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Partial Differential Equation — A note on compactness properties of the singular
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ABSTRACT. — In this note, we consider blow-up for solutions of the SU(3) Toda system on a com-
pact surface X. In particular, we give a complete proof of the compactness result stated by Jost, Lin
and Wang in [11] and we extend it to the case of singularities. This is a necessary tool to find solu-
tions through variational methods.

KEey worDs: Toda system, compactness of solutions, blow-up analysis, mass quantization
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1. INTRODUCTION

Let (X,9) be a smooth, compact Riemannian surface. We consider the SU(3)
Toda system on X:

Vel 1 ! 1y
(1) —Au; = Za’/pl<f Vel ds, ‘2|) 471201,](5,,/—E) i=1,2

j=1

with p; > 0,0 < V; e C*(X), a; > —1, p; € X given and

A = (a5) = (_21 _21)

is the SU(3) Cartan matrix.

The Toda system is widely studied in both geometry (description of holo-
morphic curves in CP?, see e.g. [4, 6, 8]) and mathematical physics (non-abelian
Chern-Simons vortices theory, see [10, 18, 19]).

In the regular case, Jost, Lin and Wang [11] proved the following important
mass-quantization result for sequences of solutions of (1).

THEOREM 1.1. Suppose a;; = 0 for any i, j and let u,, = (u1 ,,u> ) be a sequence
of solutions of (1) with p; = p; ,. Define, for x € X, g1(x), 02(x) as

s w Vie
) (x) := lim i JB() "tT 7Y
( ) o (x) rllr(% n—1>r-1-’1m pl n fz I/'l_elli_n dvq
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Then,
(3) (1(x),02(x)) € {(0,0),(0,4n), (47, 0), (47, 8x), (8x,4n), (87, 8x)}.

In the same paper, the authors state that Theorem 1.1 immediately implies the
following compactness result.

THEOREM 1.2. Suppose a;; = 0 for any i, j and let K|, K> be compact subsets of

R™\47nN. Then, the space of solutions of (1) with p; € K; satisfying / uidvy =0 is
compact in H'(Z). z

Theorem 1.2 is a necessary step to find solutions of (1) by variational methods, as
was done in [2, 16, 17].

Although Theorem 1.2 has been widely used, it was not explicitly proved how
it follows from Theorem 1.1. Recently, in [13], a proof was given in the case
p < 8m.

The purpose of this note is to give a complete proof of Theorem 1.2, extending
it to the singular case as well. Actually, the proof follows quite directly from [7].

In the presence of singularities, that is when we allow the «; to be non-zero, it
is convenient to write the system (1) in an equivalent form through the following
change of variables:

—AG, =3, —

! IZI
up — u; +4n Z G, where G, solves / G4 0
vy =
b

J=1

The new u;’s solve

Ve j 1 )
(4) —Au; = Zayp] (fZ Ve dv, E) i=1,2.

with
v, = Hj{zle—4ﬂ0<prj Vi = Vi~d(-,p)*™ near p;.

In this case, we still have an analogue of Theorem 1.1 for the newly defined ;.
The finiteness of the local blow-up values has been proved in [14].

We will also show how this quantization result implies compactness of solu-
tions outside a closed, zero-measure set of R*2.

THEOREM 1.3. There exist two discrete subset Ay, Ay = R, depending only on
the w;’s, such that for any K; € R™\A;, the space of solutions of (1) with p; € K;

satisfying / u; dvy = 0 is compact in H'(X).
T

As in the regular case, Theorem 1.3 has an important application in the varia-
tional analysis of (1), see for instance [2, 1].
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2. PROOF OF THE MAIN RESULTS

Let us consider a sequence u, of solutions of (1) with p;, = p; , = p; and let us
define SR

(5) Win ‘= Uipn — IOg/): I7i€u"‘” dvg + Ingi,nv

which solves

_A‘th — Zj2=1 aij(%evﬂf‘n _ /I)/Zr)7

/ I/,_ewi_n dUg — p[,n
z

(6)

moreover,

oi(x) =lim lim Vie" " dv,.
=0 =+

Let us denote by S; the blow-up set of w; ,:

Si={xeX:¥H{x,}c Z’wi’”(x”)njoo +o0}.
For w; , we have a concentration-compactness result from [15, 3]:
THEOREM 2.1. Up to subsequences, one of the following alternatives holds:

o (Compactness) w; , is bounded in L* (X) for i =1,2.
® (Blow-up) The blow-up set S := S) U S, is non-empty and finite and Vi € {1,2}
either w; ,, is bounded in L} (X\S) or w; , — —oo locally uniformly in X\S.
In addition, if S\(S1 N S2) # 0, then w; ,, — — o0 locally uniformly in 2\S.

Moreover, denoting by p; the weak limit of the sequence of measures Vie"in, one
has

t=rit Y 0i(x)d

xeS;

with r;i e L"(Z) A LE2.(2\S;) and oi(x) > 2rmin{l,1 + o (x)} Vx e S, i=1,2,
where

2i(x) = 0 ifx#pj=1,...,1
S\ i x = py.

Here we want to show that one has r; = 0 for at least one i € {1,2}. It may actu-
ally occur that only one of the r;’s is zero, as shown in [9]. Anyway, to prove The-
orems 1.2 and 1.3 we only need one between r; and r, to be identically zero.
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As a first thing, we can show that the profile near blow-up points resembles a
combination of Green’s functions:

LemMmA 2.1. w;, — Wi, — ij:l ersf a;joj(x)Gy +s; in L}

i (Z\S) and weakly
in WH4(2) for any q € (1,2) with e € LP(X) Vp > 1.

Proor. Ifg e (1,2)

[ Vo Vods, < 18wl ol <l

Vo e Whi'(X) with /¢:0, hence one has [[Vw; || .z < C. In particular
p>
Wi, — Wi, converges to a function w; e W14(X) weakly in Wh4(Z) Vg € (1,2)

and, thanks to standard elliptic estimates, we get convergence in L} (Z\S).
The limit functions w; are distributional solutions of

—Aw; = Za,] (r] + ; a;(x)d |E|)
In particular s; := w; — ij:l D ove s a;;0;(x) Gy solves
2
As; = jzl:a,-j (r] |E| ; |Z|)

Since —As; € L'(X) we can exploit Remark 2 in [5] to prove that e% € L?(X)
Vp > 1. |

The following Lemma shows the main difference between the case of vanishing
and non-vanishing residual.

LEMMA 2.2.

° Vl'EO:>W1‘,n—>—OO.
® i # 0= W, is bounded.

PrOOE. First of all, w; ,, is bounded from above due to Jensen’s inequality.
Now, take any non-empty open set Q € X\ S.

/ I/l,ewi.n dvg = ewi.n / I/I,ewi,nfwi,n dvg
Q Q

and by Lemma 2.1

2
o ~ 1 e 5.0 (X) Gts;
/ Vie"inVin dy, 90T V,'ez”‘z"esf () dvg € (0,400).
Q Q
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On the other hand,

| ey = (@)= [ 0o
Q Q

n—-+ao0

If =0 one has w;, — —oco. If instead r; #0, choosing Q such that

/ ri(x) dvy > 0 we must have ; , necessarily bounded. O
Q

REMARK 2.1. From the previous two lemmas, we can write r; = V;e®, where

2
Vo = Felima o i eZ,-le\-es,auﬂf(X)Gx

. S 4o
satisfies V; ~ d(~,x)2“"(x)_ = around each x € S;, provided r; # 0.

The key Lemma is an extension of Chae-Ohtsuka-Suzuki [7] to the singular case.
Basically, it gives necessary conditions on the ¢;’s to have non-vanishing residual.

LEMMA 2.3. For both i = 1,2 we have s; € W*?(Z) for some p > 1. Moreover, if
ij:l a;ioj(xo) = 4n(1 + o;(x0)) for some xo € S;, then r; = 0.

Proor. If both r| and r, are identically zero, then also s; and s, are both identi-
cally zero, so there is nothing to prove.
Suppose now r; # 0 and r, = 0. In this case,

—As| = 2(7’1 + ﬁz){oesl o] (X()) — %)
—As, = —(V] +|YI‘EX0€SI (o3} (Xo) —l%)
Then, being G,(y) > —C for all x, y € ¥ with x # y, we get
s1(x) = / G (y)2r1(y) dvy(y) = —2C/ ridoy > —C'.
b b
Therefore, from the previous remark, around each xy € S; we get

2
L j7j(x0)

() = Cd(xp, )™=

so being r; € L'(Z), it must be Z/.zzl ai;oi(xo) < 4n(1 + ay(xp)).

Moreover, being e € L'(X) for any ¢ > 1, from Holder’s inequality we get
r € L?(X) for some p > 1; therefore, standard estimates yield s; € W2?(X) for
bothi=1,2.

Consider now the case of both non-vanishing residuals, which means by The-
orem 2.1 S} = S, = S. In this case,

_A<2sl3+32) — (rl +é Z a1(xo) —%l)
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hence, arguing as before, 2“—3“2 > —C. Therefore, using the convexity of t — e’
we get

251459

C/min{ffl, Va}dv, < /min{f/l, Vate s du,
b b

2 (. L[
< —/ Vie' dvq—|——/ Vye™ dv,
3J)s Co3s ‘

2 1
:—/rldvq+—/r2dv,,<+oo.
3)s Co3)s ‘

Therefore, for any xo € S there exists i € {1,2} such that ij:l a;iaj(xg) <
4r(1 + a;(x0)). Fix xo and suppose, without loss of generality, that this is true
for i=1. This implies that r; € L”(B,(xo)) for small r, so for x € B;(xo) we
have

52(x) = /E Go(3)2r2(y) doy () — / G.(3)r(y) dog(y)

B (x0)

_ / Go(y)r1(y) dry(y)
2\ B, (x9)

>-C- SuIZ)| G|l o )11l 2o (8, (x))
— Sup HGZ”L"(E\Br(XO))”rl||L1(2)
ZEB&(X())
>-—C'.

Therefore, arguing as before, we must have Z,'2=1 a05(x0) < 4n(1 + oz(xp)) and
r2 € LP(B:(xo)). This implies —As; € L”(B;(xo)) for both i’s. Hence, being xo
arbitrary and —As; € L, (X\S), by elliptic estimates the proof is complete. O
From Lemmas 2.1 and 2.3 we can deduce, through a Pohozaev identity, the fol-
lowing information about the local blow-up values. This was explicitly done in
[12, 14].

LemMmA 2.4. If xo € S then

af(xo) + a%(xo) —a1(x0)oa2(x0) = 4n(1 + a1 (x0))o1(x0) + 4n(1 + 02(x0))T2(x0).-

LEMMA 2.5. If xo € S| Sy then there exists [ such that 2/2:1 a;ioj(xg) >
471'(1 + O([(Xo)). .

PROOF. Suppose the statement is not true. Then, by Lemmas 2.3 and 2.4, we
would have
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201 (x0) — 02(x0) < 4m(1 + a1 (xp))
205(x0) — o1(x0) < 4n(1 + 22(x0))
(7) >

at(x0) + 73 (x0) — 71(x0)2(x0)
=4n(1 + o1 (x0))a1(x0) + 4n(1 + o2(x0))T2(x0)

i

which has no solution between positive a;(xy), a2(xp).
(23] (Xo)

2

Gz(Xo)

In fact, by multiplying the first equation by 5

and summing, we get

and the second by

le(xo) + a%(xo) —a1(x0)aa(x0) < 27(1 + a1 (x0))o1(x0) + 27(1 + 02(x0) )2 (x0),

which contradicts the third equation.
The scenario is described by the picture.

87 (1l + az)

4r(1 + az)

47m(1 + az)

27(1 b ap)

I 1 1
27(1 + ay) (1 +ay) 6m(l + ay) 8m(1l + ay)

Figure 1. The algebraic conditions (7) satisfied by a;(xo), g2(x0)
O

COROLLARY 2.1. Let w, be a sequence of solutions of (6). If S#0 then
either vy =0 or r,=0. In particular there exists i€ {1,2} such that p, =

ZXES; Gi(x)'
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PrOOF OF THEOREMS 1.2 AND 1.3. Let u, be a sequence of solutions of (1) with
pi = p,-_’nn_:wﬁ[ and /z Ui, dvg = /Zuz,,, dv, = 0 and let w; , be defined by (5).

If both wy , and w» ,, are bounded from above, then by standard estimates u,, is
bounded in W?”(X), hence is compact in H'(X).

Otherwise, from Corollary 2.1 we must have p; = > ¢ gi(x) for some
i € {1,2}. In the regular case, from Theorem 1.1 follows that p; must be an inte-
ger multiple of 47, hence the proof of Theorem 1.2 is complete.

In the singular case, local blow-up values at regular points are still defined by
(3), whereas for any j = 1, ...,/ there exists a finite I'; such that (a1(p;), 02(p))) €
I';. Therefore, it must hold

!
pi €N = {4nk—|— anaj, keN, ne{0,1}, o€ H,»(Fj)},
=1

j=

where I1; is the projection on the i component; being A; discrete we can also
conclude the proof of Theorem 1.3. O
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