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Partial Di¤erential Equation — A note on compactness properties of the singular
Toda system, by Luca Battaglia and Gabriele Mancini, communicated on
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Abstract. — In this note, we consider blow-up for solutions of the SUð3Þ Toda system on a com-

pact surface S. In particular, we give a complete proof of the compactness result stated by Jost, Lin
and Wang in [11] and we extend it to the case of singularities. This is a necessary tool to find solu-

tions through variational methods.
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1. Introduction

Let ðS; gÞ be a smooth, compact Riemannian surface. We consider the SUð3Þ
Toda system on S:

�Dui ¼
X2

j¼1

aijrj

� Vje
ujR

S Vjeuj dvg
� 1

jSj

�
� 4p

Xl

j¼1

aij

�
dpj �

1

jSj

�
i ¼ 1; 2ð1Þ

with ri > 0, 0 < Vi a ClðSÞ, aij > �1, pj a S given and

A ¼ ðaijÞ ¼
2 �1

�1 2

� �

is the SUð3Þ Cartan matrix.
The Toda system is widely studied in both geometry (description of holo-

morphic curves in CPN , see e.g. [4, 6, 8]) and mathematical physics (non-abelian
Chern-Simons vortices theory, see [10, 18, 19]).

In the regular case, Jost, Lin and Wang [11] proved the following important
mass-quantization result for sequences of solutions of (1).

Theorem 1.1. Suppose aij ¼ 0 for any i, j and let un ¼ ðu1;n; u2;nÞ be a sequence
of solutions of (1) with ri ¼ ri;n. Define, for x a S, s1ðxÞ, s2ðxÞ as

siðxÞ :¼ lim
r!0

lim
n!þl

ri;n

R
BrðxÞ Vie

ui; n dvgR
S Vieui; n dvg

:ð2Þ
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Then,

ðs1ðxÞ; s2ðxÞÞ a fð0; 0Þ; ð0; 4pÞ; ð4p; 0Þ; ð4p; 8pÞ; ð8p; 4pÞ; ð8p; 8pÞg:ð3Þ

In the same paper, the authors state that Theorem 1:1 immediately implies the
following compactness result.

Theorem 1.2. Suppose aij ¼ 0 for any i, j and let K1, K2 be compact subsets of

Rþn4pN. Then, the space of solutions of ð1Þ with ri a Ki satisfying

Z
S

ui dvg ¼ 0 is
compact in H 1ðSÞ.

Theorem 1:2 is a necessary step to find solutions of (1) by variational methods, as
was done in [2, 16, 17].

Although Theorem 1:2 has been widely used, it was not explicitly proved how
it follows from Theorem 1:1. Recently, in [13], a proof was given in the case
r1 < 8p.

The purpose of this note is to give a complete proof of Theorem 1:2, extending
it to the singular case as well. Actually, the proof follows quite directly from [7].

In the presence of singularities, that is when we allow the aij to be non-zero, it
is convenient to write the system (1) in an equivalent form through the following
change of variables:

ui ! ui þ 4p
Xl

j¼1

aijGpj where Gp solves

�DGp ¼ dp � 1
jSjZ

S

Gp dvg ¼ 0

8><
>: :

The new ui’s solve

�Dui ¼
X2

j¼1

aijrj

� ~VVje
ujR

S
~VVjeuj dvg

� 1

jSj

�
i ¼ 1; 2:ð4Þ

with

~VVi ¼ P l
j¼1e

�4paijGpj Vi ) ~VVi P dð�; pjÞ2aij near pj:

In this case, we still have an analogue of Theorem 1:1 for the newly defined ui.
The finiteness of the local blow-up values has been proved in [14].

We will also show how this quantization result implies compactness of solu-
tions outside a closed, zero-measure set of Rþ2.

Theorem 1.3. There exist two discrete subset L1;L2 HRþ, depending only on
the aij ’s, such that for any Ki TRþnLi , the space of solutions of ð1Þ with ri a Ki

satisfying

Z
S

ui dvg ¼ 0 is compact in H 1ðSÞ.

As in the regular case, Theorem 1:3 has an important application in the varia-
tional analysis of (1), see for instance [2, 1].
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2. Proof of the main results

Let us consider a sequence un of solutions of (1) with ri ¼ ri;n !
n!þl

ri and let us
define

wi;n :¼ ui;n � log

Z
S

~VVie
ui; n dvg þ log ri;n;ð5Þ

which solves

�Dwi;n ¼
P2

j¼1 aij
�
~VVje

wj; n � rj; n
jSj
�
;Z

S

~VVie
wi; n dvg ¼ ri;n

8><
>:ð6Þ

moreover,

siðxÞ ¼ lim
r!0

lim
n!þl

Z
BrðxÞ

~VVie
wi; n dvg:

Let us denote by Si the blow-up set of wi;n:

Si :¼ fx a S : bfxngHS;wi;nðxnÞ !
n!þl

þlg:

For wi;n we have a concentration-compactness result from [15, 3]:

Theorem 2.1. Up to subsequences, one of the following alternatives holds:

• (Compactness) wi;n is bounded in LlðSÞ for i ¼ 1; 2.

• (Blow-up) The blow-up set S :¼ S1 AS2 is non-empty and finite and Ei a f1; 2g
either wi;n is bounded in Ll

locðSnSÞ or wi;n ! �l locally uniformly in SnS.
In addition, if SinðS1BS2ÞA j, then wi;n ! �l locally uniformly in SnS.

Moreover, denoting by mi the weak limit of the sequence of measures ~VVie
wi; n , one

has

mi ¼ ri þ
X
x ASi

siðxÞdx

with ri a L1ðSÞBLl
locðSnSiÞ and siðxÞb 2pminf1; 1þ aiðxÞg Ex a Si, i ¼ 1; 2,

where

aiðxÞ ¼
0 if xA pj j ¼ 1; . . . ; l

aij if x ¼ pj:

�

Here we want to show that one has ri C 0 for at least one i a f1; 2g. It may actu-
ally occur that only one of the ri’s is zero, as shown in [9]. Anyway, to prove The-
orems 1:2 and 1:3 we only need one between r1 and r2 to be identically zero.
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As a first thing, we can show that the profile near blow-up points resembles a
combination of Green’s functions:

Lemma 2.1. wi;n � wi;n !
P2

j¼1

P
x ASj

aijsjðxÞGx þ si in Ll
locðSnSÞ and weakly

in W 1;qðSÞ for any q a ð1; 2Þ with esi a LpðSÞ Epb 1.

Proof. If q a ð1; 2ÞZ
S

‘wi;n � ‘j dvg a kDwi;nkL1ðSÞkjkl aCkjkW 1; q 0 ðSÞ

Ej a W 1;q 0 ðSÞ with

Z
S

j ¼ 0, hence one has k‘wi;nkLqðSÞ aC. In particular

wi;n � wi;n converges to a function wi a W 1;qðSÞ weakly in W 1;qðSÞ Eq a ð1; 2Þ
and, thanks to standard elliptic estimates, we get convergence in Ll

locðSnSÞ.
The limit functions wi are distributional solutions of

�Dwi ¼
X2

j¼1

aij

�
rj þ

X
x ASj

sjðxÞdx �
rj

jSj

�
:

In particular si :¼ wi �
P2

j¼1

P
x ASj

aijsjðxÞGx solves

�Dsi ¼
X2

j¼1

aij

�
rj þ

1

jSj
X
x ASj

sjðxÞ �
rj

jSj

�
:

Since �Dsi a L1ðSÞ we can exploit Remark 2 in [5] to prove that esi a LpðSÞ
Epb 1. r

The following Lemma shows the main di¤erence between the case of vanishing
and non-vanishing residual.

Lemma 2.2.

• ri C 0 ) wi;n ! �l.

• ri 2 0 ) wi;n is bounded.

Proof. First of all, wi;n is bounded from above due to Jensen’s inequality.
Now, take any non-empty open set WTSnS.Z

W

~VVie
wi; n dvg ¼ ewi; n

Z
W

~VVie
wi; n�wi; n dvg

and by Lemma 2.1Z
W

~VVie
wi; n�wi; n dvg !

n!þl

Z
W

~VVie
T

2
j¼1 Tx ASj

aijsjðxÞGxþsi
dvg a ð0;þlÞ:
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On the other hand,Z
W

~VVie
wi; n dvg !

n!þl
miðWÞ ¼

Z
W

riðxÞ dvgðxÞ:

If ri C 0 one has wi;n ! �l. If instead ri 2 0, choosing W such thatZ
W

riðxÞ dvg > 0 we must have wi;n necessarily bounded. r

Remark 2.1. From the previous two lemmas, we can write ri ¼ V̂Vie
si , where

V̂Vi :¼ ~VVie
limn!þlwi; ne

T
2
j¼1Tx ASj

aijsjðxÞGx

satisfies V̂Vi P dð�; xÞ2aiðxÞ�
T2
j¼1

aijsj ðxÞ

2p around each x a Si, provided ri 2 0.

The key Lemma is an extension of Chae-Ohtsuka-Suzuki [7] to the singular case.
Basically, it gives necessary conditions on the si’s to have non-vanishing residual.

Lemma 2.3. For both i ¼ 1; 2 we have si a W 2;pðSÞ for some p > 1. Moreover, ifP2
j¼1 aijsjðx0Þb 4pð1þ aiðx0ÞÞ for some x0 a Si, then ri C 0.

Proof. If both r1 and r2 are identically zero, then also s1 and s2 are both identi-
cally zero, so there is nothing to prove.

Suppose now r1 2 0 and r2C 0. In this case,

�Ds1 ¼ 2
�
r1 þ 1

jSj
P

x0 aS1
s1ðx0Þ � r1

jSj
�

�Ds2 ¼ �
�
r1 þ 1

jSj
P

x0 aS1
s1ðx0Þ � r1

jSj
�

8<
: :

Then, being GxðyÞb�C for all x; y a S with xA y, we get

s1ðxÞ ¼
Z
S

GxðyÞ2r1ðyÞ dvgðyÞb�2C

Z
S

r1 dvg b�C 0:

Therefore, from the previous remark, around each x0 a S1 we get

r1ðyÞbCdðx0; yÞ2a1ðx0Þ�
T2
j¼1

a1jsj ðx0Þ

2p ;

so being r1 a L1ðSÞ, it must be
P2

j¼1 a1jsjðx0Þ < 4pð1þ a1ðx0ÞÞ.
Moreover, being eqs1 a L1ðSÞ for any qb 1, from Holder’s inequality we get

r1 a LpðSÞ for some p > 1; therefore, standard estimates yield si a W 2;pðSÞ for
both i ¼ 1; 2.

Consider now the case of both non-vanishing residuals, which means by The-
orem 2:1 S1 ¼ S2 ¼ S. In this case,

�D
�2s1 þ s2

3

�
¼
�
r1 þ

1

jSj
X
x0 aS1

s1ðx0Þ �
r1
jSj

�
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hence, arguing as before, 2s1þs2
3 b�C. Therefore, using the convexity of t ! et

we get

C

Z
S

minfV̂V1; V̂V2g dvg a
Z
S

minfV̂V1; V̂V2ge
2s1þs2

3 dvg

a
2

3

Z
S

V̂V1e
s1 dvg þ

1

3

Z
S

V̂V2e
s2 dvg

¼ 2

3

Z
S

r1 dvg þ
1

3

Z
S

r2 dvg < þl:

Therefore, for any x0 a S there exists i a f1; 2g such that
P2

j¼1 aijsjðx0Þ <
4pð1þ aiðx0ÞÞ. Fix x0 and suppose, without loss of generality, that this is true
for i ¼ 1. This implies that r1 a LpðBrðx0ÞÞ for small r, so for x a Br

2
ðx0Þ we

have

s2ðxÞ ¼
Z
S

GxðyÞ2r2ðyÞ dvgðyÞ �
Z
Brðx0Þ

GxðyÞr1ðyÞ dvgðyÞ

�
Z
SnBrðx0Þ

GxðyÞr1ðyÞ dvgðyÞ

b�C � sup
z AS

kGzkL p 0 ðSÞkr1kL pðBrðx0ÞÞ

� sup
z ABr

2
ðx0Þ

kGzkLlðSnBrðx0ÞÞkr1kL1ðSÞ

b�C 0:

Therefore, arguing as before, we must have
P2

j¼1 a2jsjðx0Þ < 4pð1þ a2ðx0ÞÞ and
r2 a LpðBr

2
ðx0ÞÞ. This implies �Dsi a LpðBr

2
ðx0ÞÞ for both i’s. Hence, being x0

arbitrary and �Dsi a L
p
locðSnSÞ, by elliptic estimates the proof is complete. r

From Lemmas 2:1 and 2:3 we can deduce, through a Pohozaev identity, the fol-
lowing information about the local blow-up values. This was explicitly done in
[12, 14].

Lemma 2.4. If x0 a S then

s2
1ðx0Þ þ s2

2ðx0Þ � s1ðx0Þs2ðx0Þ ¼ 4pð1þ a1ðx0ÞÞs1ðx0Þ þ 4pð1þ a2ðx0ÞÞs2ðx0Þ:

Lemma 2.5. If x0 a S1BS2 then there exists i such that
P2

j¼1 aijsjðx0Þb
4pð1þ aiðx0ÞÞ.

Proof. Suppose the statement is not true. Then, by Lemmas 2:3 and 2:4, we
would have
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2s1ðx0Þ � s2ðx0Þ < 4pð1þ a1ðx0ÞÞ
2s2ðx0Þ � s1ðx0Þ < 4pð1þ a2ðx0ÞÞ
s2
1ðx0Þ þ s2

2ðx0Þ � s1ðx0Þs2ðx0Þ
¼ 4pð1þ a1ðx0ÞÞs1ðx0Þ þ 4pð1þ a2ðx0ÞÞs2ðx0Þ

8>>><
>>>:

;ð7Þ

which has no solution between positive s1ðx0Þ, s2ðx0Þ.

In fact, by multiplying the first equation by
s1ðx0Þ

2
and the second by

s2ðx0Þ
2and summing, we get

s2
1ðx0Þ þ s2

2ðx0Þ � s1ðx0Þs2ðx0Þ < 2pð1þ a1ðx0ÞÞs1ðx0Þ þ 2pð1þ a2ðx0ÞÞs2ðx0Þ;

which contradicts the third equation.
The scenario is described by the picture.

r

Corollary 2.1. Let wn be a sequence of solutions of ð6Þ. If SA j then
either r1C 0 or r2C0. In particular there exists i a f1; 2g such that ri ¼P

x ASi
siðxÞ.

Figure 1. The algebraic conditions (7) satisfied by s1ðx0Þ, s2ðx0Þ
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Proof of Theorems 1:2 and 1:3. Let un be a sequence of solutions of (1) with

ri ¼ ri;n !
n!þl

ri and

Z
S

u1;n dvg ¼
Z
S

u2;n dvg ¼ 0 and let wi;n be defined by ð5Þ.

If both w1;n and w2;n are bounded from above, then by standard estimates un is
bounded in W 2;pðSÞ, hence is compact in H 1ðSÞ.

Otherwise, from Corollary 2:1 we must have ri ¼
P

x ASi
siðxÞ for some

i a f1; 2g. In the regular case, from Theorem 1:1 follows that ri must be an inte-
ger multiple of 4p, hence the proof of Theorem 1:2 is complete.

In the singular case, local blow-up values at regular points are still defined by
ð3Þ, whereas for any j ¼ 1; . . . ; l there exists a finite Gj such that ðs1ðpjÞ; s2ðpjÞÞ a
Gj. Therefore, it must hold

ri a Li :¼ 4pk þ
Xl

j¼1

njsj; k a N; nj a f0; 1g; sj a PiðGjÞ
( )

;

where Pi is the projection on the i th component; being Li discrete we can also
conclude the proof of Theorem 1:3. r
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