WÞ

" #
;

kTk� a Max
jaN

kvjkLðr 0
j
;WÞ:

2. For the proof of the rearrangement invariant case, we introduce for a measur-

able set E the function hðxÞ ¼ signðgkðxÞÞ
rkðwEÞ

wEðxÞ, x a W, where k is such that

Lðrk;WÞ is a rearrangement invariant space. Then

rkðhÞa 1 and

Z
W

hgkðxÞ dx ¼ ~TT �ð0; . . . 0; h|{z}
k th

; 0; . . . ; 0Þ; k ~TT�k ¼ kTk�:

So that: Z
W

hgkðxÞ dxa kTk�khkLðrk ;WÞ a kTk�ð7Þ

Taking t a �0; jWj½ and jEj ¼ t, we derive from (7)

jX 0 ðtÞ
1

t

Z
E

jgkj dx ¼ r 0
kðwEÞ

1

jEj

Z
E

jgkj dxa kTk�ð8Þ
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Then

sup
tajWj

½jX 0 ðtÞgk��ðtÞ�a kTk�:

Let us end with the proof of the last statement.
3. Let k a f0; . . . ;Ng : kvkkLðr 0

k
;WÞ ¼ MaxjaN kvjkLðr 0

j
;WÞ, one has by definition

kvkkLðr 0
k
;WÞ ¼ sup

Z
W

vkh dx

����
���� : rkðhÞa 1

� �
:

Therefore, there exists a sequence ðhnÞn : rkðhnÞa 1, s.t.

lim
n

Z
W

vkh
n dx

����
����¼ r 0

kðvkÞ:

Since Lðrk;WÞ is reflexive, there exist h and a subsequence such that

lim
n!þl

Z
W

hng dx ¼
Z
W

hg dx Eg a Lðrk;WÞ� ¼ Lðr 0
k;WÞ

) r 0
kðvkÞ ¼ lim

n!þl

Z
W

hnvk dx

����
����¼

Z
W

hvk dx

����
����:

Moreover,

rkðhÞa lim inf
n!þl

rkðhnÞa 1:

So that the supremum is achieved at h

r 0
kðvkÞ ¼ max

jaN
kvjkLðr 0

j
;WÞ ¼ kvkkLðr 0

k
;WÞ ¼

Z
W

hvk dx

����
����

¼ j ~TT �ð0; . . . ; h; 0; . . .Þja k ~TT �krkðhÞa kTk�; h is the kth variable:

Thus,

Max
jaN

kvjkLðr 0
j
;WÞ ¼ kTk� ðwith the help of ð6ÞÞ: r

Sketch of proof of Proposition 2. We start with Lp;1ðWÞ, 1 < p < þl.
As in the proof of Theorem 5 we fix k such that:

Max
jaN

kgjkL p 0 ;l ¼ kgkkL p 0 ;l :

Since the fundamental function for X 0 ¼ Lp 0;lðWÞ satisfies jX 0 ðtÞ ¼ t
1
p 0 , applying

Theorem 5, one has:

kgkkL p 0 ;l ¼ sup
tajWj

½t
1
p 0gk��ðtÞ�a kTk� a kgkkL p 0 ;lðWÞ

which gives the result. r

260 j. m. rakotoson



Case of W 1L1;1ðWÞ�. We choose hðxÞ ¼ signðgkðxÞÞ
jEj
	
1þ Log

jWj
jEj

 wEðxÞ for a measur-

able set E. Then

jhj��ðtÞa
1

t

minðt; jEjÞ
jEj
	
1þ Log

jWj
jEj



Z jWj

0

jhj��ðtÞ dta 1 : khkL1; 1 a 1

� 1

jEj

Z
E

jgkj dx
� 1

1þ Log
jWj
jEj

¼
Z
W

hgk dxa k ~TT �k khkL1; 1 a kTk�

sup
tajWj

jgkj��ðtÞ
1þ Log

jWj
t

a kTk� a Max
jaN

kgjkLexpðWÞ

Max
jaN

kgjkLexpðWÞ ¼ kTk�:

Case of W 1L1ðWÞ�. We choose hðxÞ ¼ signðgkðxÞÞwE
jEj for a measurable set E.

Then khkL1 ¼ 1. We conclude as above. r
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