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ABSTRACT. — We establish a quantitative isoperimetric inequality in higher codimension. In
particular, we prove that for any closed (7 — 1)-dimensional manifold I' in R"** the following
inequality

D(I') > Cd*(T)

holds true. Here, D(I") stands for the isoperimetric gap of I, i.e. the deviation in measure of I' from
being a round sphere and d(I") denotes a natural generalization of the Fraenkel asymmetry index of
T to higher codimensions.
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1. INTRODUCTION

In 1986 in his seminal paper “Optimal isoperimetric inequalities” [2] Almgren
proved in the context of currents the higher codimension counterpart of the clas-
sical isoperimetric inequality established by De Giorgi in [7]. In the particular
case of smooth (n — 1)-dimensional manifolds I" = R"** without boundary, span-
ning an area minimizing smooth surface M, his inequality states that

(1.1) H" N () > H"1(0D),

where D is an n-dimensional flat disk with the same area as M. Here, H"~! de-
notes the (n — 1)-dimensional surface measure. Moreover equality occurs if and
only if I is the boundary of a flat disk.

A natural question is the stability of inequality (1.1). More precisely, one
would like to show that if I" fails to realize equality in the isoperimetric inequal-
ity (1.1) by a small factor J, i.e. " 1(T') = H""1(0D) + 9, then T is close to the
boundary ¢D in a suitable quantitative sense measured in terms of 0. For the clas-
sical isoperimetric inequality in codimension zero, this stability issue was raised in
the beginning of the last century by Bernstein and Bonnesen in the particular case
of planar convex sets [3, 5]. Later on the first results in higher dimensions were
established in [15] by Fuglede in the case of convex or nearly spherical sets. His
main result states that if £ = R" is a nearly spherical set in the sense that

0E ={(1 +u(x)x:xe 8"}
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for some u : S"~! — R with small C'-norm, whose volume is equal to the volume
of the unit ball B; =« R" and whose barycenter is at the origin, then

H N OE) — 1" (0B1) = c(n)|[ull 2501y

In particular, this inequality implies that the isoperimetric gap on the left-hand
side controls the square of the measure of the symmetric difference EAB;. The
extension of Fuglede’s result to general sets of finite perimeter was first obtained
in [17] (see also [19, 20] for a similar, but non optimal inequality). The result
proved in [17] states that there exists a constant C depending only on the dimen-
sion n such that if E is a set of finite perimeter with |E| = |B,|, then

(1.2) D(E) = C(n)a*(E).
Here, D(E) stands for the (normalized) isoperimetric gap

n—1 _ n—1
D(E) ::7-[ (0E) — nwyr

nw,r"!
and o(E) is the so-called Fraenkel asymmetry

|EAB;<x>|}

r

a(E) = min{

X

While the original proof in [17] used mainly symmetrization arguments, in [14]
a new proof based on arguments from the theory of optimal mass transport
appeared. These arguments allowed an extension of (1.2) also to anisotropic pe-
rimeter functionals. Both proofs are quite involved due to their ad hoc character,
especially, since they do not use any deep result or heavy machinery from other
fields of Analysis and Geometry. In a recent paper Cicalese and Leonardi [6] ob-
served that it is possible to give a proof of the quantitative isoperimetric inequal-
ity by a selection principle based on a suitable penalization of the functional
E— % and the use of the regularity theory for minimal surfaces.

In order to describe the main result of our paper we restrict ourselves to the
case of smooth (n — 1)-dimensional closed surfaces I" in R"**. Denoting by Q(T")
an area minimizing n-dimensional surface with boundary I" the isoperimetric gap
is defined by

_ anfl (1—-) _ anfl (8Dg)

P T,

Y

where D, is an n-dimensional flat disk in R""* with the same area as Q(T), i.e.
H"(D,) = H"(Q(I")). Note that the area minimizing surface Q(I") may have sin-
gularities even if I' is smooth. To overcome this, the use of currents with finite
mass is unavoidable. However, in order to keep the introduction as simple as pos-
sible we describe the objects in the context of manifolds. The precise definition
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of the asymmetry index d(I") is more technical and requires the use of a certain
seminorm m (see Section 3). The underlying geometric idea can be described as
follows. Given any flat disk D, with the same area as Q(I'), first one considers
an area minimizing cylindric type surface £(D,) spanned by the boundary com-
ponents I' and dD,, and afterwards one takes the infimum of the surface area
H"(Z(D,)) amongst all possible disks D,:

d(I") == o " inf{}H"(X(Dy)) : #"(D,) = H"(Q(T'))}.

The aim of this paper is to state and prove in the context of currents the following
heuristic quantitative version of Almgren’s optimal isoperimetric inequality:

THEOREM. Let n>2 and k > 0. There exists a constant C = C(n,k) > 0 such

that for any (n — 1)-dimensional closed surface T' = R"™™* the following inequality
holds:

(1.3) D(I') > Cd*(T).

Note that if T" is the boundary of a smooth open set E contained in an n-
dimensional hyperplane, then the asymmetry index d(I") coincides with the clas-
sical Fraenkel asymmetry index o(E). Hence, (1.3) reduces to (1.2). In particular
this shows that the exponent 2 on the right-hand side of the inequality cannot be
improved, since it is known to be optimal already for (1.2).

A few words on the proof are in order. As in [6] the overall strategy is to show
first a Fuglede type inequality and then to reduce the general case to it via a reg-
ularity argument. However, here the situation is more delicate and involved due
to the higher codimension. First of all, the analogue of Fuglede’s result deals with
a spherical graph over S"' in R"** i.e. a manifold I" which can be parametrized
by a map X : §"! — R"** of the form

X(x) = (14 u(x))(x,0) + (0,0(x)) xeS"

where u € C'(S" ') and v e C'(§"!, R¥) have both small C'-norms. In our case
a substantial difficulty arises from the fact that, beside imposing the volume con-
straint H"(Q(I")) = w, and the barycenter condition bar(I") = 0, we have also to
fix the mixed second order moments. This can be done for instance by assuming
that they are all equal to zero, i.e.

(14) /Z,‘Zj d’HrHl =0
r

for any choice of i=1,...,nand j=n+1,...,n+ k. Differently from the case
k = 0 considered by Fuglede, in which v does not appear, the conditions (1.4)
play a crucial role in the estimation of the n - k first order Fourier coefficients
of v. The bounds on the first order Fourier coefficients of u and the zero order
Fourier coefficients of u and v follow from the barycenter condition and the
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constraint on %"(Q(I')). Under the above assumptions on u and v we prove the
following inequality (see Theorem 4.1)

(1.5)  HHE) = (S = aalllullipna sy + 1ol qh)] = cd*(D),

where ¢; > ¢, are constants depending only on 7.

The next step is to reduce the general case to the previous one by a contradic-
tion argument using the regularity theory for w-minimizing currents. However,
following [1] where a similar kind of penalization term was introduced we use a
much simpler penalization then the one used in [6] in the treatment of the codi-
mension zero case (see also [8, 16, 18]) which is also reminiscent of the Ekeland
variational principle [12]. Our argument goes as follows. We argue by contradic-
tion assumlng that there exists a sequence of (n — 1)-dimensional surfaces I'; all
contained in a large ball B such that #"(Q(T;)) = w, and D( )/dz( ) — 0.
Then, we construct a new sequence by considering the minimizers F of the pe-
nahzed functionals

F(I) = H""H(D) + Cild(T) = d(I)| + A[H"(Q(T)) — wi|

with A > 2n and C; > 0 a suitable constant depending on ¢,. It is not difficult to
show that the surfaces ij converge in a weak sense to S”~! and that also the ratio

(F’ )/d*(T ) — 0. Moreover, the weak convergence ensures that the barycenters
and 'the second order moments of F] converge to zero while the corresponding
area minimizers Q(F’ ) converge in a weak sense to a flat disk with boundary
S~ To derive a contradlctlon to the Fuglede type estimate (1.5), one first has
to show that the surfaces 1"]’ can be chosen to satisfy (1.4). This is done by prov-
ing that (see Lemma 4.2) if I is a manifold with sufficiently small second order
moments one can find a rotation close to the identity such that the mixed second
order moments of the rotated manifold are all equal to zero. Since the penalized
functional above is invariant under rotations the tilted surfaces are still mini-
mizers. Thus, the last step in deriving the contradiction to (1.5) is to establish
that the surfaces F/{ are spherical graphs converging to S”~! in C!'#. This is the
point where the regularity theory for w-minimizing currents enters. In fact, the
existence theory yields only that the minimizers I'/ are rectifiable currents mini-
mizing an appropriate generalization of the functional F; in the context of Geo-
metric Measure Theory. It can also be shown that the penalization terms in the
functional are of lower order, so that the surfaces (in fact currents) I'; are -
minimizers of the area (mass) functional. However, to show that they are spheri-
cal C* graphs over S”~! one has to transform locally to a situation where the
regularity theory for w-minimizing currents is applicable. This is done by flatten-
ing locally S"~! and transforming to a flat case in which the w-mass minimizers
become w-minimizers of a suitable elliptic integrand, and in which they converge
to a flat (n — 1)-dimensional disk with multiplicity one. At this stage the regular-
ity theory from [4, 10] applies and yields that the T’ j/ are spherical graphs converg-
ing in C'* to S"~'. But this is a contradiction to the higher codimension version
of Fuglede’s theorem as stated in (1.5).
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2. NOTATION AND STATEMENT OF THE RESULT

We recall some basic definitions and results on currents. Here we follow the ter-
minology of [13]. Let n e N, k € Ny and 0 < m < n. Then m-dimensional sur-
faces in R"** will be modelled by locally rectifiable integer multiplicity currents
with finite mass in R"*. Such currents 7', of dimension m, can be represented
by an (H™,m) rectifiable supporting set M7 < R"™* an #" summable multi-
plicity functiog 97 : My — N, and an H" measurable orientation 7 : My —
AW R"* ie. T is the exterior product of an orthonormal basis in the m-dimen-
sional measure theoretic tangent space Tan(H" L Mr, x) of M7 which exists at
H™ almost all points x € M7. We set 9y =0, T = 0 outside M7 and denote by
|T|| = $rH™ . My the (Radon) measure associated with 7" and by

M(T) = |TI®") = [ sran
Rt

the mass (or m area) of 7. Note that the summability of 97 is equivalent to the
finiteness of the mass M(7). By definition, an m current is a continuous linear
functional on the space of compactly supported smooth m forms on R"** which
we denote by & € D" (R"). In terms of the quantities ||7'|| and T the pairing of
currents and differential forms is given by

T()= [ <o, TH9rdH" = / Ca, TYd| T,
My R K

and it is defined whenever o is a bounded Borel form of degree m. The set of
all locally rectifiable integer multiplicity m currents is denoted by R,,(R").
Note, that this simplified symbol stands for what in Federer’s notation (see [13,
p. 381]) would be denoted as Z/%(R"™*) A {T : M(T) < w}.

The boundary current 07 is then defined by taking formally the dual of the
exterior derivative, i.e. 0T (f) = T'(df) for compactly supported smooth m — 1
forms f# on R""*. For an open (and more generally a Borel) set U < R"™* we de-
fine the mass of 7' in U by

My(T) == (||T|| . U)(R"F) = / SrdH™.
MU
On the set of closed m-dimensional surfaces, i.e. for 7' € R,,(R"™*) with 0T = 0
and 1 <m < n+ k, we now define a seminorm measuring the mass of a minimal
surface spanned by 7. More precisely, given 7' as above there exists a mass min-
imizing current Q(T) € R,,.1(R"*) with boundary dQ(T) = T. The mass of
Q(T) is denoted by m(7), i.e.

m(7) :=M(Q(T)) = inf M(P).
PeRpu1 (R™F),
oP=T
When writing Q(T') we always understand that we have specified one particular
mass minimizer with boundary 7. We note that there might be several mass
minimizers. Our arguments however will not depend on a particular choice.
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Moreover, in case that spt 7" is compact we know from [21, Remark 34.2(2)] that
spt Q(T) = convex hull of spt T for any mass minimizer Q(7).

To give the precise formulation of our main result we have to introduce the
notion of a flat n-dimensional disk in R"**. The Euclidian current E" on R" is
defined by

E"(«) := g {o,ey A---ANe,ydL" forany o e ngt(R”,/\n R™).

Here £" denotes the Lebesgue measure on R”. For an £" measurable set 4 = R”
the current E” L A4 is defined as usual via

(E”LA)(oz):/A<ac,elx\~--/\en>d£”.

Then, by an n-dimensional flat disk in R"** we mean a current 7' € R,(R") of
the form 7 := ®,(E" L D) where D is any open ball in R” and ® : R” — R"** an
isometric injection. In order not to overburden our presentation with notation
we will use the short hand notation [D] instead of ®4(E" L D). By [D,] we denote
a flat disk of radius r > 0. We use a similar notation for currents associated to
oriented, compact, m-dimensional submanifolds M < R"**. Indeed, if ¢ denotes
an orientation m-vector field on M, then the corresponding m-current [M] €
Rom(R™) is defined by

[M](a) := /M (o, EYdH™  for all o € D™ (R"H),

Now, let n > 2. As introduced above, we use for a current 7" € R,,_l([R{"”‘)
with 07 = 0 the abbreviation m(7") to denote the minimal mass spanned by 7.
Moreover, by o(7T) we denote the radius of any flat n-dimensional disk [D] whose
mass is equal to the minimal mass spanned by 7, that is m(7") = M([D]) =
w,o(T)", so that

Then, if T # 0, the isoperimetric gap is given by

M(T) — ne,o(T)""!

n—1

D(T) .=
() nw,o(T)

Note that the isoperimetric gap is invariant with respect to translations, rotations
and dilations. Next, we observe that m(7" — d[D,r)]) measures how close 7" and
0[Dy(1)] are. Of course, when taking an arbitrary disk of radius o(7") this dis-
tance can be very large. Therefore, in order to measure the deviation of the sur-
face from round spheres of radius o(7) we shall take the infimum over all such
spheres. This quantity we call the asymmetry index of T, and it is a measure for
the deviation of T' from being a round sphere. Hence, for T € R,_;(R"*) with
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0T = 0 we define
m(7 — d[D,r)])

d(T) = inf

where now the infimum is taken over all flat n-dimensional disks [D 7] of radius
o(T), i.e. about those disks with mass equal to the minimal mass m(7") spanned
by T. Note that also d(7) is invariant under translations, rotations and dilations.
Now we are in the position to state our result.

THEOREM 2.1. Letn > 2 and k > 0. Then, there exists a constant C > 0 depend-
ing only on n and k such that for any T € R, (R"), with T # 0 and 0T = 0, the
sharp quantitative isoperimetric inequality holds

(2.1) D(T) > Cd*(T).

3. FACTS FROM GEOMETRIC MEASURE THEORY

For later use we recall some facts from Geometric Measure Theory which can be
retrieved either from [13] or [21]. We start with the definition of the flat semi-
norm. For a given open set U and an m-dimensional current 7" with locally finite
boundary mass, i.e. My (6T) < o for any W &€ R"**, the flat semi norm is de-
fined by

Fy(T):= Tzilslfap(MU(S) + My(P)),

where the infimum is taken over all S € R,,(R"™*) and P € R, 1(R"™"). In the
case U = R"* we write F := Fyuir. The topology induced by the semi norms Fy
for U = R"* open and bounded is called the Fi,c-topology on R,,(R""*). The
following theorem ensures that for sequences the Fjo.-topology and the weak to-
pology on R,,(R"**) are identical, cf. [21, Theorem 31.2]. Note that we state the
following two theorems only for locally rectifiable integer multiplicity m-currents
with finite mass. The original versions certainly include m-currents with only lo-
cally finite mass.

THEOREM 3.1. Let T,{T;} = R,,(R"™*) be m-currents with

sup(My(T;) + My(dT;)) < oo for all U € R"F.
jeN

Then T; — T with respect to the Fioc-topology if and only if T; — T with respect to
the weak topology.

For later purposes we recall the compactness theorem of Federer and Fleming,
see [13, Theorem 4.2.17] or [21, Theorem 27.3].
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THEOREM 3.2. If {T;} = R,u(R"5) is a sequence of m-currents in R"™* with

sup(My(T;) + My(0T;)) < oo for all U € R™,

jeN
then there is an m-current T € R,,(R"™*) and a subsequence {T;} such that T; — T
with respect to the Fioc-topology.

By Theorem 3.1 the compactness in Theorem 3.2 also holds with respect to the
weak topology. This allows to extract a weakly convergent subsequence from any
sequence of currents 7; € Ron(R™) satisfying a suitable mass bound. Together
with a lower semicontinuity property of certain functionals this yields the exis-
tence of a minimizer, as for example in the case of the mass M (which is easily
seen to be lower semicontinuous with respect to weak convergence of currents).

We note that the flat norm F and the seminorm m are almost equivalent. First
one observes that F < m. On the other hand, the following lemma, whose proof
is an easy consequence of the isoperimetric inequality, ensures that also a reverse
type inequality holds true for currents with compact support.

Lemma 3.3. Let R>0. Then, for any TeRn_l(R’”k) with 0T =0 and
spt T < Bg there holds

m(7) < [C(n)M(T) + 1]Fp,,(T).

PrOOF. We first choose S € R, 1 (R""*) and P e R,(R"**) realizing Fp,,(T) up
to an error ¢ > 0, i.e. S+ dP = T and Mg, (S) + M3, (P) < Fp,,(T) + ¢. Since
spt T < Br, we may assume without loss of generality that sptS,sptP < Bg.
Indeed, otherwise we replace S and P with the corresponding projections py(S)
and py(P) onto B, which still satisfy the equality T = pu(T) = p4(S + 0P) =
p#(S) + Opx(P) but have smaller mass on Byg. Then, from Theorem 3.4 below
we observe that

m(T) < (m(7))"[m(S) + m(0P)]""

<m(T)"[,M(S)77 + M(P)]'"
(

Taking into account that M(S) = Mp,,(S), M(P) = M3, (P), we get

n

m(T) < ——3,M(T)" Mg, (S) + Mp,,(P)

n—1

< [( " )T + I]MBZR(S) + Mg, (P)

n—1
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< | () MO 41| My (5) + My ()

- {(n”inl)n_lM(T) + 1] (Fp,.(T) + ).

Letting ¢ | O the assertion of the lemma follows. O

In the proof of the quantitative isoperimetric inequality it will be convenient
to work with a non re-scaled version of the asymmetry index d. Hence, for 7 €
Ro1(R"™%) with 0T = 0 we define

(7) = inf m(T — 2[D1]).

where the infimum is taken over all flat n-dimensional disks [D;] of radius 1. Note
that d, (7) is invariant under translations and rotations and that d(7") = d,(7) if
m(7T) = w,.

Finally, the following optimal isoperimetric inequality can be retrieved from
[2, Theorem 9.

THEOREM 3.4. Suppose that T € R, 1(R"™*) with 0T =0 and that Q(T) is a
mass minimizing current with boundary T. Then, there holds

M(Q(T)) < 7,M(T)7

. L
where y, := n"n1w, """ denotes the optimal isoperimetric constant. Equality holds if
and only if Q(T) is a flat n-dimensional disk [D] in R"**.

4. A VERSION OF FUGLEDE’S THEOREM IN HIGHER CODIMENSION

We start with some notation. Coordinates z € R""* are written as z = (x, y).
Here n > 2 and k > 0. The case k£ = 0 corresponds to the classical case treated
by Fuglede. For this reason we restrict ourselves to the case k > 1. Throughout
this section we consider an (n — 1)-dimensional surface I' = R""* which can be
parametrized globally by a map X : $”~! — R"** from the sphere S”~! into R"**
as follows:

(4.1) X(x) := (1 +u(x))(x,0) + (0,0(x)) xeS" '

Here u: S" ' — R is a scalar valued function and v: S"' — R¥ is a vector
valued function. We call such a surface I' a spherical graph over S"~!; actually
such a surface is a global section in the normal bundle over S"~!'. For spherical
graphs we have

THEOREM 4.1 (Fuglede’s theorem for spherical graphs in higher codimension).
There exist ¢, € (0,1] and C; > C, > 0 depending only on n such that there holds:
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Whenever T is a spherical C'-graph over S"~' in R"™* such that the defining func-
tions u: S ' — Rand v: S" ' — R* satisfy

(4.2) [ull crgsny + 1oll i (som1, mey < &0,

and such that the area of a mass minimizing current Q spanned by T is equal to the
area of a flat n-dimensional disk of radius 1, that is

(4.3) m([I]) = inf{M(Q) : Q € R,(R"™),00 = [I]} = w,,

whose barycenter and mixed second order moments are zero, that is

(4.4) bar(I) := / zdH" ' =0,
r
and
(4.5) /x,-y“ dH"' =0
r
for every choice of i=1,...,nand o =1,... k, then the following quantitative

isoperimetric inequality holds:

n—1
MO =100 il + ol00] = (0]
ne,
PrOOF. The proof will be divided into several steps.

Step 1. Lower bound for the isoperimetric gap. We first compute the area ele-
ment of the surface I with the help of the parametrization X from (4.1). For this
we evaluate the (n — 1)-Jacobian JX of X from the matrix representation of VX
with respect to an orthonormal basis 71, . .., 7,_; in the tangent space to "' and
the associated orthonormal basis (z7;,0), ..., (7,-1,0), (x,0), (0,¢1),...,(0,ex) in
R In this representation we have

(14+u) 0 . 0
0 (14 u)
V,u Vou ... Vo u
VT]U1 szvl . VT"_IU1
V., vk Voo ... Vi vk

and the Jacobian can easily be computed as follows
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X2 = (14+u)®" Y+ (14 u)* "2 (Vo) + Vo] )

min{k+1,n—1}
+ Z (I+ u)z(n_l_a)Ma(Vruyer)za
a=2

where M, (V.u, V,v)2 is the sum of the squares of the o x o minors of the matrix
(V.u, V.v). This leads us to

VX = (14 )Y 4 (1 +0)* " 2D(Vau]* + Voo + Ry,

where assumption (4.2) ensures that the remainder R; is pointwise bounded on
S"=1 by

[Ri| < e(n)(1+ [u)) " (Ve + [Ver]*)? < e(m)eo (Ve + [ Ver]).
From the last identity we obtain
(4.6)  [JX]P=1+2(n— Du+ (n—1)(2n - 3)u* + [Voau* + [Vou|* + Ry,
where the remainder R, satisfies
(4.7) |Ra| < e(m)e([uf® + [Veu® + |Veo]).

At this point we use the inequality vT+a > 1+1a—1a> — |a|> which is valid
for |a| < 1/2. We apply this inequality with the obvious choice

a=2(n—Du+ (n—-1)2n—3)u>+|Vaul* + |V.0|* + R,.
Note that |a| < 1/2 if we choose ¢, > 0 small enough. In this way we obtain

(n—1)(n—-2)

JX =1+ (n—1Nu+ 5

1
w? + 5 (IVel” + [Veol*) + R,

with a possibly different remainder R, which still satisfies (4.7). This allows us to
estimate

4.8)  H"Y(T) - nw, —/ (JX —1)dH"!
Sn—1
2(,1_1)/ ud%n1+W/ 2 A
Sn—1 2 Sn—1

1
+—/ (|Vou)* + |Voo]?) dH"!
2 Sn—l

2 2
= c(m)eo[lullprz + llolln.2]-
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Step 2. Consequences of the mass assumption (4.3). In the case that

/ udH"'>0
Sn—]

the estimate (4.8) will be sufficient to complete the proof. However, in the nega-
tive case, which can be viewed as the more difficult case since the leading first
order term in (4.8) is negative, we shall need an improvement of (4.8). This im-
provement can be achieved by utilizing assumption (4.3), i.e. the fact that the
minimal mass m(I") spanned by I' is equal to w,. The precise argument is as fol-
lows. We consider the cone

C = C(x,0) := o[(1 + u(x))(x,0) + (0,v(x))] xe 8" 0e(0,1]

over I'. Using the minimality of m(I") we see that

(4.9) w, =m(T) < H"(C / / JCdH" " do,
Snl

where JC is the n-Jacobian of C. In order to utilize the properties of the right-
hand side we need to compute the area element of the cone C. For the partial
derivatives we have

Ve, C(x, 0) = 0V X (x) = of(1 4 u(x))(%i, 0) + (x,0)Vou(x) + (0, Vo0(x))]
fori=1,...,n—1and
V,C(x,0) = (1 +u(x))(x,0)+ (0,v(x)).
The area element / := V,C A /\ V., C can now be rewritten in the form

n—1

I=0""1(1+u)x /\V,,X+ (0,0) /\/\VTIX = 0" NI + I).
i=1

For I; we have

n—1

L= (1+u)(x,0) A A(1+ u)(z:,0) + (x,0)Vyu + (0, V)]

i=1

n—1

= (1 +u)(x, 00~ Al +u)(7:,0) + (0, Vr,p)]

i1
= (1+u)"(x,0)A(z1,0) A+ A (7421, 0)

—1
1—|—u Z Tl, "'/\(O,Vriv)/\"'/\(‘L'nfl,())—|-R31,
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where the remainder can be estimated as follows:
2
‘R31| < c(n)|va| .
For I, we similarly compute
n—1

L:=(0,0) A AI(1+u)(z:,0) + (x,0)V,u+ (0,V0)]

i=1
=(1+w)"(0,0) A(11,0) A+ A (T4-1,0) + Raa,
where now the remainder R3; can be bounded by
|Raa| < e(m)[o](IVet| + Vo)) < e(n)(IVetd + [o]” + [Veo]).
Combining the preceding estimates we arrive at
ICP = I+ )™ + (14 w)*™ ([0l + [Veo]) + Ry

o] + V0]

1+ 5
(1+u)

—_ 92(7171)(1 +u>2n Ry,

where R3 has changed in the last line. Nevertheless, with the help of (4.2) we find
that

|R3| < c(n)eo(|VTu|2 + |v|2 + |va|2).

Using (4.9), the expansion of JC from above and (4.2) we see that

1
cu,,é// JCAH" " do
0 Jsnm

1 2 . 2

:—/ (1+u)" 1+M+R;d%“
nJsnmi (1+u)

1

— n/ (I +uw)" dH" " + 11
Sn—l

—1
< w,+ / udi"! +nT/ u? dH" ™ + c(n)e,||ull7 + 11
Sn—1 Sn—1

where we have abbreviated

1
I .= - 1 "
n/s\‘nl( + u)

To estimate /I we use v'1 +a < 1+3a for a > —1 and obtain

2 2
\/1+|”| L T vy

(14+u)
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1 _
<5 | ()" (o + Vel ) dH" + c(m)es|ullip + [[o]2]
Sn—l

2 2 n— 2 2
<o [0+ Wy ane el + ol

Here we also used that (1 +u)""> < 1 4 ¢(n)e, by (4.2). Joining this with the pre-
ceding estimate we obtain

n—

1 1
(4.10) / udH" ' > — / u? dH"! ——/ (Jv]* + |V.0?) dH"!
Sn-1 sn—1 2n sn—1

2 2
— C(l’l)&o[HMHWl.z + ||UHW1.2].

Plugging the last inequality into (4.8) we obtain the desired improvement of (4.8),
that is

@11)  HN(D) = neoy = %[/S V2 a3 —(n—l)/

Sn—1

1
+—[/ V0| dH"! —(n—l)/ |v|2d7-l”l]
2” Sn—l Sn—l

2 2
= c(meo[l[ullypz + lloll.]-

u? d?—l”l}

n—1

Step 3. Consequences of the barycenter assumption (4.4). The next prerequisites
for the final proof are estimates which can be derived from the barycenter condi-
tion (4.4). Using the first # entries in (4.4) we infer with the help of the area for-
mula for i =1,...,n that

Oz/xid”)’-l”_l :/ (1 + u)x;JX dH™".
r NG

Using also the fact that / x;dH" ' =0fori=1,...,n we compute
Sn—1

/ ux; dH" ' = / ux;(1 — JX)dH"! +/ (1 + u)x, JX dH"!
Sn—1 Sn—1 Sn—1
+/ xi(1 —JX)dH"™!
Sn—1

= / ux;(1 — JX)dH"! +/ xi(1 = JX)dH"!
Sn—1

Sn—1

B 1= [JX]> . 1= X .
/SM”’“71+JX A +/Sn1x’71+JX aH",
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Using (4.6) in both integrals on the right-hand side we find that

- d n—-1 _ RidH™" —2(n—1 uxi dH"!
/Sn] ux H /Snl 4 H (n >/Sn] 1 + JX H ’

where

|Rs| < c(n)(jul* + |Veu|* + [Vev]?).

Adding (n — 1) / ux; dH"~' on both sides of the preceding equality we obtain
Sn—1

2
’ n—1 _ 1 / 1= n—1 / R n—1
n/S”l ux; dH (n—1) - ux T /x dH" + - 1 dH

_ 1-JX n—1 n—1
= —(I/l— 1)/5,,1 uxlmdﬁ +/Sn1 R4d,H .

The first integral on the right-hand side can now be estimated with the help of

(4.6) by
1-JX 1 - [JXx)?
/ ux,-l JXdHnl' = / uxi[i}zd?’{”fl
g T st (14 JX)

2 2
< cm)(llullprz + [loll2]-

Joining the preceding estimates we finally arrive at

/ ux; dH"!
Sn—l

For components y, with « = 1,... k&, i.e. those ones corresponding to the func-
tions v,, we argue as before, in the case of the components x;. Using again the
area formula and the barycenter condition (4.4) for the y,-components we have

/ vdH"! —/ vJXd’}-[”l+/ v(1 —JX)dH"!
Sn—l Sn—] Sn—]
:/yd'H"_l—l-/ v(1 —JX)dH"!
r NG

~ 1—-Jx)?*
o _ n—1 _ n—1
= /Sn1 o(l = JX)dH /S"1 Y X dH" .

(4.12) < em)lllul3ea + ol 32

Together with (4.6) this leads us to

/ vdH"!
Sn—l

(4.13) < cm)[llull3> + o)),
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Step 4. Consequences of assumption (4.5) on the mixed second order moments.
From (4.5)we getfori=1,...,nand a = 1,... k that

0:/)c,~y%d’z'—l”_1
r
= / (1 + u)x;0,JX dH"™!
Sn—1

- 1-[Jx)? -
= vy dH"! VI X — X0y ————— | dH"".
/S"lxv H —I—/Shllxvu XU 37X H

From (4.2) and (4.6) we therefore conclude that

/ xvdH"!
Sn—]

holds fori=1,...,n.
Step 5. The final conclusion. We consider the expansion of u and v into the
corresponding Fourier series

(4.14) < c(m)[llullpr2 + [o].2]

o My o My
u=3y > /Y, and v= bj.c Y
J=0 /=1 j=0 /=1
where {Y; ,: j € No,/ =1,...,m;} stands for the orthonormal basis of spherical

harmonics in L?(S"!), i.e. we have
—Agi1 Y, =j(j+n—-2)Y;, forjeNy, /=1,...,m.

Here, m; denotes the dimension of the eigenspace associated to the eigenvalue
Jj(j+n—2). Note that my = 0, m; = n and the precise value of m; is given for

j>2 by
_(nt+j-1\ (n+j=3
m,.-( n—1 ) ( n—1 )

n—1 __
/ . lefl szfz dt - 5]1,]'25/1,/2'
Sn=

Moreover, we have

The coefficients of the Fourier expansions of # and v are obtained by

aj. :—/ uY;;dH" ' e R and b, :—/ vY; dH" e RE.
Sn—1
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In terms of the Fourier coefficients the L?-norms of «# and v can be expressed as
follows

/'S”l MZdHn 1 ZZ] ]/’ /S”l |U|2dan 1 22|b]/|

J=0 /= j=0 /=
Further, the L>-norms of the gradients of « and v are given by

mj;

| vl =33 g+ -2},

j=1 /=1

and

| v ant =35 =2l

J=1 /=1

We note that Y, =1//nw, and Y /(x) = x// /@, for / =1,...,n so that the
zero order coefficients a, and b, are given by a, = (1/\/nw,) / udH"", re-
spectively (b,), = (1/\/1@)/ v dH"™ for a=1,... k, andsngllle first order
coefficients are given by a; , —7(1 /@) / xudM"!, respectively (b1s), =
(1/\/co_n)/ XU dH" for £ =1,...,n aflnci]oc =1,...,k. These integrals have

been estimated before and we recall the bounds here. For convenience in notation
we abbreviate

o0 mj

=N [ +n=2) + 1)}, + b/ for ue Ny

J=nu :l
and note that 1(0) = [|ul|3;1> + ||[v]|51.. From (4.12) and (4.2) we infer the fol-
lowing bound for a; := (aj 1,...,a1,):

n

2 2 2 2 g2
(4.15) jar|* = (ar.n)® < elllullip + olli2]
/=1

< ceo[[[ullpr + [[oll512] = e(n)e,1(0).
Similarly, from (4.13) and (4.2) we obtain for b, € R¥ that
k

(4.16) b0l =D ((ba),)* < clllullipra + oll5p2)* < e(m)es1(0).

a=1
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From (4.14) and (4.2) we obtain for by := (b1 1,...,b; ,) that

n k
417)  |bi? = ZZ ((b1,0),)% < clllullFpr + [[oll12)* < e(m)e,I(0).

With respect to a, we recall that we have to distinguish between the cases that
either a, > 0 or that a, < 0. In the first case, i.e. when a, > 0 we start from

(4.8) omitting the positive term u? dH""! on the right-hand side. Rewriting

Sn—1
the resulting inequality in terms of the Fourier-coefficients we obtain

1 o0
HNT) = nw, > (n — 1)y/nona, +§Z J(j+n-— 2)(61_1'27/ + |bj/‘2) — ce,(0)

> (n—1)y/nwya, —I—%I(l) — ¢&,1(0)

1 1
— (n— 1)\/nana, + (— - cg>1(0) —~(@® + |bo]?).
4 4
Here, we have used that j(j +n—2) > $[j(j+n—2)+1] for j > 1 in the sec-
ond last line. Using the bound (4.16) for |b,|* we find that

H"N(T) — nw, > (n — 1)y/nwua, + (%— 680)1(0) ‘11 az,

with a modified constant c¢ still depending only on n. From (4.2) we deduce that
a, < \/nwye, and hence ,/nwna(, > a; /80 Therefore, choosing ¢, small enough we
have (n — 1) /nw,a, > 4 a; 2 which yields that

H'N(T) — new, > (41_1 - cso>l(0).

Therefore, choosing ¢, sufficiently small we get

. 1 1
(4.18) HH (D) = neoy = 2 1(0) = e l[lulliz + o],

We now turn our attention to the case @, < 0. Here, we have the improvement
from (4.11) at hand, which can be rewritten in terms of the Fourier-coefficients as
n—1 1
H'(T) — nw, > EII(O) — ¢g,1(0),
where

00 mj

1
Z j+n—2)—(n—1)](a]-2,/+2|bj,/|2) for u € Ny.

J=u =1
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The term 77(0) we rewrite as follows
1
10) = —(n—1) (ag +- |b(,|2> +I(2).

Since j(j+n—2)—(n—1)>1[j(j+n—2)+1] for j>2 we have II(2) >
A1(2) and therefore

1 1
1(0) > —(n 1)(a0+n|b0| )+2n1(z)
= (@) £ 10) = 2+ ) — 2 + 1)
° n 2n 2n "’ ’ 2
1 2 2 1 2 2
> 5 1(0) = nlag +1bo]") = 5 (lar]” + [B1]).

Inserting this above we have

n

H YD) — nw, > (i - 660)1(0) 3

1
g (a5 + bo|) = 5 (lar]” + b1 %),

Since a, < 0 we infer from (4.10) and (4.2) the following estimate for a,:
2 2 2 2 2
af < c[|lul[yp2 + [[vllp2]" < ceolllull e + 0]l 312] < cead (0).

Using also the inequalities (4.15), (4.16) and (4.17) we obtain from the second last
inequality

1

(4.19)  H"Y(T) — nw, > (% - cg,,)I(O) > 8—1,11(0) -

2 2
el + ol

provided &, > 0 is chosen small enough in dependence of n. This finishes the
proof in the case @, < 0. In any case we have the bound from below for the quan-
tity H"~1(T") — nc, in terms of the W' 2-norms of  and v with the constant =.

At this stage it remains to derive a bound from above for the asymmetry index
in terms of the L? norms of u and v. For this we use the homotopy formula.
We connect S"~! and T by the affine homotopy h(z, x) := tX(x) + (1 — £)(x,0),
te[0,1], x e S""1. Then 4(1,S" ') =T and /(0,5 ') = S"~!. The area of the
affine connection can be computed by the area formula. To be precise we have
(with é(x) = 71 A--- A1, denoting the orienting vector field of §"~')

d([I']) < m([T] —o[D1])
< M(hyu([0,1] x S 1)

= [0 0 A A P )
0 Jsni
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n—1
< sup / X — (x5, 0)] Tty (1% + Vo + Voo + (1=1)] a4
| Jsn-1 1

1

32"—1/ X — (x,0)| dH"™! :2"—1/ (1, 0) + (0, v)| dH"™!
Sn—1

Sn—1
—2t [ P ane
Sn—1

where in the second last line we used (4.2). With the help of Holder’s inequality
and (4.18) if @, > 0, respectively (4.19) if a, < 0 we further estimate

o—

ary) <2 i [

< 27 lull i + |0 B ]?
< 2"n\/20w,\/ H" 1 (T) — naw,.

This proves the quantitative isoperimetric inequality for spherical graphs in

higher codimension with a constant C, = [22*!n3w?] . O

|M|2+ |U|2d7'[’171)
-1

The next Lemma provides the possibility to tilt (rotate) (n — 1)-currents with
second order moments close to those ones of the flat (n — 1)-dimensional unit
sphere in such a way that the mixed second order moments of the tilted current
vanish. Later on this will enable us to guarantee that certain penalized currents
arising from a sequence of currents contradicting the quantitative isoperimetric
inequality can be adjusted in such a way that the mixed second order moments
vanish. This adjustment will be important for the application of the higher codi-
mension version of Fuglede’s theorem, i.e. Theorem 4.1.

LEMMA 4.2. There exists a constant &, = &,(n,k) € (0,1] such that there holds:
Whenever T € R,_1(R"%) has compact support and second order moments defined

by

M=o, [z@zd|T| e ROHH
satisfying
(4.20) |M -1, <& forsomeee(0,¢,),

where I, : R"™* — R"* is defined by 1,(x, y) := (x,0), there exists R € SO(n + k)
with

IR —1|| < c(n,k)e
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such that for the second order moments of RyT, defined by
Mur =0, [2@zd|R,T]
holds
HMR#T — ﬂn” < 2¢
and
(M) px= 0" [ 5vad|RoT] =0
fori=1,....,nando=1,... k.

PrOOF. We note that

=o' / z® zdH"(2).
Sn=1x{0}

329

Therefore, the smallness assumption (4.20) ensures that the second order mo-
ments of T are close to the second order moments of S”~! x {0} = R"** In par-
ticular, the mixed second order moments of 7" are small. The idea is to consider

the map @ : SO(n + k) — R0 defined by

®(R) := wnl/z®zd||R#T| —a)nl/Rz®de||T|.

Evaluating @ at the identity we find that ®(1) = M. Next we compute the differ-
ential of @ at the identity. For a skew-symmetric matrix S € so(n + k) we con-

sider its exponential exp(zS) € SO(n + k) and compute

(DD (1); 55 =2

=1 ®exp(es))

t=0

/ exp(1S)z ® exp(¢S)z d||T||
dt|,_,

_wn‘/[Sz®z+Z®SZ]d||T||-

Now, we fix a matrix 4 € L([R{k, R"), which is at our disposal, and define a skew-

symmetric matrix S € so(n + k) by

(4.21) S::(_(ilt ‘;)
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and compute Sz = (4y, —A'x). For the following computations we denote by
e;, 1 =1,...,n the standard basis in R” and by ¢,, & = 1,..., k the standard basis
in R*. The standard basis in R""* we denote by 7i,...,7,% and note that
7, = (;,0) for i=1,...,n and 7,,, = (0,¢,) for « =1,..., k. Then, for i =
l,...,n and a=1,...,k we have (S2®7z),,., = Va(ti- Sz) = y,(e; - Ay) and
(z® 82); piy = Xi(Tuts - Sz) = —xi(e, - A'x) and hence

(DD, a(1): 8> = ;! / ales- Ay) — xi(es - A d| T])

Next, we compute
k n
e+ Ay = Z vplei- Aeg) and e, - A'x= Zx/(e/ - Aey).
p=1 /=1

Recalling the definition of the second order moments and writing M, ; := 7, - Mt;
fori,j=1,...,n+ k we therefore have

>~

n

<D(Di,n+a((ﬂ); S> = Z(ei : Ae,[)’)Mn+ac,11+[)’ - Z(e/ : Aea)Mi,/-

We now choose A according to
(4.22) ej-Aey=M; ., fori=1,...,nandoa=1,....k

and find that

k n
<Dq)i.n+fx(u)§ S> = Z Mi,n+ﬂMn+o<,n+ﬂ - ZM/,n+o¢Mi,/
p=1 /=1

n

k
= 7Mi,iMi,n+o< + Z Mi,n+/3Mn+oc,n+ﬂ - Z M/,n+ocMi,/-
p=1 {#i, (=1

Therefore, by Taylor’s formula and the fact that ®(1) = M we obtain for the
mixed moments of R,T with R =exp(S), i.e. for the components with i =
I,...,nand n+ a with o = 1, ... k, that there holds

(423) | @i ial(exp(S))|
< |q)i,n+o<([|) + <Dq)i,11+tx(ﬂ)a S>|

1
+5 sup |D®; .1, (exp(S))(exp(tS) S, exp(tS)S)
tel0,1]

+ {DD; 1, (exp(1S)), exp(S)S*)|
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1
<D nia(l) + (DP;nia (1), SH[ +5  sup k)HDz(Di,nHt(O)H IS|1?

2 0eSO(n+

1
= sup || DD (O)] |ISI
0eSO(n+k)

n

k
< (1 - Mi,i)Mi,n+ac + ZMi,n+,EMn+oc,n+/)’ - Z M/’,”+°<Mf>/
5= (£17=1

n k
+ ¢(n, k) M}, p
/=1 p=1

Here, we used the fact that there exists a constant ¢(n, k) < oo such that if
(4.24) M -1, <1
then

D] + D] < 4o, [ 2 dT] < cln. k),
and thanks to (4.20), condition (4.24) is trivially satisfied. Similarly, we compute
fori,j=1,...,nthat

K
(DO; (1); 8> =2 MiipM; iy
=

which, in view of (4.24), leads us to

(4.25) |®; j(exp(S)) — il
< |@;,;(1) = 31 j + <DD; ;(1): SH| + e(n, k)| S|

k
< Mij—=0ij+2)  MiipM;pip| + c(n, k)
p=1 /=1 p=1

n k
< [M;; —di;| + c(n, k) M},
/=1 =1

Furthermore, for o, f = 1,...,k we find that

(DD p(1); S = =2 My iaMynip
/=1
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and hence, still using the fact that (4.24) holds,

(426) |®n+a,n+ﬁ(exp(s))|
< |(I)n+:x,n+[)’(|]> + <Dq)n+m,n+ﬁ(u)§ S>| + c(n,k)||S||2

k
< My, n+p ZZM/ n—HM/ nB| T C n, k ZZM/ n+p
— =1 p=1
n k
<|Mn+an+ﬂ|+0nk ZM/gvn+/j.
=1 =1
Finally, we also have
nk
(4.27) lexp(S) — 1]|> < ¢(n, k)||S||* < ¢(n, k ZM 2 aip
=1 =1

Here, we used the definitions of S and A from (4.21) and (4.22) and the fact that
by (4.20) the mixed second order moments satisfy (4.24), and therefore we have
IS]| < (k). |

Now, we want to iterate this procedure. We set M) := M and R := [ and
define iteratively for 4 € Ny

0 Ah+1)
(h+1) ._ . (lH»l) (A )
S = <_(A(h+1))t 0 ) where e; - 4 =M;

and

M"Y = (R where R™D .= exp(SU*D)RW),

Moreover, for & € Ny we define

and
n n ( k k
I/
B0 = (SN o YD )
i=1 j=1 a=1 f=1

Then, from (4.20) we know that

(4.28) aV <¢ and p0 <e
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Moreover, from the preceding computations, i.e. from (4.23), (4.25), (4.26) and
(4.27) we 1nfer that for i € Ny, provided (4.24) holds true for M "), then

(429) a(h-H) < 5a<h)(a(h) —|—b(h)), b(/1+1) < b(h) —|—E(a<h))2
and
(4.30) lexp(S™) — 1] < éa™

for some constant ¢ = é(n, k) > 1. In the following we assume that 3¢e < 1. We
will prove by induction that

h
(4.31) a’ < (3¢6)"" and B < 82(358)/

holds for any /& € Ny. For & =0 the assertion (4.31) is obviously satisfied by
(4.28). Now, assume that (4.31) holds for some # > 0. From (4.29), (4.31) and
the fact that 3¢e < 1 we find that

h
a(h+1) < 5a(/1)(a(h) +b(h)) < 5(36)h8/1+1 [(35)h8h+1 +SZ(358)/]
/=0

1 L] h :
_ (a2 / h+1 2
=(3¢)""¢ L (3ce)" 5 E (3¢ce) ] < (3¢) !

Further, from (4.29), (4.31) and the fact that 3¢e < 1 we infer

h h+1
b(h+1) < b(h) +E(a Z 36‘8 30 2h 2h+2 < ‘O‘Z 306
/=0 /=0

The last two inequalities establish the assertion (4.31). We note that b} < 2¢ and
a’ <e. Then |[M" —1,|| <3¢ <1 and therefore the condition (4.24) is fulfilled
for any /1 € Nj.

Next, we prove that R”) is a Cauchy sequence. This follows from (4.30),
(4.31) and 3¢e < 1 since

/-1 /-1
||R(h+/) _ R(h)H < Z ”R(h+z+l) _ R(h+1)|| < Z Hexp(S(therl)) _ UH ||R(h+z)||
= i=0

/—1 /—1
<Y a"t < ee(3ee)" Yy (3ce)’ < eé(3ce)" <27"ée.
i=0 i=0

Therefore, there exists R, € SO(n + k) such that R") — R, ash — oo and from
the preceding inequality with 47 = 0 and / — oo we obtain

IR, — 1| < ce.
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Next, we observe that ¢ — 0 as i — oo. But this means that
/ X d|[(R..), T = 0
foranyi=1,...,nand « = 1,... k. We remark that by (4.31) we also have
M. —1,]| <2 where M., ==, /z®2d||(Rm)#T||.

This completes the proof of the lemma. |

5. A PENALIZATION PROCEDURE

We start this section with the definition of an auxiliary functional which will
play a crucial role in the final proof of the quantitative isoperimetric inequality.
For given constants Cj,0 >0 and A > 1 we define the variational functional
F: R, 1(R™) = [0, 0) by

F(T) := M(T) + C1|dy(T) — 3| + Ajm(T) — w,|.

The presence of the two penalization terms forces a minimizer on one hand to
have an asymmetry index close to ¢ (and since é will be small in the application,
close to zero), and on the other hand to make m(7) close to w,. Heuristically,
this means that minimizers will be close to a flat n-dimensional disk. However, a
subtle interplay between the area term and the two penalization terms will take
place. The following lemma ensures the existence of F-minimizers.

LEMMA 5.1. Let R> 1. Then, there exists a minimizer S € R,_1(R"™*) of the
variational problem

(5.1) min{F(T) : T € R,_1(R""*) with 0T = 0 and spt T < Bg}.

PrOOF. We use the direct method of the calculus of variations. Let {S; } ea
minimizing sequence, i.e. S; € R,_1(R""*) with S; = 0 and spt S; = Bg and

lim F(S;) = inf{F(T): T € R,_1(R"*),0T = 0,spt T = Bg}.

j~>OO
From the definition of F we infer that

sup[M(S;) +m(s))] < C < oo,
j=>1

For each S; we choose a mass minimizer Q(S;) with boundary 6Q(S;) = S; and
spt O(S;) = Bg. Since M(Q(S;)) = m(S;) we have

sup[M(S)) + M(Q(S)))] < C < 0.

]>1
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In this situation the compactness Theorem 3.2 ensures the existence of a current
0 e R,(R"™™) and a (not relabeled) subsequence such that Q(S;) — Q with
respect to the Fj.-topology. By Theorem 3.1 we also have Q(S;) — Q with re-
spect to weak convergence in R, ([Ri”*k) This implies S; — S := 20 weakly in
R 1(R"%) and moreover spt S = Bg. Now, the compactness theorem for mass
minimizing currents [21, Theorem 34.5] ensures that Q is mass minimizing with
respect to its boundary S, i.e. we know that Q = Q(S). Moreover, from [21, The-
orem 34.5] we also conclude that

(5.2) lim M(Q(S;)) = M(Q(S))-

j—o

Finally, we note that spt O(S) = By by the convex hull property, since spt S is
contained in Bg. At this point it remains to prove that there holds

(5.3) F(S) < lim F(S)).

o

We first note that the lower semi continuity of the mass with respect to weak con-
vergence of currents implies
(5.4) M(S) < liminf M(S)).

j—o
Next, we let [D] be a flat n-dimensional disk with radius 1 realizing d;(S) up to
an error ¢ > 0, that is we choose [D] such that there holds m(S — d[D]) <

d; (S) +e. Smce S; — S with respect to the Fjo-topology and since both currents

are supported in BR we conclude from Lemma 3.3 that m(S; — S) <efor j>1.
We therefore find that

di(S)) <m(S; — o[D]) <m(S; — S) +m(S — [D]) < di(S) + 2.
Similarly, we can also obtain a reverse type estimate. For j € N we denote by
[D;] flat n-dimensional disks of radius 1 realizing up to an error ¢ > 0 the quanti-
ties d;(S;), that is m(S; — 0[D;]) < d;(S;) + . We therefore find that

di(S) <m(S — [D;]) <m(S — S;) +m(S; — I[D;]) < di(S;) + 2.
Combining the two preceding inequalities yields

(5.5) lim d; (S)) = di(S).

j—o

Joining (5.2), (5.4) and (5.5) and recalling the definition of the functional F yields
the claim (5.3) and therefore finishes the proof of the lemma. O

Next, let us recall the notions of A-minimizing and almost minimizing cur-
rents.
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DEFINITION 5.2. For A >0 we say that S € R, ;(R""*) is A-minimizing in
R™* if for any P € R,(R"**) there holds

M(S) < M(S + 0P) + IM(P).

For a given radius g, > 0 and a given modulus w : (0, g,] — [0, 00) one says that
a current S € R,—1(R"™) is (M, w)-minimizing in R"** if

M(S) < M(S + X) + w(o)M(SLK + X)

holds for any X € Rn_l([R{””‘) with 0X = 0 and support contained in a compact
set K which is contained in an open ball of radius ¢ < g,.

In the next lemma we establish that minimizers of the variational problem
(5.1) are A-minimizing and almost minimizing.

LEMMA 5.3. Let C;,60 >0, A >1and R > 1. Suppose that S € R,_1(R"™*) is a
minimizer of the problem (5.1). Then, S is J-minimizing in R"™* with J. .= C; + A.
Moreover, S is (M, w)-minimizing in R"* with (o) = 420 and g, := 1/(21).

PROOF. By p: R"™* — Br we denote the spherical projection of R"** onto Bg.
Now, let P e R,(R"**). Since spt(S + dpxP) = Bg and 0(S + dp,P) = 0 we have
that S + dpxP is an admissible comparison current for the minimizer S. There-
fore, by the minimality of S we have

M(S) + C1]d; (S) — O] + Alm(S) — |
< M(S + psoP) + C1|d; (S + psoP) — | + Alm(S + p,0P) — w,].

Since pxS = S (note that spt.S = Bg) we have
M(S + pz0P) = M(px(S + dP)) < M(S + 0P),
and the last two inequalities therefore imply

(5.6) M(S) < M(S + 0P) + Ci|d; (S + px0P) — d;(S)|
+ Alm(S + px0P) — m(S)].

In the following we shall bound the last two terms by a constant times M(P). In
order to proceed in this direction we choose a mass minimizer Q(S) subject
to the boundary S, and moreover a mass minimizer Q(S + px0P) with respect
to the boundary S+ p,0P; this means that m(S + pxdP) = M(Q(S + px0P))
and m(S) = M(Q(S)). Moreover, both currents have support in Bg since spt.S
and spt(S + px0P) are contained in Bg. Using the fact that 0(pxP) = px(0P) we

find

A(Q(S) + pyP) = S+ d(pyP) = S + py0P,
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and together with M(pxP) < M(P) and the minimizing property of Q(S + px0P)
we obtain

m(S + pz0P) < M(Q(S) + pxP) <m(S) + M(P).
On the other hand, we also have

0(Q(S + pyoP) — pyP) = S+ pydP — 0(pyP) = S.
This allows us to utilize the minimality of Q(S) to deduce

m(S) < M(Q(S + px0P) — p4P)
<M(Q(S + px0P)) + M(pxP) <m(S + px0P) + M(P).

Together, we have shown that
(5.7) m(S + pxdP) —m(S)| < M(P).

In order to estimate the second term on the right hand side of (5.6) we first recall
that d(pxP) = px0P which allows us to compute

m(p,0P) = m(0(p4P)) < M(pyP) < M(P).

Denoting by [D] a flat n-dimensional unit disk in R"** realizing d;(S) up to an
error of ¢ > 0, that is m(S — d[D]) < d;(S) + ¢ we find that

d1(S + ps0P) <m(S + ps0P — 3[D])
m(p,0P) +m(S — d[D])

<
<
<M(P) +d(S) +e.

Similarly, denoting now with [D] a flat n-dimensional unit disk in R"** which
realizes d;(S + pz0P) up to an error of ¢ > 0, that is m(S + px0P — d[D]) <
d; (S + px0P) + ¢ we obtain

d,(S) <m(S — 3[D]) < m(px0P) +m(S + ps0P — 3[D])
< M(P) +dy(S + pudP) +.

Joining the last two estimates and letting ¢ | 0 we infer that
(5.8) |di (S + px0P) — di (S)| < M(P).
Inserting (5.7) and (5.8) into (5.6) we arrive at

M(S) < M(S + 0P) + (C1 + A)M(P),

i.e. S is a A-minimizing current in R"** in the sense of Definition 5.2 with 1 =
C; 4+ A, and this proves the first assertion of the Lemma.
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The second assertion, i.e. the (M, @) minimality is now an easy consequence
of the A-minimality. For this it is sufficient to consider the case when x, € R"*
and g € (0,1/(24)] are such that B,(x,) N Bg # 0, since in the case B,(x,) N Bg
= ( the almost minimality holds trivially, because M(S LK) = 0. Note that K is
a compact subset of B,(x,) and the support of X is contained in K. Now, let
X € R,_1(R™*) with 0X = 0 and spt X = K = B,(x,) and choose P := x, x X.
Then, spt P < B,(x,) and 0P = X. From the J-minimality and M(P) < M(X)
we obtain

M(S) < M(S + X) + A1oM(X)
<M(S+X)+2oM(SLK + X) + M(SLK)).

Since (S 4 X)L (R"\K) = S (R"\K) the preceding estimate is equivalent to
M(SLK) < M(SLK + X) + o(M(SLK + X) + M(SLK)).
This inequality can be rewritten as (note that o < g, = 1/(24))

1+ o
1— Ao

M(SLK) < M(SLK + X) < (1 +420)M(SLK + X).

Adding M(S L (R"™*\K)) to both sides of the previous inequality then yields the
second assertion of the lemma. O

From [9, Lemma 2.2, Remark 2.4] we have the following

LEMMA 5.4. Suppose that S € R, 1(R"™*) with 0S = 0 is a J-minimizing current.
Then, the following assertions hold.:

(i) If x, € spt S, then (0,1) 3 o+ o~ ""De’*M(S L B,(x,)) is nondecreasing.
(ii) If x, € spt S, then the (n — 1)-dimensional density satisfies ®" (|| S||, x,) > 1
and moreover there holds

M(SL B,(x,))

-2
Wp—1€ = gnfl

< e*M(S) forany o € (0,1).

(ili) The density function x — @"~'(||S||, x) is upper semicontinuous on spt S, i.e.

limsup ©"~'(||S]l, x;) < ©"'(|| ]|, x)

Jj—oo
whenever x; — X.

The following lemma is a modification of [21, Theorem 34.5] for A-minimizers.
We state the result in a more general form for /l—minimizing currents S; with pos-
sibly non-vanishing boundary 0S;. However, in the application we will have
dS; = 0. The proof follows almost Verbatlm along the lines of the one in [21, The-
orem 34.5] and therefore we skip it.
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LEMMA 5.5. Let A >0 and suppose that S;e R, 1(R™®) is a sequence of
J-minimizing currents in R"*_If S;— S holds locally with respect to the Fioc-

topology and sup; . (M(S;) +M(3S; )) < o0, then S € R,_1(R"%) is J-minimizing
in R""*. Moreover, we have ||S;|| — ||S|| in the sense of Radon measures.

LEMMA 5.6. Suppose that in addition to the assumptions from Lemma 5.5 the cur-
rents S; are closed, i.e. that 0S; = 0 holds true. Then, sptS; — sptS in the Kura-
towski convergence, that is

(i) if x; € sptS; for any j € N, then any limit point x belongs to spt S.
(1) for every x € sptS there exists a sequence {xj}jEN with x; € sptS; for any
J € N converging to x.

ProoF. For the proof of assertion (i) we consider a sequence x; € spt.S; and a
limit point x. Assume that x ¢ sptS, then there exists ¢ > 0 such that B,(x) N
sptS = 0 and hence M(SL B,(x)) = 0. Further, there exists a subsequence of x;,
still denoted by x; such that x; — x. Then, by Lemma 5.4 (ii) we have

(5.9) wn-1(0/2)""e™F < M(S;LBya(x))) < M(S;L B,()),

provided j is large enough to ensure that B,/>(x;) = B,(x). On the other hand, we
know from Lemma 5.5 that

lim sup M(S;L B,(x)) < M(SLB,(x)) =0

J= o

which contradicts (5.9). Therefore, it must hold that x € spt S.

In order to prove assertion (ii) we suppose that there exists x € spt.S and ¢ > 0
such that {j € N : B,(x) nsptS; = 0} is not finite. Together with Lemma 5.4 (ii)
and the lower semi continuity of the mass this yields a contradiction, since

10" e <M(SL B,(x)) < liminf M(S;L B,(x)) = 0.

J— 0

Hence, for any x € spt S and any p > 0 the set {j € N : B,(x) nsptS; = 0} is fi-
nite. But this means that there exists a sequence x; € sptS; such that x; — x. 0O

REMARK 5.7. A similar reasoning shows that the set {j € N : H nspt.S; # 0} is
finite for every compact set H = R"*\spt S. O

LeMMA 5.8. Let A = n and R > 1. Then any minimizer of the functional
F(T):=M(T) + Am(T) — w,|

in the class {T € R,_1(R"™™"):0T = 0,sptT < B} is the boundary of a flat
n-dimensional unit disk with support in Bg.

PROOF. From Lemma 5.1 applied with C; = 0 we infer the existence of a mini-
mizer S € R,_1(R""*) of F with support in Bg. In the following we prove that S
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is the boundary of flat n-dimensional unit disk [D;]. By the minimality of S we
have F(S) < F(0[D1]) for any flat n-dimensional unit disk [D;] with support in
BR, 1.e.

(5.10) M(S) + Alm(S) — w,| < M(3[D1]) = n,.

Suppose that m(S) > w,, then we have M(Q(S)) = m(S) > w, for any mass min-
imizer Q(S) subject to the boundary condition dQ(S) = S. Therefore, the isoperi-
metric inequality from Theorem 3.4 yields that

n—1

M(S) = noyM(Q(S))'" > nw,

contradicting (5.10). Therefore, it cannot happen that m(S) > w,. Next, we as-
sume that m(S) < w,. Then, there exists 0 < r < 1 such that M([D,]) = m(S).
Since m(S) = M([D,]) = w,r" inequality (5.10) can be rewritten as

M(S) + A(1 — ") w, < nw,.

On the other hand, we know from Theorem 3.4 that M(S) > nw,r"~! which to-
gether with the last inequality yields

A(l =) <n(l = h.

But this contradicts the assumption A >n and therefore we must have
m(S) = w,. Using the isoperimetric inequality from Theorem 3.4 we deduce
F(S) =M(S) = nw, and equality holds if and only if S = d[D,] for some flat
n-dimensional unit disk [D;] with support in Bg. O

6. PROOF OF THE QUANTITATIVE ISOPERIMETRIC INEQUALITY

The first result of this section enables us to reduce the problem to a situation
where we only have to consider currents with compact support. Roughly speak-
ing the lemma asserts that any closed current 7' with m(7") = w, can be truncated
in such a way that the asymmetry index d decreases at most by a multiplica-
tive constant 1/C while the isoperimetric gap increases at most by a multipli-
cative constant C, where C = C(n,k) > 1. The result of the truncation proce-
dure is a current with support in a ball of radius R, which depends only on the
dimension n. The content of the Lemma is the higher codimension analogue
of [17, Lemma 5.1] and the arguments used here are similar to the ones used
therein.

LEMMA 6.1. There exist a constant C = C(n,k) > 1 and a radius R, = R,(n) >
1 such that for every T € R, 1(R"™) with 6T =0 and m(T) = w,, we find
T' € Ry 1 (R™F) with 0T' = 0, m(T") = w, and spt T’ < By, satisfying

(6.1) d(T) < C(T'")+D(T)) and D(T') < CD(T).



A SHARP QUANTITATIVE ISOPERIMETRIC INEQUALITY IN HIGHER CODIMENSION 341

PRrOOF. We start by assuming that D(7) is sufficiently small, that is 0 <
D(T) < p where u < %(2"1’ — 1) is to be chosen later. Next, we choose a mass
minimizer Q(T) € R, (R"*) with boundary 7. Observe that by tilting slightly
T if necessary we may assume that for 7" '-a.e. x € My the unit vector e; is
not orthogonal to the tangent plane Tan(H" 'L M7, x) and that for H"-a.e.
X € My(r) the unit vector e; is not orthogonal to the tangent plane
Tan(H" L My(r), x). This implies in particular that for all € R

(6.2) M(O(T) L {x = t}) + M(T L {x; = 1}) = 0.
For ¢t € R we define the slices
O(T), 1= = (QT){x1 < 1}) = Tu{x <1}
and
O(T), 1.5 = =0(Q(T)L{x1 > 1}) + T {x1 > 1}.

Thanks to (6.2) we have (Q(T),t_> =<Q(T),t.» for all t e R (cf. [21, 28.6,
28.7], [13, 4.2.1, 4.3]). The common value will be denoted <Q(T), ¢). First of all,
we observe that

(6.3) M@@O(Q(T){x1 <1t})) <M(TrL{x1 <t})+M(KQ(T),t_>)
and
(6.4) M@(Q(T)L{x1 > 1})) < M(T'L{x1 > 1}) + M(KQ(T), 1;))

hold for any ¢ € R. Next, we define the function g : R — [0, 1] by

s M) < 1)),

Wy

We note that g is non-decreasing, differentiable for a.e. € R and continuous. We
now set

a:=inf{te R:g(f) >0} and b:=sup{reR:g(r) <1}

such that —o0 <a<bhb < 0 and 0 < g(7) <1 for any ¢ € (a,b). In case that
a > —oo this means that g(a) =0, while for ¢« = —oo we have ¢(7) | 0 as
t — —oo. The same holds for the right end point b, that is g(b) = 1 when b < oo
and ¢(7) — 1 as t — oo when b = o0. Moreover, we define

N :={t€a,b]: g'(t) does not exist}.

Clearly N is a set of measure zero, i.e. £'(N) = 0. Moreover, by [21, 28.9] we
have

(6.5) M(Q(T),t)) < wug'(t) forany ¢ € [a,b]\N.
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From the definition of ¢ we infer for any ¢ € (a, b) that

1

M(g(t) "(Q(T) {1 < 1}) = g()) "' M(Q(T) L {x1 < 1}) = @, = M([D1])
which by the isoperimetric inequality from Theorem 3.4 implies that
ney < M(@g(1) (Q(T)L {1 < })]) = g(1) " TM([Q(T) L {x1 < 1}]).
Here and in the following we write for simplicity AS instead of (x,),S, where

w1, (x) = Ax denotes the homothety. Joining this with (6.3) and assuming that
t € (a,b)\N we find that

(6.6)  nog(n)' ™ < MEIQ(T) < }]) < M(T L {1 < 1}) + M(CQ(T). 1)),
Our next aim is to infer a similar estimate from below for M(7L{x; > ¢}) in-

stead of M(7T L {x; < t}). From the definition of ¢ and the fact that the mass is
additive on Borel sets we infer for any 7 € (a, b) that

= (1 —g(0)) "'M(Q(T) L {x > 1})

= (1 —g())"" (M(Q(T)) = M(Q(T) L {x1 < 1}))

= (1= g(1)) (@ = M(Q(T) L {x1 < 1}) = M(Q(T) L {x| = 1}))
= (1= g(1)) " (0n — M(Q(T) L {x1 < 1}))

= (1= g(1) " (0 — wug(1)) = 0, = M([D1]).

The isoperimetric inequality from Theorem 3.4 therefore ensures that
no, < M(2[(1 = g(0) 7(Q(T) L {xi > 1))
= (1= 9(0) TM@QT)L {x1 > 1))
which together with (6.4) yields for any ¢ € (a, b) that
(6.7) no(1 = g(0)' ™ < ME[Q(T) L {x1 > 1}])
<M(T'{x; > 1}) + MKQ(T), 1)).

Adding the inequalities (6.6) and (6.7) and taking into account that
M(TL{x =t}) =0 for ¢ € (a,b) we find that

non(g(1) 7 4 (1 g(1)' ™)
M(TL{x1 <t})+M(TL{x; >1t})+2M((KQ(T), 1))
M(T) +2M(KQ(T), 17).

IA
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Recalling the definition of D(T), i.e. the fact that M(7') = nw,(1 + D(T)) we can
rewrite the preceding inequality as follows:

(68)  MQ(T).0) = 3no,(p(gl0) ~D(T)) forany 1 (a,b).

where the function y : [0, 1] — [0, 27 — 1] is defined by
W) = (1= - 1
We note that 1(0) = (1) = 0, that y(1/2) = 2i — 1 is the maximum, and that
is concave, so that
(6.9) W(1) =2(2" — 1)r forany e [0,1].
Next, we define J, := 2D(T') and set

11 :=sup{t € [a,b] : Y(g(1)) < ,,9(1) < 1/2}

and
tr :=1inf{r € [a,b] : Y(g(1)) < dp,g(t) = 1/2}.

We first note that 7, is well defined since g(a) = y(g(a)) =0 if @ > —oc0 and
g(t),¥(g(?)) 1] 0 as ¢ | —oo when a = —oco. Similarly, 7, is well defined since
g(b) =1 and Y(g(b)) =0 if b < co and ¢(¢) T 1 and Y(g(z)) | 0 as ¢ T oo when
b = oo. From the choice of #; and #, and the continuity of g we infer that
Vw(g(t)) <6, and Y(g(r2)) <J, which together with (6.9) and the fact that
(2n — 1)~ < n/log2 < 2n implies that

4

<no, and 1—-yg(th) < —— <
g(2) 2(2%_1)

0-

o
(610) g(ll) < m

The choice of ¢, and ¢, also implies that

W(g(t)) =0, foranyte (11,t).

By (6.8) and the definition of J, we therefore have for any ¢ € (71, 1,) that
1
(6.11) MEQ(T), 1)) = Fnea(¥(g(1)) = D(T))

= Jnn(g(0) + 3non((g(1) — 2D(T))

> Lo (9(0) + 70,6, — 2D(T)

B A o—

nw(g(1)).
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We now define

Lds ! ds
H(1) := A W/o s17%+(1_s)1_%_1 for t € [0, 1].
Note that H is C'((0,1)) n C°(]0,1]) and
H(l) = 01%—: a(n) € (0, 0).

From the definition of H, (6.5) and (6.11) we infer that

>1 foranyte (5,6)\N

which after integration over (7}, ;) implies

g<12) dS
(6.12) th—t <2(H(g(t2)) — H(g(t1))) = 2/ —— < 2ua(n).
g(t1) lp(s)
Next, we use [21, 28.10], the definition of the function g and (6.9) to compute
41
MEKQ(T), ty)dt <M(Q(T)L{x1 < t1}) = wug(t1) < nw,0, = 2nw,D(T).

Hh—8n

Denoting by
S:={tety —8n,1,] : M(KQO(T),t)) > w,D(T)}

the sets of those 7 in which the slices <Q(T), ) have mass at least w,D(T), we
infer from the preceding inequality that
141
w,D(T)|S| < M(O(T), ty) dt < 2nw,D(T),

1h—8n

which means that |S| < 2n and therefore
|[[1 — 8n, Z]]\S| > 4n.

Therefore, we can find 7| € [f; — 8n, #;]\S. By the definition of S this means that
we have

(6.13) MQ(T), 1)) < w,D(T).

A similar reasoning as before, i.e. using [21, 28.10], the definition of g and (6.9)
we can estimate
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t+8n
/ M(CO(T), 1) dr

15}

< M(Q(T)L {x1 > 1))
= M(Q(T)) = M(Q(T) L {x1 < 6}) — M(Q(T) L {x1 = 1})
< M(Q(T)) - M(Q(T) L {x; < 12})

= (1 - g(12)) < 2n0,D(T),

The arguments from above now yield the existence of 7, € [f2, &, + 8n] such that

(6.14) M(Q(T),72)) < w.D(T).

At this stage we define Q := Q(T)L{7; < x; < 1»}. From (6.12) and the defini-
tion of 7; and 7, we have the bound 7, — 7; < 20 + 16n. Moreover, from the def-
initions of g and J,, and (6.10) we obtain

M(Q) = M(Q(T)) = M(Q(T) L {x1 < 71}) = M(Q(T) L {x1 > 2})
= ou(1 = g(r1)) = wn(1 = g(12)) + M(Q(T) L {x1 = 12})
= wu(1 —g(11)) — 0a(1 = g(12))
> wn(1 —g(11)) — (1 — g(12))
> w,(1 — 2n0,) = w,(1 — 4nD(T))

Next, we define T := 6Q. From the choices of 7; and 7, we infer that

(6.15)  M(T) < M(T{r1 <x1 < 12}) + M(Q(T), 1)) + M(Q(T), 12))
<M(T) + 2w,D(T).

We now define

1
Wy

T':=o¢T whereo:= <M(Q)> <(1- 4nD(T)) e (1,21,

Then, spt7’ is contained in a strip [r],7)] x R of width ) — 7] <
2i(20 + 16n). Moreover, we have

M(Q(T")) = M(Q(oT)) = M(sQ(T)) = a"M(Q(T)) =

At this stage it remains to prove (6.1). Recalling the definition of 7", using (6.15)
and the fact that M(7") = nw,(1 + D(T)) we get

M(T') = ¢"'"M(T) < "' (M(T) + ncw,D(T)) = ncw,a" (1 + 2D(T)).

At this point we use the definition of ¢ and the assumption D(7) < & (25— 1)
< g to compute
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1+ 2D(T) 1+ 2D(T)
~(1+2p(T) < (1— 4nD(T))"" = T-4nD(7)
<14+ o).

1 —4nD(T)
Inserting this above yields
M(T') < nw,(1 4 10nD(T))

which proves the second estimate in (6.1). Finally, the first assertion in (6.1) can
be achieved as follows: Using the bound m(7 — T) < M(Q(T) — Q) (note that
(Q(T)—Q)=T—-0Q =T — T) together with (6.10) we obtain

m(T —T) <M(Q(T)L{x; <71}) + M(Q(T)L {x1 > 12})

= wn(g(t1) + 1 = g(12)) < wulg(t1) + 1 = g(12))
< 2nw,d, = 4nw,D(T).

We now let [[D1 /] be the disk with radius 1/ in R"** which realizes d(T) up to
an error ¢ > 0, i.e. o'm(T — olD1s]) < d(T [') + ¢ (recall that M(Q) = w,/c") and
let [D1] be the disk of radius 1 lying in the same n-dimensional plane as [D) 4]
and having the same center. Then, we get

d(T) <m(T —J[D]) <m(T — T) +m(T — 6[[D1/0]]) + m(@[[Dl/a]] — [D1])
<4w,D(T) +d(T) + e+ w,(1 =) <d(T") + CD(T) + ¢

In the last line we used d(T) = d(7") and
l—0"<1—(1—-4nD(T)) =4nD(T).

This proves also the first inequality in (6.1). Starting from 7’ we repeat the same
construction with respect to x; provided that D(7’) < 10nD(T) < 10nu <
16 L (2i — 1). Thus we get a new current 7" € R, (R"**) still satisfying (6. 1) with
a new constant and with spt 7 now contained in [z}, 73] x [/, 7] x R"~2 with
7, — 71 and 7§ — 7{ bounded by a universal constant. Thus, the assertion follows
by repeating the argument with respect to all the remaining coordinate directions
and assuming u sufficiently small.

Finally, if D(T) > u or D(T) = 0 then the result is easily obtained by taking
T’ equal to a unit disk with support in Bg,. |

In the final proof of Theorem 2.1 we shall also need the following regularity
theorem which can be viewed as the higher codimension version of [23], see also
[22].

THEOREM 6.2 (Regularity). Suppose S; € R,, 1(R"%) is a sequence of closed rec-
tifiable (M, w)-minimizing currents in [R{"Jr Sfor a modulus w(o) = Cy,o0 and with
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0o = 2/ C,,. Furthermore, suppose that ||S;|| — ||0[D]|| in the sense of Radon mea-
sures and that spt S; — spt 0[D] in the Kuratowski convergence as j — oo and that
sptS; = Bg, for some R, > 0. Then there exists j, € N such that for any j > j,
there exist maps u; € Cl 2(S"Y) and vy e Ch3(S" 1 R*) such that the S; admit
the spherical graph representation

Sp =X, [8"],
where the maps X; : S"~ ! — R"* are defined for x € S"~" by
X,(x) = (14 1)) (x,0) + (0,5y(x)) € B,
Moreover, the representing maps u;, v; satisfy for any o € (0, %) :

(6.16) Jim (el craqsmr) + ol cregsir ) = 0-

ProoOF. The proof will be divided into several steps. Before starting with cer-
tain geometric constructions we recall that the Kuratowski convergence of
sptS; — S x {0} and the fact that sptS; = Bg, ensure that for any ¢ € (0,]]
the inclusion

sptS; € {z € R"™ : dist(z, 5" x {0}) < &}

holds true for all but finitely many j € N.

Step 1: Geometric simplifications. Points in R"** are denoted again by
z=(x, y). For a (relatively) open subset U = "' x {0} « R"* and 0 < 5 < %
we consider sets of the form

Nu(s) = | J{z+ve R o] <s,0 L To(S"" x {0})}.
zeU

Then, Ngi1,0y(s) is the tubular neighborhood of S % {0} in R" of width
s on which the nearest point retraction 7 : Nga-1,4o3(s) — S"~! x {0} is well de-
fined. For z € S"~! x {0}, the vectors {z,e,,1,...e, 4} are an orthonormal basis
of T-(8"~! x {0}). Hence, for points z = (x, y) € Ngu1,0y(s) the nearest point
retraction is given by 7(x, y) (‘x‘ , 0) The normal component z* of z has the
form

2=z oa(z) = (xy) - Q‘ 0) = (|¢w| D, 7).
Now, if ¢ : S"~! x {0} > U — W < R""! is a local coordinate chart then

®(x, ) = (p(n(x, y)), [x] = 1, )

is a trivialization of Ny (s ). The image d)(/\/U( ) is the set W x B!%(0). Denot-
ing by ¥ : W — U the inverse of ¢, the inverse ¥ := ® ! : W x BI*k(0) —
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NU(S) is
W(E & y) =07 &y y) = (L+EDW(E) + (0, ),

whenever &' e W and (&,,y) € BI*%(0). We note that ¥ maps a fiber
{&"} x BI**(0) with ¢’ € W isometrically onto y(¢') + {v e Tyen (8" x {0}) :
o] < s}.
Without loss of generality we assume that W = B"~1(0) = R""! for some

€ (0,1], ¥(0) = e, € R"™* and Dy(0) = I,,_;. This can be achieved by a rota-
tion in R"* keeping {0} x R¥ fixed and a particular choice of the coordi-
nate chart ¢, for example by choosing V¥ : B! '(0) — R"™™ as (&)=
(&',4/1=1¢'1%,0). We first compute the derivative of W. With ¢ = (/,7,,w) €
R"™"x R x R¥ and z = (¢',¢,, y) with &' e B271(0) and (&, y) € B/**(0) we
have

DY¥(z)o = D\P(é/> Ens y)(T/v Tny W)
= (1 + én>Dw(él)(T/a 0) + 'ﬁ(f')(ﬂ, Ty 0) + (07 W) :

GT,I,@/)(S"J x{0}) ETI/,L@/)<S"71X{0})

Therefore, taking into account that 0 < s < %, we have
|D¥(z)a| < (1 +5)|7| SUII?) DYl + [zl + ]
Br-1(0
<4 up, DYl lo| = C(¥)|o].

B”‘

This allows us, whenever z = (& &), 2= (&8¢, 7)€ B2-1(0) x B{*%(0), to
estimate
|D¥ (z)o — DY(2)a|
< (1 + &) (DY (&) — Dy (
< |1+ &IDY(E) — Dy(&'
+ () = (&) [zl
< (I+s) sup D] [ =& |||+ Sul? DY (1€ — &l 1]+ 1¢" = €[ [2u])

Br1(0)

DY(E") + (& = ENDYENT |+ W (&) — (&) |ml
|+ 1D ENE — &l I7']

((1+S) sup ||D2¢H+BSUI(3 IIDIPH)(Ié'—f’I+|5n—5n|)(lf'|+lf;zl)

Bn I

<4( sup 1D+ sup [1DY])I(.,) = (€& I m)
By~1(0) B;~1(0)

= C(‘/’)Ké/a én) - (5/7 gn)' |(T/7 T")|'
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The preceding estimate yields the Lipschitz continuity of DW, that is

ID¥(z) = DY (Z)[| < CWI(E, &) — (€8],

whenever z = (&,¢,,y), 2= (&,&,,7) € B/'(0) x BI**(0). A straightforward
computatlon now shows that also the map z e By~'(0) x B{(0) —
N\, D¥(z) e L(A,_ R"™™, \,_; R"™™) is Lipschitz continuous, i.e. we have

(6.17) I\, D¥(2) = A\, DY@ < Cln)I(&, &) = (€E0)]-

Taking into account that Dy(0) = I, ; where [, | : R""! — R"* denotes the
embedding of R"~! into R"** via the inclusion R"~! x {0} = R"**, we obtain
that DW(0) = 1,.«. Hence, from (6.17) we infer the following bounds:

(6.18)  1=Cmy)(e+s) <IN, DY)l <1+ Clny)(e+s).

Step 2: Estimates for the parametric integrand. We define a parametric inte-
grand

F:BI71(0) x BIYE(0) x A\, | R™™ — [0, 00)
by letting
F<Z c /\n lDlP )C|

Then, apart from the fact that the constant in the bound from below is not equal
to one, (6.18) corresponds to the hypothesis [10, (1.1)]. Moreover, the assump-
tion [10, (1.5)] with the Lipschitz modulus x(¢) = Ct follows from estimate
(6.17). The remaining hypotheses [10, (1.2), (1.3), (1.6)] can be easily verified to
hold. We omit the straightforward computations and state only the correspond-
ing estimates:

1Dy F(z,0) < C

C _
108 F 01l < =75 4
C
D) F(z,8) — Dy F(z,0)]| < mv — 2

for all z,z € By '(0) x B{™*(0) and 0 # (e /\ R"*k. Here the constant C
depends only on n and . Finally, the quantltatlve continuity of { — D(z) (x,0)
follows from the fact that D(z)F( x,{) is continuous on A\, _, R™¥\{0}.
Therefore, we have

D) F(2,8) = Dy F(z,m)|| < v(I = l)
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whenever (e /\,_ | R™™ with [{| =1=|y|. Actually, a direct computation

shows that v(7) = %

Step 3: Reduction to (F, w)-minimizing currents. Now, let s € (0,1]. From the
Kuratowski convergence sptS; — S" ! x {0} we conclude that the currents S;
have compact support in N1, (s) for j € N large enough. Since 0(74S;) =
n4(0S;) =0, by the constancy theorem [13, 4.1.7] we find m; € Z such that
TS, = myj [[S" x {0}]. We claim that m; = 1. But this follows from the weak
convergence S; — [S"! x {0}], because

[S"" x {0}] = mu[S"" x {0}] = lim 7,8, = lim m[S"~" x {0}]
j—oo Jj—oo

implies that m; = 1 for j large. Therefore, discarding finitely many indices j € N
if necessary, we can assume that

meS; = [S"' x {0}] and sptS; € Ngw1.qoy(s)
for all j € N. This allows us to define a global excess functional by
E(S)) = M(S)) — M(z,5)) = M(S)) — nes, = nco, D))
Note that M(S;) — nw, as j — oo since ||S;|| — [|[S"~! x {0}]] in the sense of

Radon measures.
We now fix s, o € (0,4] small enough to have

Clnb)(o+5) < 5.

where V@ B}~ 1(0) — ™! x {0} is the local parametrization from the Step 2.
From now on we omit in our notation the center 0 and write B” I x Bl+k

for short. We set S:=S8LNyp1)(s) and S := .S/ Then S”

Ra1(By~" x BI*F) and S] = ¥,S/. We have

M(S]) = M(¥,S]) = / (D)7 IS/ = / F(z,87)d|IS}|| = F(S)).

Here the associated elliptic integrand is defined by

F(z,0) = |(D¥(2)) Ll =\, D¥(=)]

whenever z € B! x BI** and (e /| R™*. Note that F is homogeneous of
degree one in the second variable. We now consider a compact set K which is
contained in a ball B)"**(z,) = By~ x B{**. For the radius r we assume that the
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smallness condition C(y)r <2/C, holds true. Then, ¥(B"*(z,)) is contained
in a ball B”Ul‘ (¥(z,)). We now consider X € R,_ I(R””‘) with 0X =0 and
sptX = K. By the (M, ) minimality of S; (applied with the comparison current
Y. X, the compact set W(K) which is contamed in the ball B"*k) (¥(z,))) we ob-
tain that

(6.19)  F(S) = M(S]) < M(S] + W, X) + C(§) CorM(S] LW(K) + W4 X)
=F(S/ + X) + C(y)CorF(S]' LK + X)

3
<F(S'+X) + 3 C(Y)CorM(S] LK + X).

In the last line we used the bound from above for the integrand F, i.e. the fact
that F(z,{) < 3. Note here that we have chosen g, s small enough. Hence, S/’
is (T, )—mmrrmzrng in B2~! x BI** for the modulus w(r ) 3C(Y) Cor. More-
over, since sptS; < N 1X{0 1(s), we have sptdS; = GB" X B“’k Actually, we
can assume that sptS/ < B~ Ux B}J", sptos; = GB” ! B1+" for a given
fixed 0 < u < 1 which 1 1s still at our disposal, and moreover that S/ is (F,m)-
minimizing in C, := B""' x R"™*. For this we only need to discard finitely
many j from our sequence. At this stage we keep in mind that 1S/l —
[[B2~" > {0}]]| in the sense of Radon measures on C, and in the sense of Kura-
towskr convergence.

Step 4: Regularity. In this step we want to apply the e-regularity theorem from
[10] to the currents S/ for large j € N. Therefore we need to check that hypothe-
sis (1.18)~(1.20) of [10] hold true. We first note that S/ € R, 1(R"™%) and that
S/ = S/"L C,. Moreover, we have S/ C, = 0. We denote by p: R"F — r!
and q: R’”k — R the orthogonal projections of R"™* on R"!, respectively
on R'"¥ ie. for z = (¢,5) € R"! x R we have p(z) = ¢ and q(z) = #. Then,
P4(S/") € Ru1(R"” 1) has no boundary in Bi~!. By the constancy theorem [13,
4.1. 7] there exist m; € Z such that p,(S/") = m;[ B}~ 1. From the weak conver-
gence of S/ — [B}~ ' x {0}] we easily see that

1851 = pu([B} ™ x {0}]) = lim p,S}’ = lim ;[ B},

and this implies that m; =1 for large j and therefore p,S/ = [[B”‘I]] Hence
(1.18)—(1.20) of [10] are fulfilled except from the fact that we can at this stage
not ensure that 0 € spt S” At this point we note that the weak convergence in
the sense of Radon measures implies

(6.20) E(S/", 0) == 0" "[M(S]'L C,) = M(p4(S]'L C,))]

= 0!"[M(S]'L C,) = M([B; ! x {0}])] — 0
as j— 0. Next, we claim that there exist z; = (0,,) € sptS; with [ — 0.
Indeed, if such 7, would not exist, then 0 ¢ p,.S/" and 7, — 0 follows from the
Kuratowski convergence of spt S/ — B}~ I {O} Instead of S;" we now consider
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Tp:=8—z =1 S/, where 7. (z) := z + z; denotes the translation in R™*. For

the prO_]CCthl’l of T, onto R"~ 1 we obtain p,T; [[B” 1. Moreover, we have
0 e spt 7; and also 7; = T;L C,. Finally, we obtam

0Ty Cp = 0(t_ S/ L Cp = 7,08 L C, = 7_4(3S/'L C,) = 0.

This proves that (1.18)—(1.20) of [10] are fulfilled by the currents 7; and it re-
mains to show that they are also ([~Fj, )-minimizing in C, for an elliptic integrand

[; and a modulus w. For z € B” I x B(”k and ( € /\ R™* we define the in-
tegrand F by

Fi(z,0) = F(z + z,0)

and the corresponding parametric integral [F,» by

F(T) = / Fi(z, 7(2)d|T|

whenever T e R, 1(3”‘1 B(”k)s). Since |[£| <o and |p| < us for any z=
(¢,m) € sptS;” we infer that |¢| < ¢ and || < 2us for any z = (¢, 77) e spt7;. In
order to have spt T < clos(B)~ Ix B(“r )S) we need that 0 < u < 3, which we
will assume from now on. At this stage it is straightforward to check that 7j is
(Fj, )-minimizing in B! x B\*, - To be more precise: Let K be a compact
set which is contained in a ball B"*(z,) = B"~! x B}* ‘and X e R,_1(R"™)
with 0X =0 and sptX < K and C(y)r <2/C,. Then, from (6.19) we deduce
that

(1)) < BT+ X) +3 COONCrM(T)L K + X).

Hence, the currents 7} are (F;, w)-minimizing in BZ‘I x Br! for the modulus
o(r) :=3 C(Y)Cyr. The elliptic integrands F; fulfill the assumptions (1.1)-(1.6)
of [10] with (C(n,y), C(n,y)t,C(n,k,)) instead of (A,x,v) and with the
modulus w(r). We note that w(r) = C(, C,)r. In particular the functions K(r)
and Q(r) introduced in [10, (1.15)] are given by K(r) = C(n,y)r and Q(r) =
C(y, Cy)r. Finally, (6.20) yields also that

E(T;, 0) == o' "[M(T;L C,) — M(p,(T;LC,))] — 0 asj— oo.

It remains to check that F; is an elliptic integrand in the sense that [10, (1.12)]
holds true. This means that there exists a positive constant C such that the in-
equality

(F).,(T) = (F)).,(S) = CIM(T) — M(S)]

holds true whenever S, T' € R,_;(R"**) with the same boundary S = 0T and S
is represented by an #"~! measurable subset of some (7 — 1)-dimensional sub-
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space in R"** with constant orientation (n — 1)-vector field and H"~! summable
positive integer valued multiplicity. From [13, 5.1.3] we infer that this property is
implied in case that

: ! i Ay PP
<D(2) (2075)77 77> |/\n71 D\P(Z)C‘ l|An_1D (Z)}’]| |/\n_1 DlP(Z)C|2
e 2, )’
Iél &

holds true for some constant C > 0. Again, from [13, 5.1. 3] we see that any
choice of 0 < C < |[L7Y|*||L|]® suffices, where L := A P(z): N, R
A R™*. Now, (6.18) yields that C can be chosen in dependence of n and
Y. Altogether we have shown that the hypotheses of the interior e-regularity the-
orem [10, Theorem 6.1] hold true in the present situation. Therefore from [10,
Theorem 6.1] we infer the existence of a C'-map g; B”/*34 — R'** such that

T; '—(Bo/34 x R'**) = [graph(g))]-

Moreover, the derivative of g; has the modulus of continuity

|Dg;(&) — Dg;(&")] < C[E( V=¥ < CV/x =]

whenever ¢£,& € B” /3£p where C = C(n, k,{). Here we used in the last step the
fact that E(7j, 0) — 0 as j — oo. Therefore, also the original currents S/ admit
local graph representations. In fact, we have

S/ B, x R = [, + graph(g))].

Note that 7, — 0 as j — oo. Thus, we obtained a uniform C* 1.2 bound for the
local graph representations of S;'. "', Therefore, by the Arzela & Ascoli theorem
a subsequence of (1; + ¢;) i1 converges in C* to a C"* map ¢ for any
o e (O, 2) But from the Kuratowski convergence we must have g = 0. Therefore,
the subsequence converges to 0 in C!*, and since the limit does not depend on the
subsequence (as seen before it is unlquely identified as g = 0) the whole sequence
converges in C* to 0. Now, from the local graph representation of Sj“ the spher-
ical graph representation on Nl/, B 1>(s) of the original sequence S; follows. In-
deed

Sj Ny (s) = Pl + graph(g))].

Since finitely many sets of the form Nl/, B 1)( s) cover the tubular neighborhood
Ngn- 1x{0}(s) we obtain the desired sphencal graph representation. O

PRrROOF OF THEOREM 2.1. The proofis divided into several steps. First, since the
asymmetry index d(7") and the isoperimetric gap D(7) are scaling invariant, we
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may assume without loss of generality that m(7") = w,. In this case the quantita-
tive isoperimetric inequality (2.1) reduces to

p(r) = M =m0 o cq2 g

Step 1: Reduction to currents with uniform bounded support and small isoperi-
metric gap. Here, we establish that it is sufficient to prove the quantitative iso-
perimetric inequality in the following form: There exists a constant J, > 0 such
that whenever 7 € R, 1(R") fulfills 07 =0, m(T) = cw,, sptT < Bg, and
D(T) < 6, then the quantitative isoperimetric inequality

(6.21) D(T) > Cd((T)*

holds true with a universal constant C; = C;(n, k). Here, R, = R,(n) denotes the
radius from Lemma 6.1. Assume for the moment that such J, > 0 exists. Then,
for T e R, 1(R"*) satistying 67 =0, m(T) = @, and D(T) >J,/C, where
C = C(n, k) is the constant from Lemma 6.1, we have

42 C
d3(T) < 40? < C;—”D(T),
o

i.e. the quantitative isoperimetric inequality with the constant 4> C:' /0,. Here, we
used the fact that d;(7) < m(7T) 4+ w, = 2w,. Now, if D(T) < J,/C then Lemma
6.1 ensures the existence of 7’ € R,,_ (R"**) satisfying 7' = 0, m(7T’) = w, and
spt T’ < Bg, such that d;(7) < C(d,(T') +D(T)) and D(T') < CD(T) <,
hold true. Therefore, we can apply (6.21) to 7’ in order to have

di(T)* <2C*(d(T")* + D(T)?)

<202 <CI,ID(T’) +%D(T)) <2¢? (g +5C")D(T),

and this yields the quantitative isoperimetric inequality with the constant
2C(E+2)] .

Step 2: The contradiction assumption. In the following we argue by contradic-
tion assuming (6.21) to be false. Then, there exists a sequence of (n—1)-
dimensional currents 7j € R, (R"*) with 07;=0, m(7)) =w, and

spt T; < Bg, satisfying

M(T)) —
@::D(]})EM—M) as j — oo,

and

(6.22) 9 < Cidi(Ty).
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Step 3: Convergence to a flat n-dimensional unit disk. We choose mass mini-
mizers Q(T;) € R,(R"™*) with 0Q(T}) = T; such that w, = m(T}) = M(Q(T})).
We note that since spt7; < Bg, these mass minimizers can be chosen to
have also support in Bg, i.e. sptQ(7;) = Bg,. Since M(Q(T})) +M(T;) =
o, + M(Tj) — (1 +n)w, in the limit j — co, we have a umform bound
sup;en(M(Q(T})) + M(T})) < co and therefore we can apply the compactness
Theorem 3.2 to infer the existence of a current Q € R, ([R"*k) with support in
Bg, and a (not relabeled) subsequence such that Q(7;) — Q with respect to the
Floc-topology. In particular, we have Fp,, (O(T;) — Q) — 0 and Fp,, (T; —00)
— 0 in the limit j — oo, because spt 7}, spt Q(T;) = By, for any j € N.

Next, we claim that the limit Q 1s an n-dimensional flat unit disk in R"*¥.
Applying Lemma 3.3 we find that

m(7; — 0Q) < [e()M(T} — 0Q) + 1]Fs,,, (T; — 0Q) — 0

in the limit j — co. Note that this implies m(7;) — m(0Q) as j — co. Using also
the lower semicontinuity of the mass with respect to weak convergence, i.e. the
fact that M(Q) < liminf; .., M(Q(7;)) = w,, we obtain

o, = lim M(Q(T))) = lim m(T}) = m(3Q) < M(Q) < o,

J—o

Hence M(Q) = w,. Therefore, by the optimal isoperimetric inequality from The-
orem 3.4 we must have M(0Q) > nw,. On the other hand, by the weak conver-
gence T; — 0Q the lower semicontinuity of the mass together with the conver-
gence M(7;) — nw, implies

M(00Q) < liminf M(7;) < naw,.

J—oo

Therefore, we have M(0Q) = nw, and M(Q) = w, which implies that in the iso-
perimetric inequality we have equality, so that Q = [D] for some n-dimensional
flat unit disk [D] = R"**. Hence, we know that Q(7;) — [D] and T; — 0[D] with
respect to the Fj,.-topology and also with respect to the weak topology. This im-
plies in particular that d;(7;) — 0 when j — oo.

Step 4: Penalization. Let A > 2n. For j € N we define penalized variational
functionals % : R,_1(R"™*) — [0, c0) by

Fi(T) == M(T) + Ci|di(T) — di(T})| + Alm(T) — |-

Here, C; > 0 is fixed and will be chosen later on in a universal way in depen-
dence on 7 and k. From Lemma 5.1 we infer the existence of S; € R, (R")
with support sptS; = Bg, minimizing the functional % amongst all closed T e
R 1(R”+") satisfying spt T = Bg,. By the convex hull property we can choose
mass minimizing currents Q(S;) € R,(R") with boundary 0Q(S;) = ; and sup-
port in Bg,. Note that m(S;) = M(Q(S))). Since S; is F-minimizing we have

Fi(8)) < Fi(T)) = M(T;).



356 V. BOGELEIN, F. DUZAAR AND N. FUSCO

On the other hand, the following bound from below holds:
Fi(S)) = M(S)) + A(m(S)) — ).
The two preceding estimates imply the following mass bound
M(S;) +m(S)) < M(S)) + Am(S)) < F(S)) + Aw, < M(T)) + Ay,

yielding a uniform mass bound for the sequences (S ) 7)jen and (Q(S)));cn- From
Theorem 3.2 we infer the existence of a mass minimizing current Q. € R, (R""¥)
(mass minimizing with respect to its own boundary ¢Q.,) such that (up to a sub-
sequence) Q(S;) — Q. with respect to the Floc—topology We also have 0Q(S)) =
S; — 00 in the Fi.-topology (and therefore also in the sense of weak conver-
gence of currents). Next, we define the functional 7, : R,_1(R"*¥) — [0, c0) by

FoT) :=M(T) + Alm(T) — ,|.

From Lemma 5.8 we infer that the boundary d[D] of a flat n-dimensional unit
disk with support in B, minimizes F,,. Using the minimality of S; and d[D]
and the definition of J; we obtain

F(S) < F(T}) = M(T) = non(1 +8,) = MDI) + nnss
= Fo (0[D]) + nwud; < Foo (S;) + new,d;.

By the definitions of F; and F., and (6.22) the preceding inequality can be re-
written in the form

(6.23) C11d,(S)) — di(T;)| < nw,d; < new,C1d3(T;).

Now, since d;(7;) — 0 as j — oo we also have d;(S;) — 0 as j — oco. Therefore,
by the definition of d; for any j € N we can choose a flat n-dimensional unit
disk [D;] such that m(S; — d[D;]) < di(S)) +}. Therefore, S; — 0[D;] — 0 as
J — oo in the flat metric (and also weakly). Now, since S; — dQ., we also have

J[Dj] — 0Q.,. But this implies [D;] — [D] for some flat n-dimensional unit disk
with support in B ; the latter holds because spt Q,, = Bg,. Therefore we have
00+ = J[D]. Since Q., is mass minimizing subject to the boundary J[D] we
have Q. = [D]. Here we use the convex hull property (cf. [21, Remark 34.2 (2)]
and the constancy theorem [13, 4.1.7]). Thus we have shown that Q(S;) — [D] as
J — 0. Using again the minimality of S; and (6.22) we further get

(6.24)  M(S)) + Am(S)) — w,| < F(S)) < F(T;) = M(Tj)
= naw,(1 +9;) < no,(1+ C1di(T))).

Step 5: A-mass minimality and almost minimality of S;. By Lemma 5.3 we
know that the currents S; are A-minimizing in R"* with 4 := C| + A, that is for
any P € R,(R""%) it holds

M(S;) < M(S; + 0P) + IM(P).
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Moreover, they are (M, ®)-minimizing for the modulus w(p) := 4Jp and with
0o = 1/(24), in the sense that there holds

M(S;) < M(S; + X) +44oM(S; LK + X)

whenever X € R,_;(R""*) with X = 0 and support contained in a compact set
K which is contained in a ball of radius ¢ < 1/(21). Recalling the uniform mass
bound sup; . M(S;) < oo and the convergence S; — J[D] in the Fio-topology
we can conclude by Lemma 5.5 that [|S;|| — ||8[[D]]H in the sense of Radon mea-
sures and, moreover by Lemma 5.6 that spt S; — spt [ D] in the Kuratowski con-
vergence. Moreover, for the mass minimizers Q( ;) we can conclude (by the same
arguments) that ||Q(S;)|| — ||[D]]| in the sense of Radon measures.

Step 6: Adjusting the mass constraint by rescaling. Here, we rescale S; in order
to have for the rescaled currents S; the mass constraint m(S/.’ ) = w,. We set

Wy \n
[ N, Loe— n
S/ = 1,5, where J, : (m(sj))

such that m(S}) = M(Q(S})) = 4/m(S;) = »,. Here, O(S;) is the mass minimiz-
mg current obtalned by scalmg the mass minimizing current 0(S;) by 4;, that
is O(S)) = O(4S;) :== 40(S;). From [11, Chapter 1.9, Theorem 1] and the
weak convergence of Radon measures ||Q(S))| — ||HD]]|| we infer that m(S;) =
M(Q(S;)) — w,. Using this and di( ~) —0 in (6.24) we see that
limsup;_, ., M(S;) < nw,. Combining this with nw, = M(J[D]) and the lower
semicontinuity of the mass with respect to weak convergence (note that
S; — 0[D]) we obtain that

lim M(S;) = nw,.

j~>uO

Since SUPjen M(S;) < oo and 4; — 1 the rescaled currents S} also converge to
d[D] in the Fj,-topology, weakly as currents and in the Kuratowski conver-
gence. Further, [|S/|| — [|0[D]]| in the sense of Radon measures. Finally, since
4 € [5,2] (for j large enough) the rescaled currents S; are (M, w)-minimizing in
the sense that

(6.25) M(S]) < M(S! + X) + 80M(S/ LK + X)

holds true for any X € R, (R"**) with 0X = 0 and support contained in a com-
pact set K < B,(x,) where ¢ € (0,1/(44)]. Since M(S, )/m( ;) — nasj— ocoand
A > 2n we may assume for j large enough that M(S; ) <5 Am( ;). Therefore, we
have

IM(S]) = M(S))] = |2/~ = 1]M(S)) < AW '~ 1m(s)

J

[N
= EAV»]' — Im($;) = §A|a),, —m(S;)[.
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Note that from (6.23) it follows for j large d;(7;) < 2d,(S;). Therefore, the pre-
vious inequality, together with (6.24), yields

1
(6.26) M(S]) = nw, < M(S)) + 5 Alm(S;) — @, — na,
1
< nw, C1di(T;) — 7A|m(S,-) =y

< 4nw, C1d3(S )——A|m( ) — wl.

For j e N we now define the homotopy # : [0, 1] x R"™* — R"** by A(s, x) :=
(I —s)x +s4x. Then, (0, ) =id and h(1,-) =#,, where 7, (x) := Z;x. There-
fore, by the homotopy formula we have

oha([0,1] x §) = hd (0, 1] x ) = ({1} x 5 — {0} x 5 — [0, 1] x 05))
— hy({1} x ;= {0} x 8) = (n;),S; — id, S = 5] - 5.

and therefore by [21, 26.23], the facts that sptS; = Bg, and 4; — 1 (especially that
J; < 2 for j large enough) and M(S)) < 3 Am(S ) we obtain

m(S; — ;) < M(/,([0,1] x §))) < sup e — 2x|(1+ 7)™ 'M(S))
xesptS;

<3R4 — 1M(S)) < 13" 'AR,|A] — 1jm(S))

1
= 53"71AR0|m(Sj) — Wy|.

To proceed further we denote by [D;] a flat n-dimensional unit disk realizing
d;(S/) up to an error ¢ >0, ie. m(S; — I[D;]) < di(S]) + & Moreover, since

m(S;) — w, we may assume that |m(S;) — w,| < (2- 300 'new, CyAR?)™ ) for j
large enough. We therefore obtain

di(S) <m’(S; - 2[D)]) < (m(S; - S)) +m(S] - [D]))?

< (m(S) = 8) +di(S)) +&)* <3m*(S — S;) + 3} (S]) + 3¢
1 n—
132 'APR2|m(S)) — w,|* + 3d7(S]) + 3¢

< A Im(S)) — w,| + 3d7(S)) + 3¢?

= 8nw,Cy / " 1 .

Since ¢ > 0 can be chosen arbitrarily small we can pass to the limit ¢ | 0 and
obtain

di(S)) < 3d7(S)) + [m(S;) — ],

8nw, Cy
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whenever ; is large enough. Using this to estimate to bound the right-hand side in
(6.26) from above we find that

(6.27) M(S!) — nw, < 12nw,Cd;(S)).

J -

Step 7: Adjusting the barycenter condition. Here we establish that we can as-
sume without loss of generality that the barycenter of Sj’ is the origin in R"**, i.e.

1

J

holds true for all j e N. First of all the barycenter of S} is well defined since
sptS’ < Bg,. Moreover, since ||S/|| — [|0[D]|| = H"~ (S 1% {0)) as j — w
in the sense of Radon measures we have

/zd||Sj’||—>/zd7-l”l —0 and M(S)) — ne,

in the limit j — co, and this implies bar(S;) — 0. Therefore we can replace S;
by §/':= S/ — bar(S]’ ). The new sequence now fulfills the barycenter condition
bar(S”) — 0 and also IS/l — [lo[D]]| = H"~ 'L (877! x {0}). Finally, the cur-
rents S have support in B, and satisfy (6.27), that is we have

(6.28) M(S!") — nw, < 12n0,Cid}(S]).

Step 8: Adjusting the mixed second order moments. We define the second order
moments of S/ by

My = ;' /z®zd\|sj"||.

Note that M is well defined since spt S/ < Bg,. Since [|S/|| — [|0[D]|| in the
sense of Radon measures the second order moments of S " converge to the second
order moments of the unit sphere S"~! x {0}, i.e.

lim MS// Mgi-1y g0y == wn]/ @ zdH" =1,
Sn IX{O}

J—®

where [, : R"* — R"* is defined by I,(x, y) := (x,0). Therefore, we have
111’1’1 HMS.” - ﬂn” = 07
J— 0 J
and this allows us to apply Lemma 4.2 for j € N large enough, to be precise for

those j for which || M, 1 — 0.|| < & holds true, where ¢, = ¢,(n, k) > 0 is the con-
stant from Lemma 4.2. Hence, we find R; € SO(n + k) satisfying

IR — 1| < e(n, k)| My — 1,
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such that for the second order moments of the tilted currents S;" := (R;),S/', i.e
for '

My = ;" /z ®zd|S"],

the mixed moments are zero, i.e. fori=1,...,nand « = 1,...,k we have

(M) = [ xvads)'] =0,

and moreover
| Msp — Lall < c(n, k)| M5y — L]l

The tilted currents are of course again (M, )-minimizing and, since
S/ — [|o[D]]|, they also converge in the sense of Radon measures to ||0[D]|].
Moreover, the barycenter condition also holds true for the tilted currents. Fur-
thermore, we have M(S/") = M((R;),S/") = M(S/") and m(S/") = m((R;),S/") =
m(S/"). Since d; is invariant by rota‘uons we have di (") = di(S/). But this
shows that also (6.28) holds true for the tilted currents S; i , that is we have
(6.29) M(S/") — nw, < 12nw, C1d;(S]").
To avoid an overburdened notation, from now on we write S; instead of S/”, but
we keep in mind that S; — 0[D] in the FloC-topology, weakly as currents and in
the Kuratowski convergence and ||.S;|| — ||0[D]|| in the sense of Radon measures.
Further, the S; are (M, w)-minimizing in the sense that (6.25) holds true for S;.
For the associated mass minimizing currents we have m(S;) = w,.

Step 9: Regularity and conclusion. We recall that the flat n-dimensional unit
disk [D] is the closed unit disk centered at the origin in R" x {0} = R"**. We
write [S"~!] for the boundary of E" L Bf'(0). At this stage we apply the regularity
theorem to our sequence S; which is build up by (M, @)-minimizing currents for
the modulus w(p) = 810 (meaning that we have C, = 81 = 8(C; + A) in Theo-
rem 6.2). The application of Theorem 6.2 yields for j large enough spherlcal
graph representations S; = (X;),[S"~ 1T with maps u;, v; on §7=1 of class Cl2.
The supports T’ := sptS X (S” 1) are C'2 submanifolds of R"**. Since the
currents S; fulfill the barycenter condition and have vanishing mixed second
order moments also the spherical graphs I'; have their barycenter in the origin
and vanishing mixed second order moments. By construction also the mass con-
staint m(S;) = m([I';]) = o, is satisfied. Finally, by (6.16) and D(S;) — 0 we can
apply the higher codimension version of the Fuglede’s Theorem for spherical
graphs for j large enough, i.e. Theorem 4.1 is applicable since all hypotheses
hold true. Thus we have

M(S)) —new, _ H'(L) — na, > C,aX([T]) = C,d3(S)).

nwy, nw,
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But this contradicts (6.29), provided we choose 0 < Cy < {5 C,. Here, we used
H"1(T;) = M(S;) and d ([T;]) = di(S}), since S; = Xy[S""']. This is the contra-
diction we were looking for and therefore finishes the proof of Theorem 2.1. O
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