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Number Theory — The Skolem–Abouzaı̈d theorem in the singular case, by Boris

Bartolome, communicated on 13 March 2015.

Abstract. — Let F ðX ;Y Þ a Q½X ;Y � be a Q-irreducible polynomial. In 1929, Skolem ([13])

proved a result allowing explicit bounding of the solutions of F ðX ;Y Þ ¼ 0 such that gcdðX ;Y Þ ¼ d

in terms of the coe‰cients of F and d. In 2008, Abouzaı̈d [1] generalized this result by working

with arbitrary algebraic numbers and by obtaining an asymptotic relation between the heights of
the coordinates and their logarithmic gcd. However, he imposed the condition that ð0; 0Þ be a non-

singular point of the plane curve FðX ;YÞ ¼ 0. In this paper, we remove this constraint1.

Key words: Skolem–Abouzaı̈d, Puiseaux series, lgcd, heights

Mathematics Subject Classification (primary; secondary): 11G50; 11D41, 11G30

1. Introduction

Let F ðX ;Y Þ a Q½X ;Y � be a Q-irreducible polynomial. In 1929 Skolem [13]
proved the following beautiful theorem:

Theorem 1.1 (Skolem). Assume that

Fð0; 0Þ ¼ 0:ð1Þ

Then for every non-zero integer d, the equation F ðX ;Y Þ ¼ 0 has only finitely many
solutions in integers ðX ;YÞ a Z2 with gcdðX ;YÞ ¼ d.

In the same year, Siegel obtained his celebrated finiteness theorem for integral
solutions of Diophantine equations: equation FðX ;YÞ ¼ 0 has finitely many
solutions in integers unless the corresponding plane curve is of genus 0 and has
at most 2 points at infinity. While Siegel’s result is, certainly, deeper and more
powerful than Theorem 1.1, the latter has one important advantage. Siegel’s
theorem is known to be non-e¤ective: it does not give any bound for the size of
integral solutions. On the contrary, Skolem’s method allows one to bound the
solutions explicitly in terms of the coe‰cients of the polynomial F and the integer
d. Indeed, such a bound was obtained by Walsh [14]; see also [9].

In 2008, Abouzaı̈d [1] gave a far-going generalization of Skolem’s theorem.
He extended it in two directions.

1Presented by U. Zannier.



First, he studied solutions not only in rational integers, but in arbitrary alge-
braic numbers. To accomplish this, he introduced the notion of logarithmic gcd
of two algebraic numbers a and b, which coincides with the logarithm of the
usual gcd when a; b a Z.

Second, he not only bounded the solution in terms of the logarithmic gcd, but
obtained a sort of asymptotic relation between the heights of the coordinates and
their logarithmic gcd.

Let us state Abouzaı̈d’s principal result (see [1, Theorem 1.3]). In the sequel we
assume that FðX ;YÞ a Q½X ;Y � is an absolutely irreducible polynomial, and use
the notation

m ¼ degX F ; n ¼ degY F ; M ¼ maxfm; ng:ð2Þ

We denote by hðaÞ the absolute logarithmic height of a a Q and by lgcdða; bÞ the
logarithmic gcd of a; b a Q. We also denote by hpðF Þ the projective height of
the polynomial F . For all definitions, see Subsection 2.1.

Theorem 1.2 (Abouzaı̈d). Assume that ð0; 0Þ is a non-singular point of the plane

curve FðX ;YÞ ¼ 0. Let e satisfy 0 < e < 1. Then for any solution ða; bÞ a Q2 of
F ðX ;Y Þ ¼ 0, we have either

maxfhðaÞ; hðbÞga 56M 8e�2hpðFÞ þ 420M 10e�2 logð4MÞ;

or

maxfjhðaÞ � n lgcdða; bÞj; jhðbÞ �m lgcdða; bÞjg
a emaxfhðaÞ; hðbÞg þ 742M 7e�1hpðFÞ þ 5762M 9e�1 logð2mþ 2nÞ:

Informally speaking,

hðaÞ
n

P
hðbÞ
m

P lgcdða; bÞð3Þ

as maxfhðaÞ; hðbÞg ! l.
Unfortunately, Abouzaı̈d’s assumption is slightly more restrictive than

Skolem’s (1): he assumes not only that the point ð0; 0Þ belongs to the plane curve
F ðX ;Y Þ ¼ 0, but also that ð0; 0Þ is a non-singular point on this curve.

Denote by r the ‘‘order of vanishing’’ of F ðX ;Y Þ at the point ð0; 0Þ:

r ¼ min i þ j :
q iþ jF

q iXq jY
ð0; 0ÞA 0

� �
:ð4Þ

Clearly, r > 0 if and only if F ð0; 0Þ ¼ 0 and r ¼ 1 if and only ð0; 0Þ is a non-
singular point of the plane curve F ðX ;Y Þ ¼ 0.

We can now state our principal result.
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Theorem 1.3. Let F ðX ;YÞ a Q½X ;Y � be an absolutely irreducible polynomial

satisfying F ð0; 0Þ ¼ 0. Let e satisfy 0 < e < 1. Then, for any a; b a Q such that
Fða; bÞ ¼ 0, we have either:

hðaÞa 200e�2mn6ðhpðFÞ þ 5Þ

or

lgcdða; bÞ
r

� hðaÞ
n

����
����a 1

r
ðehðaÞ þ 4000e�1n4ðhpðFÞ þ logðmnÞ þ 1Þ

þ 30n2mðhpðFÞ þ logðnmÞÞÞ:

By symmetry, the same kind of bound holds true for the di¤erence lgcdða;bÞ
r

�
hðbÞ
m

. Informally speaking,

hðaÞ
n

P
hðbÞ
m

P
lgcdða; bÞ

r
ð5Þ

as maxfhðaÞ; hðbÞg ! l.
Validity of (5) was stated without proof by Abouzaı̈d, see the end of Section 1

in [1] (Abouzaı̈d’s definition of r looks di¤erent, but it can be easily shown that
it is equivalent to ours). The referee pointed us to an unpublished work of
Habegger [8] from 2007, where he confirms Abouzaı̈d’s conjecture; moreover,
his bounds are sharper than ours. We would like to remark that Habegger’s
method is quite di¤erent and uses his sharp quantitative version of the quasi-
equivalence of heights. On the contrary, our paper follows closely the methods
of [1] wherever possible; in particular, like in [1], our main tool is Puiseux expan-
sions. While we admit that Habegger’s approach is more ‘‘industrial’’ and gives
better quantitative results, we feel that Abouzaı̈d’s initial argument is quite en-
lightening and, perhaps, more natural from certain points of view.

As indicated above, our argument follows, in principle, Abouzaı̈d’s pattern.
However, we had to substantially refine his proof at certain points, to accommo-
date it for the more general set-up of Theorem 1.3. For instance, our Proposition
5.1 comparing the logarithmic gcd with certain ‘‘partial height’’ is considerably
more involved than its prototype from [1].

Plan of the article. Section 2 and 3 are preliminary: we compile therein
some definitions and results from di¤erent sources, which will be used in the
article. In Section 4 we establish the ‘‘Main Lemma’’, which is the heart of the
proof of Theorem 1.3. In Section 5 we complete the proof of Theorem 1.3 using
the ‘‘Main Lemma’’.

Acknowledgments. I am grateful to Yuri Bilu for having pointed my attention to this problem

and for an emulating exchange on this topic. I am also thankful to the referee for her/his helpful
suggestions and for pointing out the unpublished result from Philip Habbeger.
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2. Heights

In this section we recall definitions and collect various results about absolute
values and heights.

We normalize the absolute values on number fields so that they extend stan-
dard absolute values on Q: if v j p (non-Archimedean) then jpjv ¼ p�1 and if v jl
(Archimedean) then j2015jv ¼ 2015.

2.1. Heights and lgcd of algebraic numbers

Let K be a number field, d ¼ ½K : Q� and dv ¼ ½Kv : Qv�. The height of an alge-
braic number a a K is defined as

hðaÞ ¼ 1

d

X
v AMK

dv log
þjajv:

where MK is the set of places (normalized absolute values) of the number field K
and logþ ¼ maxflog; 0g. It is well-known that the height does not depend on the
particular choice of K, but only on the number a itself. It is equally well-known
that hðaÞ ¼ hða�1Þ, so that

hðaÞ ¼ 1

d

X
v AMK

�dv log
�jajv ¼

X
v AMK

hvðaÞ;

where log� ¼ minflog; 0g and

hvðaÞ ¼ � dv

d
log�jajv:

The quantities hvðaÞ can be viewed as ‘‘local heights’’. Clearly, hvðaÞb 0 for any
v and a.

We define the logarithmic gcd of two algebraic numbers a and b, not both 0, as

lgcdða; bÞ ¼
X
v AMK

minfhvðaÞ; hvðbÞg;

where K is a number field containing both a and b. It again depends only a and
b, not on K. A simple verification shows that for a; b a Z we have lgcdða; bÞ ¼
log gcdða; bÞ.

Now let K be a number field and S be a set of places of K. We define the
S-height by

hSðaÞ ¼
X
v AS

hvðaÞ:

Similarly we define lgcdS. We shall frequently use the inequality lgcdSða; bÞa
hSðaÞa hðaÞ without special reference.
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2.2. A‰ne and projective heights of polynomials

We define the projective and the a‰ne height of a vector a ¼ ða1; . . . ; amÞ a Qm

with algebraic entries, by

hpðaÞ ¼
1

d

X
v AMK

dv log max
1akam

jakjv ðaA 0Þ;

haðaÞ ¼
1

d

X
v AMK

dv log
þ max

1akam
jakjv:

Here, K is a number field containing a1; . . . ; am, and d, dv are defined as in the
previous subsection. We notice that the height of an algebraic number defined
in the previous subsection corresponds to the a‰ne height of a one-dimensional
vector.

We define the projective and a‰ne height of a polynomial as the corre-
sponding heights of the vector of its non-zero coe‰cients. If F is a non-zero poly-
nomial, then, for a a Q� we have hpðaF Þ ¼ hpðFÞ. Also, hpðF Þa haðFÞ, with
hpðFÞ ¼ haðF Þ if F has a coe‰cient equal to 1.

In [11, Lemma 4], Schmidt proves the following lemma:

Lemma 2.1. Let FðX ;YÞ a Q½X ;Y � be a polynomial with algebraic coe‰cients,
such that m ¼ degX F and n ¼ degY F. Let RF ðXÞ ¼ ResY ðF ;F 0

Y Þ be the resultant
of F and its derivative polynomial with respect to Y. Then:

hpðRF Þa ð2n� 1ÞhpðF Þ þ ð2n� 1Þ logððmþ 1Þðnþ 1Þ
ffiffiffi
n

p
Þ:ð6Þ

It is well-known that the height of a root of a polynomial is bounded in terms
of the height of the polynomial itself. The following lemma can be found in
[3, Proposition 3.6]:

Lemma 2.2. Let F ðXÞ be a polynomial of degree m with algebraic coe‰cients.
Let a be a root of F. Then, hðaÞa hpðFÞ þ log 2.

We want to generalize this to a system of two algebraic equations in two
variables.

Lemma 2.3. Let F1ðX ;YÞ and F2ðX ;YÞ be polynomials with algebraic coe‰-
cients, having no common factor. Put:

mi ¼ degX Fi; ni ¼ degY Fi ði ¼ 1; 2Þ:

Let a, b be algebraic numbers satisfying F1ða; bÞ ¼ F2ða; bÞ ¼ 0. Then

hðaÞa n1hpðF2Þ þ n2hpðF1Þ þ ðm1n2 þm2n1Þ þ ðn1 þ n2Þ logðn1 þ n2Þ þ log 2:
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Proof. Since F1 and F2 have no common factor, their Y -divisor RðX Þ is a non-
zero polynomial, and RðaÞ ¼ 0. [1, Proposition 2.4] gives the estimate

hpðRÞa n1hpðF2Þ þ n2hpðF1Þ þ ðm1n2 þm2n1Þ þ ðn1 þ n2Þ logðn1 þ n2Þ:

Combining this with Lemma 2.2, the result follows. r

We will also use [1, Proposition 2.5]:

Lemma 2.4. Let FðX ;YÞ a Q½X ;Y � be a polynomial with m ¼ degX F and
n ¼ degY F and let a, b be two algebraic numbers. Then

1. We have hðFða; bÞÞa haðFÞ þmhðaÞ þ nhðbÞ þ logððmþ 1Þðnþ 1ÞÞ.
2. If F ða; bÞ ¼ 0 with Fða;Y Þ not vanishing identically, then:

hðbÞa hpðFÞ þmhðaÞ þ nþ logðmþ 1Þ:

2.3. Coe‰cients versus roots

In this subsection we establish some simple relations between coe‰cients and
roots of a polynomial over a field with absolute value, needed in the proof of
our main result. It will be convenient to use the notion of v-Mahler measure of a
polynomial.

Let K be a field with absolute value v and f ðX Þ a K½X � a polynomial of
degree n. Let b1; . . . ; bn a K be the roots of f :

f ðX Þ ¼ anX
n þ an�1X

n�1 þ � � � þ a0 ¼ anðX � b1Þ . . . ðX � bnÞ:

Define the v-Mahler measure of f by

Mvð f Þ ¼ janjv
Yn
i¼1

maxf1; jbijvg;

where we extend v somehow to K. (Clearly, Mvð f Þ does not depend on the par-
ticular extension of v.) It is well-known that j f jv ¼ Mvð f Þ for non-archimedean v
(‘‘Gauss lemma’’) and Mvð f Þa ðnþ 1Þj f jv for archimedean v (Mahler).

Lemma 2.5. Let b1; . . . ; blþ1 be lþ 1 distinct roots of f ðX Þ, where 0a la
n� 1. Then

maxfjb1jv; . . . ; jblþ1jvgb cvðnÞ
jaljv
j f jv

;

where cvðnÞ ¼ 1 for non-archimedean v and cvðnÞ ¼ ðnþ 1Þ�12�n for archime-
dean v.
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Proof. We have

al ¼ean
X

1ai1<���<in�lan

bi1 . . . bin�l
;ð7Þ

where b1; . . . ; bn are all roots of f ðX Þ in K counted with multiplicities. Observe
that each term in the sum above contains one of the roots b1; . . . ; blþ1, and
the product of the other roots together with an is v-bounded by Mvð f Þ. Hence,
denoting m ¼ maxfjb1jv; . . . ; jblþ1jvg, we obtain jaljv a mMvð f Þ in the non-
archimedean case and jaljv a n

l

� �
mMvð f Þ in the archimedean case. Since n

l

� �
a 2n,

the result follows. r

2.4. Siegel’s ‘‘Absolute’’ Lemma

In this section we give a version of the Absolute Siegel’s Lemma due to David
and Philippon [3], adapted for our purposes.

We start from a slightly modified definition of the projective height of a non-
zero vector a ¼ ða1; . . . ; anÞ a Qn. As before, we fix a number field K containing
a1; . . . ; an and set d ¼ ½K : Q�, dv ¼ ½Kv : Qv� for v a MK.

Now we define

hsðaÞ ¼
X
v AMK

dv

d
logkakv;

where

kakv ¼
maxfja1jv; . . . ; janjvg; v < l;

ðja1j2v þ � � � þ janj2v Þ
1=2; v jl:

(

This definition is the same as for hpðaÞ, except that for the archimedean places the
sup-norm is replaced by the euclidean norm. We have clearly hsðlaÞ ¼ hsðaÞ for
l a Q�, and

hpðaÞa hsðaÞa hpðaÞ þ
1

2
log n:ð8Þ

Now let us define the height of a linear subspace of Qn. If W is a
1-dimensional subspace of Qn then we set

hsðW Þ :¼ hsðwÞ;

where w is an arbitrary non-zero vector from W . Clearly, hsðWÞ does not depend
on the particular choice of the vector w.

To extend this to subspaces of arbitrary dimension, we use Grassmann spaces.
Recall that the mth Grassmann space 5m

Qn is of dimension n
m

� �
, and has a

standard basis consisting of the vectors

ei1b� � �beim ; ð1a i1 < � � � < im a nÞ;
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where e1; . . . ; en is the standard basis of Qn. If W is an m-dimensional subspace
of Qn then 5m

W is a 1-dimensional subspace of 5m
Qn, and we simply define

hsðW Þ :¼ hs

�
5
m

W
�
:

Finally, we set hsðW Þ ¼ 0 for the zero subspace W ¼ f0g.
To make this more explicit, pick a basis w1; . . . ;wm of W . Then 5m

W is
generated by w1b� � �bwm, and we have

hsðWÞ ¼ hsðw1b� � �bwmÞ:ð9Þ

This allows one to estimate the height of a subspace generated by a finite set of
vectors in terms of heights of generators.

Proposition 2.6. Let W be a subspace of Qn generated by vectors
w1; . . . ;wm a Qn. Then

hsðWÞa hsðw1Þ þ � � � þ hsðwmÞ:

Proof. Selecting among w1; . . . ;wm a maximal linearly independent subset, we
may assume that w1; . . . ;wm is a basis of W . Then we have (9). It remains to
observe that for any place v we have

kw1b� � �bwmkv a kw1kv . . . kwmkv:

For non-archimedean v this is obvious, and for archimedean v this is the classical
Hadamard’s inequality. r

We denote by ðx � yÞ the standard inner product on Qn:

ðx � yÞ ¼ x1y1 þ � � � þ xn yn:

Let W ? denote the orthogonal complement to W with respect to this product. It
is well-known that the coordinates of 5m

W (where m ¼ dimW ) in the standard
basis of 5m

Qn are the same (up to a scalar multiple) as the coordinates of

5n�m
W ? in the standard basis of 5n�m

Qn. In particular,

hsðWÞ ¼ hsðW ?Þ:ð10Þ

We use this to estimate the height of the subpace defined by a system of linear
equations.

Proposition 2.7. Let L1; . . . ;Lm be non-zero linear forms on Qn, and let W be
the subspace of Qn defined by L1ðxÞ ¼ � � � ¼ LmðxÞ ¼ 0. Then

hsðW Þa hpðL1Þ þ � � � þ hpðLmÞ þ
m

2
log n:ð11Þ
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Proof. Let a1; . . . ; am be vectors in Qn such that LiðxÞ ¼ ðx � aiÞ. Then

hpðLiÞ ¼ hpðaiÞ ði ¼ 1; . . . ;mÞ:ð12Þ

The space W ? is generated by a1; . . . ; am. Applying to it Proposition 2.6 and
using (8), we obtain

hsðW ?Þa hsða1Þ þ � � � þ hsðamÞa hpða1Þ þ � � � þ hpðamÞ þ
m

2
log n:

Together with (10) and (12), this gives (11). r

Remark 2.8. It is not di‰cult to slightly refine (11), replacing log n by logm in
the right-hand side, but this would not lead to any substantial improvement of
our results.

In [3, Lemma 4.7] the following version of ‘‘absolute Siegel’s lemma’’ is given.

Proposition 2.9. Let W be an l-dimensional subspace of Qn and e > 0. Then,
there is a non-zero vector x a W, satisfying:

hpðxÞa
hsðWÞ

l
þ 1

2l

Xl�1

i¼1

Xi

k¼1

1

k
þ e:

Corollary 2.10. Let L1; . . . ;Lm be non-zero linear forms in n variables with
algebraic coe‰cients. Then, there exists a non-zero vector x a Qn such that
L1ðxÞ ¼ � � � ¼ LmðxÞ ¼ 0 and

hpðxÞa
1

n�m
ðhpðL1Þ þ � � � þ hpðLmÞÞ þ

1

2

n

n�m
log n:ð13Þ

Proof. We apply Proposition 2.9 withW the subspace defined by L1ðxÞ ¼ � � � ¼
LmðxÞ ¼ 0. Denoting l ¼ dimW , we have clearly n�ma ra n and

1

2l

Xl�1

i¼1

Xi

k¼1

1

k
<

1

2
log la

1

2
log n:

Hence there exists a non-zero x a W satisfying

hpðxÞa
1

n�m
hsðWÞ þ 1

2
log n:

Using (11), we find

hpðxÞa
1

n�m
ðhpðL1Þ þ � � � þ hpðLmÞÞ þ

1

2

m

n�m
log nþ 1

2
log n;

which is (13). r
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3. Power series

In this section we recall various results about power series, used in our proof.

3.1. Puiseux Expansions

Let K be a field of characteristic 0, and KððxÞÞ the field of formal power series
over K. It is well-known that an extension of KððxÞÞ of degree n is a subfield of
a field of the form Lððx1=eÞÞ, where e is a positive integer (the ramification index),
L is a finite extension of K, and

½L : K�; ea n:

This fact (quoted sometimes as the ‘‘Theorem of Puiseux’’) has the following
consequence: if we fix an algebraic closure K of K, then the algebraic closure of
KððxÞÞ can be given by

KððxÞÞ ¼
[l
e¼1

[
KHLHK
½L:K�<l

Lððx1=eÞÞ;

where the interior union is over all subfields L of K finite over K.
Another immediate consequence of the ‘‘Theorem of Puiseux’’ is the following

statement:

Proposition 3.1. Let

FðX ;YÞ ¼ fnðX ÞY n þ � � � þ f0ðX Þ a K½X ;Y �

be a polynomial of Y-degree n. Then there exists a finite extension L of K, positive
integers e1; . . . ; en, all not exceeding n, and series yi a Lððx1=eiÞÞ such that

Fðx;Y Þ ¼ fnðxÞðY � y1Þ � � � ðY � ynÞ:ð14Þ

Write the series y1; . . . ; yn as

yi ¼
Xl
k¼ki

aikx
k=ei

with aiki A 0. It is well-known and easy to show that

jkija degX F ði ¼ 1; . . . ; nÞ:

This inequality will be used throughout the article without special notice.
We want to link the numbers ei and ki with the ‘‘order of vanishing’’ at ð0; 0Þ,

introduced in (4).
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Proposition 3.2. Let F ðX ;YÞ a K½X ;Y � and y1; . . . ; yn be as above, and
assume that Fð0;Y Þ is not identically 0. Then the quantity r, introduced in (4),
satisfies

r ¼
X
ki>0

minf1; ki=eig;ð15Þ

where the sum extends only to those i for which ki > 0.

Proof. We denote by nx the standard additive valuation on KððxÞÞ, normalized
to have nxðxÞ ¼ 1. This nx extends in a unique way to the algebraic closure
KððxÞÞ; precisely, for

yðxÞ ¼
Xl
k¼k

akx
k=e a KððxÞÞ ðakA 0Þ

we have nxðyÞ ¼ k=e. Furthermore, for

Gðx;Y Þ ¼ gsðxÞY s þ � � � þ g0ðxÞ a KððxÞÞ½Y �

we set nxðGÞ ¼ minfnxðg0Þ; . . . ; nxðgsÞg. Gauss’ lemma asserts that for G1;G2 a
KððxÞÞ½Y �, we have nxðG1G2Þ ¼ nxðG1Þ þ nxðG2Þ.

Since F ð0;YÞ is not identically 0, we have nxðFðx;Y ÞÞ ¼ 0. Applying Gauss’
lemma to (14), we obtain

nxð f0ðxÞÞ þ
X

minf0; ki=eig ¼ 0:

Hence, setting ~ff0 ¼ x�nxð f0ðxÞÞf0ðxÞ, we may re-write (14) as

Fðx;Y Þ ¼
Y
ki>0

ðY � yiÞ � ~ff0ðxÞ
Y
kia0

ðx�ki=eiY � x�ki=eiyiÞ:ð16Þ

Now set Gðx;YÞ ¼ F ðx; xY Þ. Then clearly r ¼ nxðGÞ. Applying Gauss’ Lemma
to the decomposition

Gðx;YÞ ¼
Y
ki>0

ðxY � yiÞ � ~ff0ðxÞ
Y
kia0

ðx1�ki=eiY � x�ki=eiyiÞ;

we obtain (15). r

Here is one more useful property.

Proposition 3.3. In the set-up of Proposition 3.2, assume that ki > 0 for exactly
l indexes i a f1; . . . ; ng. Then fkð0Þ ¼ 0 for k < l, but flð0ÞA 0.
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Proof. Re-write (16) as

Fðx;Y Þ ¼
Y
ki>0

ðY � yiÞ
Y
ki¼0

ðY � yiÞ � ~ff0ðxÞ
Y
ki<0

ðx�ki=eiY � x�ki=ei yiÞ:

Substituting x ¼ 0, every factor in the first product becomes Y , every factor in
the second product becomes Y � ai0, with ai0A 0, and every factor in the third
product (including ~ff0ð0Þ) becomes constant. Whence the result. r

3.2. Eisenstein’s theorem

In this subsection, we recall the quantitative Eisentsein’s theorem due to work
from Dwork, Robba, Schmidt and Van der Poorten [6, 7, 11], as given in [3]. It
will be convenient to use the notion of MK-divisor.

An MK-divisor is an infinite vector ðAvÞv AMK
of positive real numbers, each Av

being associated to one v a MK, such that for all but finitely many v a MK we
have Av ¼ 1. An MK-divisor is e¤ective if for all v a MK, Av b 1.

We define the height of an MK-divisor A ¼ ðAvÞv AMK
as

hðAÞ ¼
X
v AMK

dv

d
logAv:ð17Þ

The following version of Eisenstein’s theorem is from [3, Theorem 7.5].

Theorem 3.4. Let F ðX ;Y Þ be a separable polynomial of degrees m ¼ degX F
and n ¼ degY F. Further, let yðxÞ ¼

Pl
k¼k akx

k=e a K½½x1=e�� be a power series
satisfying F ðx; yðxÞÞ ¼ 0. (Here we do not assume that akA 0.) Then there exists
an e¤ective MK-divisor A ¼ ðAvÞv AMK

such that:

jakjv amaxf1; jaebk=ecjvgAk=e�bk=ec
v ;

for any v a MK and any kb k, and such that hðAÞa 4nhpðF Þ þ 3n logðnmÞþ
10en.

Applying this theorem to the series of the form a1x
1=e þ a2x

2=e þ � � � (that is,
with ak ¼ 0 for ka 0) and setting k ¼ 0, we obtain that:

Corollary 3.5. Let F ðX ;Y Þ be a separable polynomial of degrees m ¼ degX F

and n ¼ degY F. Further, let yðxÞ ¼
Pl

k¼1 akx
k=e a K½½x1=e�� be a power series sat-

isfying Fðx; yðxÞÞ ¼ 0. Then, there exists an e¤ective MK-divisor A ¼ ðAvÞv AMK

such that:

jakjv aAk=e
v ðv a MK; k ¼ 1; 2; . . .Þ;ð18Þ

and such that

hðAÞa 4nhpðF Þ þ 3n logðnmÞ þ 10en:ð19Þ
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The following lemma is a slightly modified version of Proposition 2.7 from [1]:

Lemma 3.6. Let K be a number field and let yðxÞ ¼
Pl

k¼1 akx
k=e be a series

with coe‰cients in K. Assume further that there exists an e¤ective MK-divisor
A ¼ ðAvÞv AMK

, such that for all kb 1 we have jakjv aAk=e
v . For l a N write

yðxÞl ¼
Pl

k¼1 a
ðlÞ
k ck=e. Then, for any v a MK and for all kb 1 we have:

jaðlÞk jv a
2lþkAk=e

v ; if v jl;

Ak=e
v ; if v < l:

�
ð20Þ

In [1], a slightly sharper estimate, with lþk�1
k

� �
instead of 2lþk is given.

4. The ‘‘Main Lemma’’

In this section we prove an auxiliary statement which is crucial for the proof
of Theorem 1.3. It can be viewed as a version of the famous Theorem of
Sprindzhuk, see [4, 2]. In fact, our argument is an adaptation of that from [2].
We follow [1, Sections 3.1–3.3] with some changes.

4.1. Statement of the Main Lemma

In this section K is a number field, F ðX ;Y Þ a K½X ;Y � an absolutely irreduc-
ible polynomial of degrees m ¼ degX F and n ¼ degY F , and a; b a K� satisfy
Fða; bÞ ¼ 0. Furthermore, everywhere in this section except Subsection 4.6

yðxÞ ¼
Xl
k¼1

akx
k a K½½x��

is a power series satisfying Fðx; yðxÞÞ ¼ 0; in particular, F ð0; 0Þ ¼ 0.
We consider the following finite subset of MK :

T ¼ fv a MK : jajv < 1 and yðxÞ converges v-adically to b at x ¼ ag:

Lemma 4.1 (‘‘Main Lemma’’). Let e satisfy 0 < ea 1. Then we have either

hðaÞa 200e�2mn4ðhpðFÞ þ 5Þ;ð21Þ

or

hðaÞ
n

� hTðaÞ
����

����a enhðaÞ þ 200e�1n2ðhpðF Þ þ logðmnÞ þ 10Þ:ð22Þ

4.2. Preparations

The proof of the ‘‘Main Lemma’’ requires some preparation. First of all, recall
that, according to Eisenstein’s Theorem as given in Corollary 3.5, there exists
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an e¤ective MK-divisor A ¼ ðAvÞv AMK
such that both (18) and (19) hold with

e ¼ 1:

jakjv aAk
v ðv a MK; k ¼ 1; 2; . . .Þ;

hðAÞa 4nhpðFÞ þ 3n logðnmÞ þ 10n:

We fix this A until the end of the section.
Next, we need to construct an ‘‘auxiliary polynomial’’.

Proposition 4.2 (Auxiliary polynomial). Let d be a real number 0 < da 1=2
and let N be a positive integer. There exists a non-zero polynomial GðX ;Y Þ a
Q½X ;Y � satisfying degX GaN, degY Ga n� 1,

nxðGðx; yðxÞÞÞb ð1� dÞNn;ð23Þ

hpðGÞa d�1nNðhðAÞ þ 3Þ:ð24Þ

Proof. It is quite analogous to the proof of Proposition 3.1 in [1]. Condition
(23) is equivalent to a system of ð1� dÞNn linear equations in the nðN þ 1Þ coef-
ficients of G. Each coe‰cient of each linear equation is a coe‰cient of xk, for
kaNn, one of the series yðxÞl for l ¼ 0; . . . ; n� 1.

Using (18) and Lemma 3.6, we estimate the height of every equation as
nNhðAÞ þ ðNnþ nÞ log 2. Corollary 2.10 implies now that we can find a non-
zero solution of our system of height at most

d�1ðnNhðAÞ þ ðNnþ nÞ log 2Þ þ 1

2
d�1 logðnNÞ:

This is smaller than the right-hand side of (24). r

4.3. Upper Bound

Now we can obtain an upper bound for hTðaÞ in terms of hðaÞ.

Proposition 4.3 (Upper bound for hTðaÞ). Let d satisfy 0 < da 1=2. Then we
have either

hðaÞa 10d�2mn4ðhpðFÞ þ 5Þ;ð25Þ

or

nhTðaÞa ð1þ 4dÞhðaÞ þ 8d�1nðhðAÞ þ 10Þ þ hpðF Þ:ð26Þ

Proof. Fix a positive integer N, to be specified later, and let GðX ;YÞ be the
auxiliary polynomial introduced in Proposition 4.2. Extending the field K, we
may assume that GðX ;Y Þ a K½X ;Y �. We may also assume that G has a coe‰-
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cient equal to 1; in particular, jGjv b 1 for all v a MK, where we denote by jGjv
the maximum of v-adic norms of coe‰cients of G.

The series zðxÞ ¼ Gðx; yðxÞÞ a K½½x�� can be written as

zðxÞ ¼
Xl
k¼h

bkx
k

with hb ð1� dÞNnb 1
2Nn (recall that da 1=2). Again using (18) and Lemma

3.6, we estimate the coe‰cients bk as follows: for v < l we have jbkjv a jGjvAk
v ,

and for v jl we have jbkjv a nðN þ 1Þ2kþn�1jGjvAk
v . Since for kb hb 1

2Nn we
have nðN þ 1Þ2kþn�1 a 8k, we obtain the estimate

jbkja
jGjvAk

v ; v < l;

jGjvð8AvÞk; v jl:

(
ðv a Mk; kb hÞ:ð27Þ

Now we distinguish two cases.

Case 1: Gða; bÞ ¼ 0. In this case we have Fða; bÞ ¼ Gða; bÞ ¼ 0. We want to
apply Lemma 2.3; for this, we have to verify that polynomials F and G do not
have a common factor. This is indeed the case, because F is absolutely irre-
ducible, and degY G < degY F .

Lemma 2.3, combined with (24) and (19), gives

hðaÞa nhpðGÞ þ ðn� 1ÞhpF þ ðmðn� 1Þ þNnÞð28Þ
þ ð2n� 1Þ logð2n� 1Þ þ log 2

a d�1Nn2ðhðAÞ þ 6Þ þ ðn� 1ÞðhpðFÞ þmÞ
a 5d�1Nn3ðhpðFÞ þ 5Þ þmn:

Below, after specifying N, we will see that this is sharper than (25).

Case 2: Gða; bÞ ¼ gA0. To treat this case it will be convenient to use, instead
of the set T , a slightly smaller subset ~TT , consisting of v a T satisfying

jajv <
A�1

v ; v < l;

ð16AvÞ�1; v jl:

(

We have clearly

0a hTðaÞ � h ~TTðaÞa hðAÞ þ log 16;ð29Þ

and (27) implies the estimate

jbkakjv <
jGjvAh

v jaj
h
v ; v < l;

jGjvð8AvÞhjajhv � ð1=2Þ
k�h; v jl:

(
ðv a ~TT ; kb hÞ:ð30Þ
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Recall that for v a T , the series yðxÞ converges v-adically to b at x ¼ a. Hence
the same holds true for v a ~TT . It follows that, for v a ~TT , the series zðxÞ ¼
Gðx; yðxÞÞ converges v-adically to2 Gða; bÞ ¼ g.

Using (30), we can estimate jgjv for v a ~TT :

jgjv <
jGjvAh

v jaj
h
v ; v < l;

2jGjvð8AvÞhjajhv ; v jl:

�
ðv a ~TT ; kb hÞ:

Using this and remembering that jGjv b 1 for all v, we obtain the following lower
estimate for hðgÞ:

hðgÞb h ~TTðgÞ
b hh ~TTðaÞ � hpðGÞ � hhðAÞ � h log 16� log 2

bNnð1� dÞh ~TTðaÞ � 2d�1nNðhðAÞ þ 6Þ:

Combining this with (29), we obtain

hðgÞbNnð1� dÞhTðaÞ � 3d�1nNðhðAÞ þ 6Þ:ð31Þ

On the other hand, using Lemma 2.4 it is easy to bound hðgÞ from above.
Indeed, part 2 of this lemma implies that

hðbÞa hpðF Þ þmhðaÞ þ nþ logðmþ 1Þ;

and part 1 implies that

hðgÞa haðGÞ þNhðaÞ þ ðn� 1ÞhðbÞ þ logððN þ 1ÞnÞ:

Since G has a coe‰cient equal to 1, we have haðGÞ ¼ hpðGÞa d�1nNðhðAÞ þ 3Þ.
Hence

hðgÞa hpðGÞþNhðaÞ þ ðn� 1ÞðhpðF ÞþmhðaÞ þ nþ logðmþ 1ÞÞþ logððN þ 1ÞnÞ
a ðN þmnÞhðaÞ þ d�1nNðhðAÞ þ 4Þ þ nhpðFÞ þ n2 þ n logðmþ 1Þ:

Combining this with (31) and dividing by N, we obtain

nð1� dÞhTðaÞa
�
1þmn

N

�
hðaÞ þ 4d�1nðhðAÞ þ 6Þð32Þ

þN�1ðnhpðF Þ þ n2 þ n logðmþ 1ÞÞ:

2For archimedean v to make this conclusion we need absolute convergence of yðxÞ at x ¼ a,
which is obvious for v A ~TT .
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Completing the proof of Proposition 4.3. Now it is the time to specify
N: we set N ¼ dd�1mne. With this choice of N, inequality (28) is indeed sharper
than (25), and inequality (32) implies the following:

nð1� dÞhTðaÞa ð1þ dÞhðaÞ þ 4d�1nðhðAÞ þ 10Þ þ dhpðF Þ:

Since da 1=2, this is sharper than (26). r

4.4. Lower Bound

Our next objective is a lower bound for hTðaÞ. We will see that it easily follows
from the upper bound.

Proposition 4.4 (Lower bound for hTðaÞ). Let d satisfy 0 < da 1=2. Then we
have either (25) or

nhTðaÞb ð1� 4ndÞhðaÞ � 9d�1n2ðhðAÞ þ 10Þ � nhpðF Þ:ð33Þ

Proof. Remark first of all that we may assume that the polynomial F ða;YÞ is
of degree n and separable. Indeed, if this is not the case, then RF ðaÞ ¼ 0, where
RF ðX Þ is the Y -resultant of FðX ;Y Þ and its Y -derivative F 0

Y ðX ;YÞ. In this case,
the joint application of Lemmas 2.1 and 2.2 gives

hðaÞa 2nhpðFÞ þ 2n logððmþ 1Þðnþ 1Þ
ffiffiffi
n

p
Þ þ log 2;

sharper than (25).
Thus, F ða;Y Þ has n distinct roots in Q, one of which is b; we denote them

b1 ¼ b, b2; . . . ; bn. Extending the field K, we may assume that b1; . . . ; bn a K.
Set S ¼ fv a MK : jajv < 1g. For i ¼ 1; . . . ; n we let Ti be the set of v a S

such that yðxÞ converges v-adically to bi at x ¼ a; in particular, T1 ¼ T . The
sets T1; . . . ;Tn are clearly disjoint, and we have

SIT1 A � � �ATn I ~SS;ð34Þ

where ~SS consists of v a S for which jajv < A�1
v . The left inclusion in (34) is trivial,

and to prove the right one just observes that for every v a ~SS, the series yðxÞ abso-
lutely converges v-adically at x ¼ a, and, since Fðx; yðxÞÞ ¼ 0, the sum must be a
root of F ða;YÞ.

Clearly,

0a hðaÞ � h ~SSðaÞ ¼ hSðaÞ � h ~SSðaÞa hðAÞ:

It follows that

hT1
ðaÞ þ � � � þ hTn

ðaÞb h ~SSðaÞb hðaÞ � hðAÞ:

Now observe that the upper bound (26) holds true with T replaced by any Ti:

nhTi
ðaÞa ð1þ 4dÞhðaÞ þ 8d�1nðhðAÞ þ 10Þ þ hpðFÞ ði ¼ 1; . . . ; nÞ:
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The last two inequalities imply that

nhTðaÞ ¼ nhT1
ðaÞb nðhðaÞ � hðAÞÞ � ðn� 1Þðð1þ 4dÞhðaÞ

þ 8d�1nðhðAÞ þ 10Þ þ hpðF ÞÞ;

which easily transforms into (33). r

4.5. Proof of the ‘‘Main Lemma’’

Using Propositions 4.3 and 4.4 with d ¼ e=4 and dividing by n, we obtain that
either (21) holds, or

hTðaÞ �
hðaÞ
n

����
����a ehðaÞ þ 40e�1nðhðAÞ þ 10Þ þ hpðF Þ:

Combining this with (19), we obtain (22). r

4.6. ‘‘Ramified Main Lemma’’

We will actually need a slightly more general statement, allowing ramification in
the series yðxÞ. The set-up is as before, except that now we consider the series

yðxÞ ¼
Xl
k¼1

akx
k=e a K½½x1=e��

satisfying F ðx; yðxÞÞ ¼ 0. We fix an e-th root a1=e and we will assume that it
belongs to K. We will now say that the series yðxÞ converges v-adically to b at a
if the series yðxeÞ converges v-adically to b at a1=e. (Of course, this depends on the
particular choice of the root a1=e.) We again define T as the set of all v a S for
which yðxÞ converges v-adically to b at a.

Lemma 4.5 (‘‘Ramified Main Lemma’’). Let e satisfy 0 < ea 1. Then we have
either

hðaÞa 200e�2me2n4ðhpðF Þ þ 5Þ;ð35Þ

or

hðaÞ
n

� hTðaÞ
����

����a ehðaÞ þ 200e�1en2ðhpðF Þ þ 2 logðmnÞ þ 10Þ:ð36Þ

Proof. The proof is by reduction to the unramified case. Apply Lemma 4.1 to

the polynomial FðX e;YÞ, the series yðxeÞ and the number a1=e. We obtain that
either

hða1=eÞa 200e�2men6ðhpðFÞ þ 5Þ;
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or

jhða1=eÞ � nhTða1=eÞja ehða1=eÞ þ 200e�1n4ðhpðFÞ þ logðmenÞ þ 10Þ:

These estimates easily transform into (35) and (36), respectively, using that

hða1=eÞ ¼ e�1hðaÞ; hTða1=eÞ ¼ e�1hTðaÞ; ea n: r

5. Proof of the Main Theorem

In this section we prove Theorem 1.3. First of all, we investigate the relation
between hTðaÞ and lgcdTða; bÞ, where T is defined as in Section 4.

5.1. Comparing hTðaÞ and lgcdTða; bÞ

In this subsection we retain the set-up of Subsection 4.1, except that we allow
ramification in the series yðxÞ, as we did in Subsection 4.6. Thus, in this
subsection:

• K is a number field;

• FðX ;YÞ a K½X ;Y � is an absolutely irreducible polynomial;

• a; b a K satisfy Fða; bÞ ¼ 0;

• yðxÞ ¼
Pl

k¼1 akx
k=e a K½½x1=e�� satisfies Fðx; yðxÞÞ ¼ 0;

• T HMK is the set of all v a MK such that jajv < 1 and yðxÞ converges
v-adically at a to b.

The v-adic convergence is understood in the same sense as in Subsection 4.6: we
fix an e-th root a1=e, assume that it belongs to K and define v-adic convergence
of yðxÞ to b at a as v-adic convergence of yðxeÞ to b at a1=e.

Let k be the smallest k such that ak A 0; by the assumption, k > 0. Then we
have nxðyÞ ¼ k=e and

yðxÞ ¼
Xl
k¼k

akx
k=e

with akA 0. In this subsection we prove that lgcdTða; bÞ can be approximated
by minf1; k=eghTðaÞ.

Proposition 5.1. In the above set-up we have

jlgcdTða; bÞ �minfk=e; 1ghTðaÞja 30nkhpðF Þ þ 30nk logðnmÞ þ 15en:ð37Þ

This statement corresponds to Proposition 3.6 in [1]. Our proof is, however,
much more involved, in particular because Abouzaı̈d did not need the lower
estimate.
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Proof. Let A ¼ ðAvÞv AMK
be the MK-divisor from Corollary 3.5. For the

reader’s convenience, we reproduce here (18) and (19):

jakjv aAk=e
v ðv a MK; kb 1Þ;

hðAÞa 4nhpðF Þ þ 3n logðnmÞ þ 10en:

As we already did several times in Section 4, it will be convenient to replace T
by a smaller subset. Thus, let ~TT consist of v a T satisfying

jajv <
A�k�1

v minf1; jakjvg
e; v < l;

ð1=4ÞeA�k�1
v minf1; jakjvg

e; v < l:

�
ð38Þ

(Attention: this is not the same ~TT as in Subsection 4.3!) Clearly,

0a hTðaÞ � h ~TTðaÞa ðkþ 1ÞhðAÞ þ ehTn ~TTðakÞ:

Using (18) we estimate hðakÞa ðk=eÞhðAÞ. We obtain

0a hTðaÞ � h ~TTðaÞa ðkþ 1ÞhðAÞa 3khðAÞ þ e log 4;ð39Þ

where for the latter estimate we use kb 1. In particular,

0a lgcdTða; bÞ � lgcd ~TTða; bÞa 3khðAÞ þ e log 4:ð40Þ

After this preparation, we can now proceed with the proof. For every v a ~TT
we want to obtain an estimate of the form cvjajk=ev a jbjv a c 0vjaj

k=e
v , where cv

and c 0v are some quantities not depending on a.

Upper estimate for jbjv. This is easy. It follows from (38) that

jajv <
A�1

v ; v < l;

ð4eAvÞ�1; v < l:

(

From this and (18) we deduce that

jakak=ejv <
Ak=e

v jajk=ev ; v < l;

Ak=e
v jajk=ev � ð1=4Þk�k; v jl

(
ðkb kÞ:ð41Þ

Hence

jbjv <
Ak=e

v jajk=ev ; v < l;

2Ak=e
v jajk=ev ; v jl:

(

Lower estimate for jbjv. The lower estimate is slightly more subtle. First, we
bound the di¤erence b � aka

k=e from above using (38).
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Similarly to (41), we have

jakak=ejv <
A

ðkþ1Þ=e
v jajðkþ1Þ=e

v ; v < l;

A
ðkþ1Þ=e
v jajðkþ1Þ=e

v � ð1=4Þðk�k�1Þ=e; v jl

(
ðkb kþ 1Þ:

Hence, presenting b � aka
k=e as the v-adic sum of the series

yðxÞ � akx
k=e ¼

Xl
k¼kþ1

akx
k=e

at x ¼ a, we obtain the estimate

jb � aka
k=ejv <

A
ðkþ1Þ=e
v jajðkþ1Þ=e

v ; v < l;

2A
ðkþ1Þ=e
v jajðkþ1Þ=e

v ; v jl:

(

Combining this with (38), we find

jb � aka
k=ejv <

minfjakjv; 1gjaj
k=e
v ; v < l;

ð1=2Þminfjakjv; 1gjaj
k=e
v ; v jl:

(

Hence

jbjv b
minfjakjv; 1gjaj

k=e
v ; v < l;

ð1=2Þminfjakjv; 1gjaj
k=e
v ; v jl;

(

the lower estimate we were seeking.

Completing the proof of Proposition 5.1. Thus, we proved that

cvjajk=ev a jbjv a c 0vjaj
k=e
v ;ð42Þ

with

cv ¼
minfjakjv; 1g; v < l;

ð1=2Þminfjakjv; 1g; v jl;

�
; c 0v ¼

Ak=e
v ; v < l;

2Ak=e
v ; v jl:

�

From (42) we deduce that for v a ~TT

cvjajminfk=e;1g
v maxfjajv; jbjvga c 0vjaj

minfk=e;1g
v :

(We use here the obvious inequality cv a 1a c 0v.) Hence

�ðk=eÞhðAÞ � log 2a lgcd ~TTða; bÞ �minfk=e; 1gh ~TTðaÞa hðakÞ þ log 2:

Since hðakÞa ðk=eÞhðAÞ, this implies

jlgcd ~TTða; bÞ �minfk=e; 1gh ~TTðaÞja ðk=eÞhðAÞ þ log 2;
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which, together with (39) and (40) gives

jlgcd ~TTða; bÞ �minfk=e; 1gh ~TTðaÞja 7khðAÞ þ 4e:

Combining this with (18), we obtain (37). r

5.2. Proving Theorem 1.3

Now we are fully equipped for the proof of our main result. We want to show
that, assuming

hðaÞb 200e�2mn6ðhpðF Þ þ 5Þ;ð43Þ

we have

lgcdða; bÞ
r

� hðaÞ
n

����
����a 1

r
ðehðaÞ þ 4000e�1n4ðhpðF Þ þ logðmnÞ þ 1Þð44Þ

þ 30n2mðhpðFÞ þ logðnmÞÞÞ:

Write FðX ;YÞ ¼ fnðX ÞY n þ � � � þ f0ðXÞ. According to Proposition 3.1 we
have

Fðx;Y Þ ¼ fnðxÞðY � y1Þ . . . ðY � ynÞ:

where

yi ¼
Xl
k¼ki

aikx
k=ei a Kððx1=eiÞÞ ði ¼ 1; . . . ; nÞ:

We assume that aiki A0 for i ¼ 1; . . . ; n, so that ki=ei ¼ nxðyiÞ.
Denoting by l the number of indexes i such that ki > 0, we may assume that

k1; . . . ; kl > 0 and klþ1; . . . ; kn a 0. Propositions 3.2 implies that

r ¼
Xl

i¼1

minf1; ki=eig;ð45Þ

and Proposition 3.3 implies that flð0ÞA 0. We may normalize polynomial
F ðX ;Y Þ to have

flð0Þ ¼ 1:

In particular, jF jv b 1 for every v a MK, where jF jv denotes the maximum of
v-adic norms of the coe‰cients of F , and also hpðF Þ ¼ haðFÞ.

Set E ¼ lcmðe1; . . . ; elÞ and fix an E-th root a1=E . This fixes uniquely the roots
a1=e1 ; . . . ; a1=el . Extending the field K we may assume that the coe‰cients of
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the series y1; . . . ; yl belong to K, and the same is true for a1=E (and hence for
a1=e1 ; . . . ; a1=el as well). Having fixed the root a1=ei a K, we may define v-adic
convergence of yi at a, see Subsection 4.6.

Extending further the field K, we may assume that it contains all the roots of
the polynomial F ða;YÞ. Hence, if one of the series y1; . . . ; yl converges v-adically
at a (and if the convergence is absolute in the archimedean case), then the sum
must belong to K.

Consider the following subsets of MK:

S ¼ fv a MK : jajv < 1g;
Ti ¼ fv a S : the series yi converges v-adically to b at ag ði ¼ 1; . . . ; lÞ:

(These sets are not the same Ti as in Subsection 4.4!)
We have clearly lgcdða; bÞ ¼ lgcdSða; bÞ. If we manage to show that the sets Ti

are pairwise disjoint, and that hSnðT1A���ATlÞðbÞ is ‘‘negligible’’, then joint applica-
tion of Lemma 4.5, Proposition 5.1 and identity (45) would prove Theorem 1.3.
We will argue like this, only with the sets Ti replaced by slightly smaller subsets.

Let Ai ¼ ðAivÞv AMK
be the MK-divisor for the series yi given by Corollary 3.5.

Define the MK-divisor A ¼ ðAvÞv AMK
by

Av ¼ maxfA1v; . . . ;Alvg ðv a MKÞ:

We have clearly

jakijvaAk=e
v ðv a MK; 1a ia l; kb kiÞ;ð46Þ

hðAÞa hðA1Þ þ � � � þ hðAlÞ
a 4n2hpðF Þ þ 3n2 logðnmÞ þ 10n3:

Now let ~SS consist of v a S satisfying

jajv <
jF j�n

v A�1
v ; v < l;

ððnþ 1Þ2nþ3jF jvÞ
�n
A�1

v ; v jl;

�
ð47Þ

and set ~TTi ¼ Ti B ~SS. (This is not the same ~SS that in Subsection 4.4!) Clearly,

0a lgcdða; bÞ � lgcd ~SSða; bÞa hðaÞ � h ~SSðaÞð48Þ
¼ hSn ~SSðaÞ
a hðAÞ þ nhpðFÞ þ logððnþ 1Þ2nþ3Þ
a 5n2hpðF Þ þ 3n2 logðnmÞ þ 15n3;

0a lgcdTin ~TTi
ða; bÞa hSn ~SSðaÞð49Þ

a 5n2hpðF Þ þ 3n2 logðnmÞ þ 15n3

ði ¼ 1; . . . ; lÞ:

Here we used the equality hpðF Þ ¼ haðFÞ.
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Mention also that for v a ~SS, we have jajv < A�1
v , which implies that the series

y1; . . . ; yl converge v-adically at a in the completion Kv, the convergence being
absolute when v is archimedean. Hence, as we have seen above, the sum must
belong to K.

Proposition 5.2. The sets ~TT1; . . . ; ~TTl pairwise disjoint. Furthermore, if v a ~SS
but v B ~TT1 A � � �A ~TTl then

jbjv b
jF j�1

v ; v < l;

ððnþ 1Þ2nþ2jF jvÞ
�1; v jl:

(
ð50Þ

Proof. The polynomial

QðYÞ ¼ ðY � y1Þ . . . ðY � ylÞ a K½½x1=E ��½Y �:

divides Fðx;Y Þ in the ring Kððx1=EÞÞ½Y �. By Gauss’ Lemma, QðYÞ divides
F ðx;Y Þ in the ring K½½x1=E ��½Y � as well. Moreover, writing F ðx;Y Þ ¼ QðYÞUðYÞ
with

UðY Þ ¼ fnðxÞY n�l þ un�l�1Y
n�l�1 þ � � � þ u0 a K½½x1=E ��ðYÞ;

the coe‰cients u0; . . . ; un�l�1 belong to the ring3 K½x; y1; . . . ; yl�. Recall that for
v a ~SS the series y1; . . . ; yl converge v-adically at a in the field K, the convergence
being absolute when v is archimedean. Hence so do the coe‰cients of U .

Fix v a ~SS and write

F ða;YÞ ¼ ðY � y1ðaÞÞ . . . ðY � ylðaÞÞð fnðaÞY n�l

þ un�l�1ðaÞY n�l�1 þ � � � þ u0ðaÞÞ;

where y1ðaÞ; . . . ; ylðaÞ a K the v-adic sum of the corresponding series at a, and
similarly for un�l�1ðaÞ; . . . ; u0ðaÞ. We claim that F ða;Y Þ is a separable polyno-
mial of degree n; indeed, if this is not the case, then, as we have seen in Sub-
section 4.4, our a must satisfy (44), which contradicts (43).

Now if v a Ti BTj for iA j then b ¼ yiðaÞ ¼ yjðaÞ, and F ða;YÞ must have b
as a double root, a contradiction. This proves disjointedness of the sets ~TTi.

Now assume that v a ~SS but v B ~TT1 A � � �A ~TTl. Then none of the sums
y1ðaÞ; . . . ; ylðaÞ is equal to b; in other words y1ðaÞ; . . . ; ylðaÞ; b are lþ 1 distinct
roots of the polynomial

PðYÞ ¼ Fða;Y Þ ¼ fnðaÞY n þ � � � þ f0ðaÞ:

3This is a consequence of the general algebraic property: let R be a commutative ring, R 0 a
subring and QðYÞ;F ðY Þ A R 0½Y �, the polynomial Q being monic; assume that Q jF in R½Y �; then
Q jF in R 0½Y �. Indeed, denoting by a the leading coe‰cient of F , the polynomial Q divides
G ¼ F � aY degF�degQQ in R½Y �, and degG < degF , so by induction Q jG in R 0½Y �.
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We are going to use Lemma 2.5. Since flð0Þ ¼ 1 and

jajv <
jFvj�1; v < l;

ð2jF jvÞ
�1; v jl;

(

we have

j flðaÞjv b
1; v < l;

1=2; v jl;

�
; jPjv a

jF jv; v < l;

2jF jv; v jl:

�

Now Lemma 2.5 implies that

maxfjy1ðaÞjv; . . . ; jylðaÞjv; jbjvgb
jF j�1

v ; v < l;

ððnþ 1Þ2nþ2jF jvÞ
�1; v jl:

(
ð51Þ

On the other hand, we may estimate jyiðaÞjv from above using (46) and (47).
In what follows we repeatedly use the inequality ei a n. Since

jajv <
A�1

v ; v < l;

ð2eiAvÞ�1; v jl

(
ði ¼ 1; . . . ; lÞ;

we have

jakak=ei jv <
ðAvjajvÞ

1=ei ; v < l;

ðAvjajvÞ
1=ei � ð1=2Þk�1; v jl

(
ðkb 1; i ¼ 1; . . . ; lÞ;

which implies

jyiðaÞjv <
ðAvjajvÞ

1=ei ; v < l;

2ðAvjajvÞ
1=ei ; v jl

(
ði ¼ 1; . . . ; lÞ:

Now since

jajv <
jF j�ei

v A�1
v ; v < l;

ððnþ 1Þ2nþ3jF jvÞ
�eiA�1

v ; v jl

�
ði ¼ 1; . . . ; lÞ;

we obtain finally

jyiðaÞjv <
jF j�1

v ; v < l;

ððnþ 1Þ2nþ2jF jvÞ
�1; v jl

(
ði ¼ 1; . . . ; lÞ:

Compared with (51), this implies (50). The proposition is proved. r

An immediate consequence of the second statement of Proposition 5.2 is the
estimate

lgcd ~SSnð ~TT1A���A ~TTlÞ a h ~SSnð ~TT1A���A ~TTlÞðbÞa hpðFÞ þ logððnþ 1Þ2nþ2Þð52Þ

(we again use haðF Þ ¼ hpðFÞ).
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Now we collect everything together to prove Theorem 1.3. According to
Lemma 4.5, condition (43) implies that

hðaÞ
n

� hTi
ðaÞ

����
����a ehðaÞ þ 200e�1n3ðhpðFÞ þ 2 logðmnÞ þ 10Þ ði ¼ 1; . . . ; lÞ:

Combining this with Proposition 5.1 and estimate (49), we obtain

min
ki

ei
; 1

� �
hðaÞ
n

� lgcd ~TTi
ða; bÞ

����
����a ehðaÞ þ 3000e�1n3ðhpðFÞ þ logðmnÞ þ 1Þ

þ 30nmhpðF Þ þ 30nm logðnmÞ: ði ¼ 1; . . . ; lÞ:

Summing up, using (45) and the disjointedness of the sets ~TTi, we obtain

r
hðaÞ
n

� lgcd ~TT1A���A ~TTl
ða; bÞ

����
����a ehðaÞ þ 3000e�1n4ðhpðFÞ þ logðmnÞ þ 1Þ

þ 30n2mhpðF Þ þ 30n2m logðnmÞ:

Finally, combining this with (48) and (52), we obtain (44). r
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