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Abstract. — Henstock-type integrals are considered, for multifunctions taking values in the

family of weakly compact and convex subsets of a Banach lattice X . The main tool to handle the
multivalued case is a Rådström-type embedding theorem established by C. C. A. Labuschagne,

A. L. Pinchuck, C. J. van Alten in 2007. In this way the norm and order integrals reduce to that of
a single-valued function taking values in an M-space, and new proofs are deduced for some decom-

position results recently stated in two recent papers by Di Piazza and Musiał based on the existence
of integrable selections.
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1. Introduction

After the pioneering works of Aumann and Debreu, the multivalued case has
been intensively studied, several notions of integral for multivalued functions in
Banach and other vector spaces have been developed. These notions have shown
to be useful when modelling some theories in di¤erent fields as optimal control
and mathematical economics, see for example [19, 27]. The choice to deal with
these types of integration is motivated by the fact that Bochner integrability of
selections is a strong condition; moreover selection theorems for the Aumann–
Bochner integral are stated in the separable context. In order to overcome this
problem contributions have been given also in [16, 17, 21, 22].

The starting point of this research are the papers [6–8, 12] in which the
comparison between norm and order-(multi) valued integration is examined in
Banach and vector lattices. Another fundamental tool of this paper is the em-
bedding theorem given in [35], in which a vector lattice version of the Rådström
embedding theorem is stated. As far as we know a first result which uses an em-
bedding theorem was given in [3] and then by Debreu, Castaing and his school
(see for example [18]) and later on by many other authors: see for example,
[2, 7, 15, 16, 22–26, 37–39]. This paper aims to provide a comparison between
di¤erent types of multivalued integration, in Banach lattices. Throughout this
paper ðT ; dÞ is a compact metric Hausdor¤ topological space, S its Borel
s-algebra and m : S ! Rþ

0 a regular, pointwise non atomic measure, X a Banach



(lattice) space and cwkðXÞ the family of all convex weakly compact non-empty
subsets of X .

In Section 3 the Henstock multivalued integral is introduced (H-integral for
multifunctions). A very important tool for the study of set-valued integration is
the Kuratowski and Ryll-Nardzewski’s theorem which guarantees the existence
of measurable selectors, though it has the handicap of the requirement of sepa-
rability for the range space. Recently this result was extended to the non sepa-
rable case in [16, 17, 24] for other kinds of multivalued integrals or for the
ckðX Þ-valued case, while here a selection theorem is given for cwkðX Þ-valued,
H-integrable multifunctions.

Moreover, thanks to the structure of near vector space of cwkðXÞ, it is proved
that the H-integrability of F is equivalent to the H-integrability (and also order-
type integrability) of its embedded function iðF Þ, and that the multivalued integral
here obtained coincides with the one given in [7]. This fact also implies that the
H-integral of F and the norm-integral FðF ; �Þ given in [7] are countably additive
multimeasures. Of course, if the target space is a general Banach lattice (not nec-
essarily an M-space), considering order convergence gives rise to a new concept
of integral. In Subsection 3.2, indeed, the order structure is considered, since vec-
tor lattices play an important role (see for example [1, 4–6, 10, 11, 13, 20, 36, 40])
also in applications, and an H-(multivalued) integral with respect to the order is
studied.

2. Preliminaries on Henstock and McShane integrals

Given a compact metric Hausdor¤ topological space ðT ; dÞ and its Borel s-
algebra S, let m : S ! Rþ

0 be a pointwise non atomic (namely mðftgÞ ¼ 0 for every
t a T) s-additive (bounded) regular measure, so that ðT ; d;S; mÞ is a Radon mea-
sure space. Let X be a Banach space. The following concept of Henstock integra-
bility was presented in [28] for bounded measures in the Banach space context.
See also [6] for the following definitions and investigations.

A gauge is any map g : T ! Rþ. A decomposition P of T is a finite family
P ¼ fðEi; tiÞ : i ¼ 1; . . . ; kg of pairs such that ti a T , Ei a S and mðEi BEjÞ ¼ 0
for iA j. The points ti, i ¼ 1; . . . ; k, are called tags. If moreover

Sk
i¼1 Ei ¼ T , P

is called a partition.
A Perron partition is a partition such that ti a Ei for every i.
Given a gauge g, any partition P is said to be g-fine ðP0 gÞ if dðw; tiÞ < gðtiÞ

for every w a Ei and i ¼ 1; . . . ; k. Equivalently a gauge g can be also defined as a
mapping associating with each point t a T an open set which contains the point t.

Definition 2.1. A function f : T ! X is Ms-integrable (resp. H-integrable) if
there exists I a X such that, for every e > 0 there is a gauge g : T ! Rþ such that
for every g-fine partition (resp. Perron partition) of T , P ¼ fðEi; tiÞ; i ¼ 1; . . . ; qg,
one has:

ksð f ;PÞ � Ika e;
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where the symbol sð f ;PÞ means
Pq

i¼1 f ðtiÞmðEiÞ. In this case, the following

notation will be used: I ¼ ðMsÞ
Z
T

f dm (resp. I ¼ ðHÞ
Z
T

f dm).

Remark 2.1. It is not di‰cult to deduce, in case f is H-integrable in the set
T , that also the restrictions f 1E are, for every measurable set E, thanks to the
Cousin Lemma (see [41, Proposition 1.7]). This is not true in the classical theory,
where T ¼ ½0; 1� and the partitions allowed are only those consisting of sub-
intervals. As it is well-known, in such classical case H-integrability is di¤erent
from McShane integrability and also from Pettis integrability. Nevertheless,
McShane integrability of a mapping f : ½0; 1� ! X (here X is any Banach space)
is equivalent to Henstock and Pettis simultaneous integrabilities to hold (see [28,
Theorem 8]).

Since the measure m is assumed to be pointwise non atomic, all the con-
cepts in the Henstock sense turn out to be equivalent to the same concepts in
the McShane sense (i.e. without requiring that the tags are contained in the
corresponding sets of the involved partitions) as shown in [14, Proposition 2.3],
in fact it will be su‰cient to observe that, for every gauge g and any g-fine
partition

P0 :¼ fðBi; tiÞ : i ¼ 1; . . . ; kg;

there exists a Henstock-type g-fine partition P 0 satisfying sð f ;P0Þ ¼ sð f ;P 0Þ.
Without loss of generality, all the tags ti can be supposed to be distinct. Now,
set A :¼ fti; i ¼ 1; . . . ; kg and define, for each j:

B 0
j :¼ ðBjnAÞA ftjg:

Then the pairs ðBj; tjÞ form a g-fine Henstock-type partition P 0 and mðB 0
j Þ ¼ mðBjÞ

for all j, so sð f ;P0Þ ¼ sð f ;P 0Þ. So the Perron condition will no longer be neces-
sary.

For the sake of clearness, it is useful to remark that actually McShane integra-
bility in the classical case for a mapping f : ½0; 1� ! X is equivalent to the present
definition of Ms-integrability (see [29]), while Henstock integrability (in the clas-
sic case) is strictly weaker than McShane. However, since in this context (for
pointwise non atomic measures) the two notions coincide, they will be no more
distinguished, and will be simply referred as the Henstock integral.

From now on suppose that X is a Banach lattice, Xþ is its positive cone and
Xþþ is the subset of strictly positive elements of X . A sequence ðpnÞn in X is
called ðoÞ-sequence i¤ it is decreasing and 5

n
pn ¼ 0.

The symbols j j, k k refer to modulus and norm of X , respectively; for the
relation between them see for example [6, 10, 11, 30].

An element e of Xþ is an order unit in X if X is the solid linear subspace
of itself generated by e; that is, if for every u a X there is an n a N such that
juja ne.
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An M-space is a Banach lattice M in which the norm is an order-unit norm,
namely there is an order unit e in M and an equivalent Riesz norm k � ke defined
on M by the formula kuke :¼ minfa : juj < aeg for every u a M. In this case one
has also kuþ vk ¼ kuk4kvk for positive u; v a M.

An L-space is a Banach lattice L such that kuþ vk ¼ kuk þ kvk whenever
u; v a Lþ. For further details about L- and M-spaces see also [30].

In the setting of Banach lattices the notion of order-type integral can be given
as follows.

Definition 2.2. A function f : T ! X is order-integrable in the Henstock
sense ((oH)-integrability for short) if there exists J a X together with an ðoÞ-
sequence ðbnÞn in X and a corresponding sequence ðgnÞn of gauges, such that for
every n and every gn-fine (Perron) partition of T , P ¼ fðEi; tiÞ; i ¼ 1; . . . ; qg, it is

jsð f ;PÞ � Jja bn; then the integral J will be denoted with (oH)

Z
f .

Also in this case there is no di¤erence in taking gn-fine arbitrary partitions
rather than Perron-type partitions. So from now on, unless otherwise specified,
only arbitrary gn-fine partitions will be considered.

3. Gauge multivalued integrals

The previous notions of integral can be extended to the case of multivalued
mappings. For the norm integral, the concept given in [8] will be adopted here,
comparing it with other definitions: thanks to a well-known Rådström-type em-
bedding theorem given in [35], the multivalued case can be reduced to the single-
valued one, which can help to study the integral.

When the space X is a Banach lattice, also the notion of order-type integral
will be introduced, for multivalued mappings, essentially following the lines of
the paper [6]. Also for this notion, some properties and comparisons will be
stated.

Let P0ðXÞ be the set of all nonempty subsets of the Banach space X , and
bf ðX Þ be the set of all nonempty, bounded and closed subsets of X ; moreover,
let cbf ðX Þ, cwkðX Þ, ckðXÞ denote respectively the subfamilies of bf ðXÞ of con-
vex, weakly compact and convex, compact and convex sets.

For all A;B a P0ðXÞ and l a R the Minkowski addition and scalar multipli-
cation are defined as

Aþ B ¼ faþ b : a a A; b a Bg; and lA ¼ fla : a a Ag:

As in [18, 35] the operation a on bf ðX Þ is defined by setting AaB :¼
clðAþ BÞ. If Ai a bf ðXÞ, i ¼ 1; . . . ; n, then

Xn

i¼1

Ai :¼ clðA1 þ � � � þ AnÞ:
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Observe that if A;B a bf ðX Þ then AaB a bf ðXÞ. In case A and B are in cwkðX Þ
(or in ckðXÞ), then the Minkowski addition is already closed, so in these cases the
closure in the previous operation is not needed. For all unexplained terminology
on multifunctions we refer to [18]. Since the set inclusion is a natural ordering on
P0ðX Þ, which is compatible with the Minkowski addition and scalar multiplica-
tion, in [35] a Rådström embedding theorem is extended to the space cwkðX Þ as
follows.

Theorem 3.1 ([35, Theorems 5.6 and 5.3]). There exist a compact, Stonian,
Hausdor¤ space W and a positively linear map i : cwkðX Þ ! CðWÞ such that

3.1.1) dHðA;CÞ ¼ kiðAÞ � iðCÞkl, A;C a cwkðX Þ (of course, here dH denotes the
Hausdor¤ distance (see [18, 35]));

3.1.2) iðcwkðXÞÞ ¼ clðiðcwkðXÞÞÞ ðnorm closureÞ:
3.1.3) iðcoðAACÞÞ ¼ maxfiðAÞ; iðCÞg for all A, C in cwkðX Þ.

3.1. Norm multivalued integrals

In this section a short survey is presented of the di¤erent notions of the multi-
valued integral in the norm sense, in order to compare them and possibly improve
some results.

Definition 3.1. For a multifunction F : T ! P0ðX Þ let S1
F ;H be the set of all

H-integrable selections of F in the sense of Definition 2.1, namely: S1
F ;H ¼

f f : f ðtÞ a F ðtÞ m� a:e: and f is H-integrable:g

Definition 3.2. If S1
F ;H is non-empty, then for every E a S the Aumann-

Henstock integral ((AH)-integral) of F is defined as the set

ðAHÞ
Z
E

F dm ¼
Z
E

f dm; f a S1
F ;H

� �
:

In order to prove existence of the previous selections, the following concept of
integrability is also introduced, for a multifunction F : T ! cwkðXÞ.

Definition 3.3. Given a multifunction F : T ! cwkðX Þ, F is H-integrable if
there exists an element J a cwkðX Þ, such that for every e > 0 there exists a gauge
g such that, for every g-fine partition P, the following holds: dHð

P
P F ; JÞa e: In

this case one writes J :¼ ðHÞ
Z
T

F dm:

Also in this case, existence of the integral in T implies existence in all mea-
surable subsets E of T (which will be denoted by JEðF Þ) analogously to Remark
2.1. Indeed, as later shown, the last definition of integrability reduces to H-
integrability for a corresponding single-valued function F taking values in the
space CðWÞ, where W is a suitable compact Stonian space: see Theorems 3.1 and
3.4 below.
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For the definitions of Mc Shane and Pettis integrals for multifunctions see for
example [7, Definition 2], [8, Definition 3.1], omitting the ‘‘limsup’’ in the first
definition since here T is compact and m is bounded. One can observe also that,
in case a multifunction F : T ! cwkðXÞ is H-integrable, then there exist H-
integrable selections. This result has been proved in [16, Theorem 2.5] for Pettis
integrable selections and in [26, Theorem 3.1], but for Henstock integrable multi-
valued mappings defined in the real interval ½0; 1�.

Theorem 3.3. If F : T ! cwkðXÞ is H-integrable, then S1
F ;H A j.

Proof. Observe that, thanks to Hörmander equality (see e.g. [26, formula (3)]),
the function F is scalarly H-integrable, i.e. the support mappings t 7!

sðx�;F ðtÞÞ are H-integrable, for all x� a X �. Set K :¼ ðHÞ
Z
T

F dm, and choose

any strongly exposed point x0 a K: such a point exists, since K is in cwkðXÞ.
Then there exists a functional x�

0 a X � such that x�
0 ðxÞ < x�

0 ðx0Þ for every
x a K , xAx0. Let

GðtÞ :¼ fx a F ðtÞ : x�
0 ðxÞ ¼ sðx�

0 ;FðtÞÞg;

for every t a T . Proceeding like in the proof of [16, Theorem 2.5], one has that G
is Pettis integrable in the sense of [16] (i.e. the support mappings sðx�;GÞ are inte-
grable for every x� a X � and for every measurable subset EHT there exists an

element PEðGÞ a cwkðX Þ (denoted also by ðPÞ
Z
E

G dm) such that

sðx�;PEðF ÞÞ ¼
Z
E

sðx�;GÞ dmÞ;

and has a Pettis integrable selector g (which is also therefore a selector of F ), for

which x�
0 ðx0Þ ¼

Z
T

x�
0gðtÞ dm. Moreover ðPÞ

Z
T

G dm ¼ fx0g, and x�ðgÞ ¼ sðx�;GÞ

m-a.e. for all x�, and every selector g of G. So, for each x�, the mapping x�ðgÞ is
Lebesgue-integrable, and therefore McShane-integrable (see [31, Theorem 1O]),
which in this setting means Henstock integrability. Then, proceeding as in the
proof of [26, Theorem 3.1], the conclusion follows, i.e. g is H-integrable. r

The multivalued norm integral, introduced in [6, Definition 3.13] will be
now recalled. This definition is inspired at a similar notion introduced in [33,
Definition 3] in order to study di¤erential relations. In the subsection 3.2 a corre-
sponding notion for the order-type multivalued integral will be introduced in the
Banach lattice context and compared with this.

Definition 3.4 [6, Definition 3.13]. Let F : T ! P0ðXÞ be a multifunction,
and E a S. We call ðk � kÞ-integral of F on E the set
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FðF ;EÞ ¼
(
z a X : for every e a Rþ there is a gauge g : T ! Rþ :

inf
c ATPg

F
kz� cka e for every g-fine partition

Pg :¼ fðEi; tiÞ : i ¼ 1; . . . ; kg of E

)
:

Alternatively, one can write ([6, Proposition 3.7])

FðF ;EÞ ¼
\
n

[
g

\
Pg;E

SPF a
BX

n

� �
;ð3:2:1Þ

where Pg;E is the family of all (Perron) g-fine partitions of E.

Remark 3.3. Some relations are collected here between the previous definitions
of integral, and also with the Aumann integral. In case F is cwkðXÞ-valued and
H-integrable on E there exists an element JEðF Þ a cwkðX Þ such that, for every
n a N it is possible to find a gauge gn such that

X
P

F H JEðFÞ þ n�1BX and JEðFÞH
X
P

F þ n�1BXð3:3:1Þ

hold true, for every gn-fine partition P, where BX is the unit ball in X . So, in this
case it follows JEðFÞHFðF ;EÞ: Later also the converse inclusion will be proven
(see Proposition 3.6).

Observe that, for every E a S, the following inclusion holds:

ðAHÞ
Z
E

F dmHFðF ;EÞ

since, if f a S1
F ;H , then its H-integral belongs by definition to the right member of

(3.2.1). However, in case F is H-integrable, then

ðAHÞ
Z
E

F dmH JEðF Þ :

indeed, if f a S1
F ;H , for each n there exists a gauge g 0n such that

ðHÞ �
Z
E

f dm a SPF a n�1BX

for all g 0n-fine partitions P; then, if P is ðgnbg 0nÞ-fine,

ðHÞ �
Z
E

f dm a JEðFÞa 2n�1BX :
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(here gn is the gauge corresponding to n in the definition of JEðF Þ). By arbitrari-
ness of n and closedness of JEðF Þ, we get that

ðHÞ �
Z
E

f dm a JEðFÞ;

and, by arbitrariness of f , the announced inclusion follows.
Moreover since f is H-integrable for every E a S then Definition 3.3 is equiv-

alent to the (�)-integral given in [7, Definition 2].
Assuming that X is a separable Banach space and that there exists a countable

family ðx 0
nÞn in X 0 which separates points of X then, thanks to [7, Theorem 1] the

following equalities follow, for any measurable and integrably bounded multi-
function F with values in cwkðX Þ:

JEðFÞ ¼ ðAHÞ
Z
E

F dm ¼ FðF ;EÞ:

Using Theorem 3.1, according to [15, Definition 2.1] and [7, Definition 3], the
following main result can be stated, which is analogous to [16, Proposition 4.4]
(given for the Pettis integrability), together with a decomposition theorem that
can be compared with previous ones obtained in [24, Theorem 1] and in [26, Cor-
ollary 3.2]. A definition is needed, however.

Definition 3.5. If F : T ! cwkðX Þ is a multivalued mapping and X any
Banach space, we say that F is non-negative if iðFÞ : T ! CðWÞ is, where i is the
embedding found in Theorem 3.1.

Theorem 3.4. Let F : T ! cwkðXÞ be a multifunction. The following are equiv-
alent:

3.4.1) F is H-integrable (in the sense of Definition 3.3);
3.4.2) the embedded function iðF Þ : T ! CðWÞ is H-integrable, and in that case

(H)-

Z
iðFÞ dm ¼ iðJTðFÞÞ;

3.4.3) for every E a S and e > 0 there exists a gauge g such that ksðiðF Þ;P1Þ �
sðiðFÞ;P2Þkl a e for every g-fine partitions P1, P2 of E;

3.4.4) F is the sum of a non-negative H-integrable multifunction G with values in
cwkðX Þ and an H-integrable single-valued function f : T ! X.

Moreover, the previous statements imply

3.4.5) the family WF ¼ fsðx�;F Þ : x� a BX �g is uniformly integrable.

Proof. Thanks to Theorem 3.1, it is easy to see that 3.4.1) is equivalent to
3.4.2). Obviously 3.4.1) implies 3.4.3). The next step is to prove that 3.4.3) implies
3.4.2), i.e., if the Cauchy-Bolzano condition is true, then iðF Þ is H-integrable.
Taking e ¼ n�1, then there exists a gauge gn such that, for every pair ðPn

1 ;P
n
2 Þ
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of gn-fine partitions of E,

ksðiðFÞ;Pn
1 Þ � sðiðF Þ;Pn

2 Þkla n�1:

Without loss of generality assume that ðgnÞn is decreasing in n.
Since CðWÞ is Dedekind complete ([40, Proposition 2.1.4]), then

5
P APgn

sðiðF Þ;PÞ, 4
P APgn

sðiðFÞ;PÞ are in CðWÞ and for every n a N it is obvi-
ous that

5
P APgn

sðiðFÞ;PÞa 4
P APgn

sðiðF Þ;PÞ:

Let z ¼ 4
n
5

P APgn
sðiðF Þ;PÞ: Then it is easy to see that z verifies the definition

of integrability. In order to prove that 3.4.2) implies 3.4.5), observe that the single
valued function iðFÞ is H-integrable so iðF Þ is Pettis integrable and then, by [16,
Proposition 4.4] F is Pettis integrable and so the assertion follows from [16, The-
orem 4.1].

Also, it is obvious that 3.4.4) implies 3.4.1). Now it will be proven that 3.4.1)
implies 3.4.4).

To this aim, let f be any H-integrable selection of F (see Theorem 3.2), and
define G by translation: FðtÞ ¼ f ðtÞ þ GðtÞ. This implies that 0 a GðtÞ for all t,
and therefore sðx�;GðtÞÞb 0 for all t and x�. So the Rådström embedding of
GðtÞ is a non-negative element of llðBX �Þ; and, since the Kakutani isomorphism
preserves order, also iðGðtÞÞ is non-negative, and therefore G is a non-negative
cwkðX Þ-valued mapping. Integrability of G follows immediately from the fact
that iðF Þ ¼ ið f Þ þ iðGÞ, and linearity of the H-integral. The last implication fol-
lows easily by 3.4.2) and [16, Theorem 4.1]. r

From now on in this subsection, all multivalued mappings will be assumed
to be cwkðX Þ-valued. Thanks to well-known results concerning the H-integral of
single-valued functions (see [31, Corollary 2F and Proposition 1C(a)]) and to
Theorem 3.1, one also has easily

Proposition 3.5. If F is H-integrable, then for every A;B a S with ABB ¼ j it
holds

ðHÞ
Z
AAB

F dm ¼ ðHÞ
Z
A

F dmþ ðHÞ
Z
B

F dm:

The following Proposition compares the integral JEðF Þ (when it exists) with
the integral FðF ;EÞ of Definition 3.4.

Later, in the Example 3.14, it will be shown that FðF ;EÞ can be in cwkðX Þ
even when F is not H-integrable.

Proposition 3.6. Let F be H-integrable. Then, for every E a S one has
JEðF Þ ¼ FðF ;EÞ, and therefore FðF ;EÞ is in cwkðX Þ.
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Proof. From the hypothesis one has that, for every integer n, a gauge gn exists,
such that

kiðSPFÞ � iðJEðFÞÞkla
1

n
ð3:6:1Þ

whenever P is a gn-fine partition of E, and so, thanks to Theorem 3.1, JEðF ÞH
SPF þ n�1BX : indeed, from Theorem 3.1 it follows that

dHðSPF ; JEðF ÞÞa n�1:

This clearly implies that

JEðF ÞH
\
n

[
g

\
Pg;E

½SPF þ n�1BX � ¼ FðF ;EÞ:

(This was also proved in (3.3.1)). On the other hand, from the formula (3.6.1) it
can be deduced that SPF H JEðF Þ þ n�1BX : Now, if z a FðF ;EÞ, for the same
integer n a gauge g 0n exists, such that z a SPF þ n�1BX for every g 0n-fine partition
P of E. So, if one takes g�n :¼ gnB g 0n, then, for every g�n -fine partition P of E:
SPF H JEðFÞ þ n�1BX , z a SPF þ n�1BX ; and therefore z a JEðFÞ þ 2n�1BX :
Since this must be true for all n, and JEðFÞ is closed, it follows that z a JEðFÞ,
and so the converse inclusion is proved. r

Due to this fact one can consider FðF ;EÞ as a multivalued set function,
as soon as F : T ! cwkðX Þ is H-integrable, and for any Banach space X . In
particular

Definition 3.6 [16, Definition 3.1]. A multivalued set function M : S !
cwkðX Þ is a finitely additive (respectively countably additive) multimeasure if
MðjÞ ¼ 0 and MðAABÞ ¼ MðAÞ þMðBÞ for every A;B a S, with ABB ¼ j
(respectively if for every disjoint sequence ðEnÞ in S the series

P
n MðEnÞ is un-

conditionally convergent and Mð
S

nðEnÞÞ ¼
P

n MðEnÞ).

Corollary 3.7. Let F : T ! cwkðXÞ be any H-integrable multifunction. Then,
for every E a S, MðEÞ :¼ FðF ;EÞ is a countably additive multimeasure. More-
over, in the topology of CðWÞ, M is s-additive and m-absolutely continuous.

Proof. The first part is an immediate consequence of Propositions 3.6, 3.4 and
[16, Theorem 4.1] since F is Pettis integrable. As to the second part, thanks to
[14, Proposition 2.3], iðFÞ is McShane integrable. So, by [29, Theorem 1Q], iðFÞ
is Pettis integrable and therefore M turns out to be s-additive and m-continuous,
thanks to well-known properties of the Pettis integral. r

Finally:
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Proposition 3.8. If F : T ! cwkðX Þ is H-integrable then, for every E a S
it is:

ðHÞ
Z
E

F dm ¼
Z
E

f dm; f a S1
Pe

� �
;

(here, S1
Pe has a similar meaning as S1

F ;H, but with Pettis in the place of Henstock
integrability) while, if X is reflexive,

ðHÞ
Z
E

F dm ¼
Z
E

f dm; f a S1
F ;H

� �
:

Proof. Observe that the Aumann integrals involved are non empty thanks to
[16, Theorem 2.5] and Theorem 3.2 respectively. So the assertion is an obvious
consequence of [8, Theorem 4.3] since m is pointwise non atomic and reflexivity
of the space avoids the hypothesis on free cardinals. r

3.2. Order multivalued integrals

Now, the multivalued integral in the order sense will be studied, with the follow-
ing assumption:

ðH0Þ X is a weakly s-distributive Banach lattice with an order continuous norm,
k � k:

Also in this subsection, a small survey is presented, comparing some di¤erent
notions of integral in the order sense. Some new results will be obtained, similar
to those already existing in the normed case: nevertheless, sometimes there are
di¤erences, which may look at first sight not so deep as they really are.

Definition 3.7 ([6, Definition 3.6, Proposition 3.7]). Let F : T ! 2X be a mul-
tifunction with non-empty values, and E a S. The ðoÞ-integral of F on E is the set

FoðF ;EÞ :¼
[

ðbnÞn; ðgnÞn

\
n

\
Pgn

UðSPðFÞ; bnÞ;

where ðbnÞn denotes any ðoÞ-sequence, ðgnÞn any sequence of gauges, Pgn the fam-
ily of all gn-fine partitions of E, and UðC; bÞ :¼ fz a X such that jz� yja b
for some y a Cg.

Of course, when F is single-valued, F ¼ f f g, the integral FoðF ;EÞC

ðoHÞ
Z
E

f dm, if non-empty, is a singleton, and in this case f is oH-integrable.

Moreover, for multivalued mappings F : T ! cwkðX Þ and for any measurable
set E the following inclusion holds, thanks to order-continuity of the norm:
FoðF ;EÞHFðF ;EÞ; in case X is also an M-space, then also the reverse inclusion
holds true as in [6, Proposition 3.14].
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Similarly as for the norm integral, an alternative notion can be given, parallel
to Definition 3.3:

Definition 3.8. Let F : T ! cwkðX Þ be any multifunction. F is oH-integrable
if, for every measurable EHT there exist an element JE a cwkðX Þ, an ðoÞ-
sequence ðbnÞn in X and a corresponding sequence ðgnÞn of gauges in T , such
that, for every n and every gn-fine partition P of E, SPðF ÞHUðJE ; bnÞ, and
JE HUðSPðFÞ; bnÞ:

Proposition 3.9. If F : T ! cwkðX Þ is oH-integrable, then the element JE is
unique.

Proof. Without loss of generality, assume that E ¼ T , and suppose that
J :¼ JT and J 0 :¼ J 0

T are two elements of cwkðX Þ satisfying the condition in Def-
inition 3.8. Let ðbnÞn and ðb 0

nÞn be the ðoÞ-sequences relative to J and J 0 respec-
tively, and ðgnÞn, ðg 0nÞn be the corresponding gauges. Then, fixed n, and taken
any ðgnbg 0nÞ-fine partition P, one has

JHUðSPðFÞ; bnÞHUðJ 0; bn þ b 0
nÞ;

and also

J 0HUðSPðFÞ; b 0
nÞHUðJ; bn þ b 0

nÞ:

So, for every element a a J and every integer n, there exists an element a 0
n a J 0

such that ja� a 0
nja bn þ b 0

n. This clearly means that the sequence ða 0
nÞn is ðoÞ-

convergent to a, and so also norm-convergent to a. Since J 0 is closed, this implies
a a J 0. So, JH J 0. Reversing the role of J and J 0, also the converse inclusion is
obtained, and then J ¼ J 0. r

This integral is related to Fo, in the following sense.

Theorem 3.10. Let F be as above, and assume it is oH-integrable. Then, for
every measurable EHT, FoðF ;EÞ ¼ JE, and so FoðF ;EÞ is in cwkðX Þ.

Proof. Again, the proof will be given only for the case E ¼ T . Let ðbnÞn and
ðgnÞn be the ðoÞ-sequence and the corresponding sequence of gauges regulating
oH-integrability of F .

Let w be any arbitrary element of JT , and fix n. Then, if P is any gn-fine
partition, clearly w a UðSPðF Þ; bnÞ: But this is precisely the condition that w a
FoðF ;TÞ. By arbitrariness of w, one obtains the inclusion JT HFoðF ;TÞ (and
also that FoðF ;TÞAj).

In order to prove the converse inclusion, take any element z a FoðF ;TÞ, and
let ðb 0

nÞn and ðg 0nÞn be the ðoÞ-sequence and the corresponding sequence of gauges
related to the definition of FoðF ;TÞ. Now, if P is any ðgnbg 0nÞ-fine partition,

z a UðSPðFÞ; b 0
nÞHUðJT ; b 0

n þ bnÞ:
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As above, this implies that z is in the norm-closure of JT , i.e. z a JT . By arbitrari-
ness of z, this gives FoðF ;TÞH JT : This proves the reverse inclusion, and there-
fore the announced equality. r

Observe that, also for the order integral, the set FoðF ;TÞ can be in cwkðX Þ
even when F is not oH-integrable, see Example 3.14.

From now on, order-boundedness of the sets FðtÞ will be assumed, for any multi-
valued mapping F and every t a T.

Remark 3.11. Observe that, thanks to [6, Theorem 3.12] if F is a simple func-
tion with values in cwkðX Þ (namely F ¼

P
ian Ci1Ei

, Ci a cwkðXÞ, Ei BEj ¼ j,
iA j, ia n) then FoðF ;EÞ is in cwkðXÞ and

FoðF ;EÞ ¼
X
ian

CimðEiÞ ¼ ðoHÞ
Z
E

f dm : f ðtÞ a F ðtÞm� a:e:

� �

In fact, in the quoted result the equivalence is stated among the Fo-integral and
the order-closure of the Aumann-Henstock integral, when the Ci’s are in cbf ðX Þ.
But Ci a cwkðXÞ so one has direct coincidence with the Aumann integral.

A kind of selection theorem is stated now. This result is parallel in some sense
to the Kuratowski-Ryll Nardzewski selection theorem, but related to the order
structure of the space X rather than to its topology. Some consequences will be
shown later.

Theorem 3.12. Let F : T ! cwkðXÞ be any oH-integrable mapping, with inte-
gral J, and define gðtÞ :¼ supFðtÞ, S :¼ sup J: Then, g is oH-integrable, and its
integral is S.

Proof. Let ðbnÞn and ðgnÞn be the sequences introduced in the Definition 3.8,
and fix any gn-fine partition P. Then

sðg;PÞ a VðS; bnÞð3:12:1Þ

where

VðA; bÞ :¼ fz a X : ba0 a A with za a0 þ bg;

for every ðA; bÞ a ðcwkðXÞ;XþþÞ: Indeed, as PC ðti; IiÞ is gn-fine,
P

aimðIiÞa
S þ bn; for every choice of the points ai a FðtiÞ. Hence

a1mðI1ÞaS þ bn �
X
i>1

aimðIiÞ;

and, by varying just a1 one gets gðt1ÞmðI1ÞaS þ bn �
P

i>1 aimðIiÞ; from which

X
i>1

aimðIiÞa�gðt1ÞmðI1Þ þ S þ bn:
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Now, isolating a2 and proceeding in the same fashion, it follows

X
i>2

aimðIiÞa�gðt1ÞmðI1Þ � gðt2ÞmðI2Þ þ S þ bn;

then it is clear that, continuing in this way, (3.12.1) is proven. On the other hand,
easily one has

JHVðSPðFÞ; bnÞHVðsðg;PÞ; bnÞ;

hence Sa sðg;PÞ þ bn: So, there exist an ðoÞ-sequence ðbnÞn and a sequence ðgnÞn
of gauges such that, for every n and every gn-fine partition P, sðg;PÞaS þ bn,
and Sa sðg;PÞ þ bn i.e.

jsðg;PÞ � Sja bn;

from which the assertion follows. r

In some cases, one can obtain a decomposition similar to Theorem 3.4.4), for
oH-integrable multifunctions.

Theorem 3.13. Let F : T ! cwkðXÞ be any oH-integrable function, such that

(3.13.1) supF ðtÞ a FðtÞ for each t a T.

Then F is the sum of an oH-integrable single-valued mapping g : T ! X and an
oH-integrable mapping G : T ! cwkðX Þ such that sðx�;GðtÞÞb 0 for all elements
x� a X � and sðx�;GðtÞÞ ¼ 0 for all positive elements x� a X �.

Proof. Let gðtÞ ¼ supFðtÞ for all t, and define GðtÞ ¼ FðtÞ � gðtÞ by transla-
tion. Then clearly supGðtÞ ¼ 0. Moreover, from (3.13.1) it follows 0 a GðtÞ, by
a translation argument. Now, for every fixed t and any element x� a X �, clearly
sðx�;GðtÞÞb 0.

In case x� is positive, we also have 0 ¼ x�ð0Þb x�ðuÞ for all u a GðtÞ, so 0b
sðx�;GðtÞÞ. Combining this result with the previous one, we get sðx�;GðtÞÞ ¼ 0
for all positive x�.

It only remains to show that G is oH-integrable. Indeed, it will be proved that

its integral is J � supfJg, where J ¼ ðoHÞ
Z
T

F dm. By integrability of F and g,

there exist an ðoÞ-sequence ðbnÞn in X and a corresponding sequence ðgnÞn of
gauges, such that, as soon as P is any gn-fine partition, one has

SPðFÞHUðJ; bnÞ; JHUðSPðF Þ; bnÞ; jsðg;PÞ � sup Jja bn:

From this, it is easy to see that

SPðGÞHUðJ � sup J; 2bnÞ; J � sup JHUðSPðGÞ; 2bnÞ:

This su‰ces to prove integrability of G. r
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Observe here that condition (3.13.1) is fulfilled, for example, if F ðtÞ is upwards
directed for every t: in this case supF ðtÞ a FðtÞ thanks to [30, Proposition 354 E].

The previous results can be used to introduce an example, in which the set
FoðF ;TÞ is in cwkðX Þ, but the mapping F is not (oH)-integrable.

Example 3.14. Let T ¼ ½0; 1� and AH ½0; 1� be any non-measurable set, so that
the mapping 1A is not Lebesgue integrable. Clearly, this also means that 1A is not
H-integrable (in any sense, both in order and topology, since here the space X is
R). Next, define the following multivalued map F : ½0; 1� ! ckðRÞ as follows:

FðtÞ ¼ ½0; 1AðtÞ�;

for every t a ½0; 1� (here, of course, ½0; 0� means f0g).
Clearly, F is an order-bounded map, and the element 0 belongs to all the sums

SPðF Þ, for whatsoever partition P of ½0; 1�. Hence FoðF ;TÞ ¼ FðF ;TÞ is non-
empty and compact, thanks also to [6, Proposition 3.8].

But F is not (oH)-integrable, otherwise the mapping t 7! maxFðtÞ would be
(oH)-integrable by Theorem 3.12, which is impossible.

This example shows that the quantity FoðF ;TÞ might replace the integral in
some cases of non-integrability, when the previous Theorem 3.10 is not valid.

For single-valued mappings, [12, Theorem 15] shows that, at least in L-spaces,
oH-integrability implies Bochner integrability (with the same integral). Observe
also that this result is somewhat similar to [32, Theorem 5.12]. A consequence
of [12, Theorem 15] is the following result, which can be viewed as a particular
version of Theorem 3.13.

Corollary 3.15. Let L be any L-space, and F : T ! cwkðLÞ be an oH-
integrable mapping. Assume also that supFðtÞ a F ðtÞ for all t. Then F is the sum
of a Bochner integrable single-valued mapping f : T ! L and an oH-integrable
mapping G : T ! cwkðLÞ such that sðx�;GðtÞÞb 0 for all elements x� a L� and
sðx�;GðtÞÞ ¼ 0 for all positive elements x�.

Proof. It is enough to combine Theorem 3.13 with [12, Theorem 15]. r

Some conditions will be given now, ensuring oH-integrability of a multivalued
function. The first is a Lemma of the Cauchy-type.

Lemma 3.16. Let F : T ! cwkðX Þ be any set-valued mapping. Then F is oH-
integrable if and only if there exists an ðoÞ-sequence ðbnÞn in X and a corresponding
sequence of gauges ðgnÞn such that for every n, and every pair P, P 0 of gn-fine par-
titions of T one has SPðF ÞHUðSP 0 ðF Þ; bnÞ:

Proof. The necessary condition is obvious. For the converse implication
observe that UðC; bÞ ¼ C þ ½�b; b� for all sets CHX and all b a Xþþ. Since
½�b; b�H kbkBX for all b a Xþþ, and ðbnÞn is an ðoÞ-sequence, the condition
above implies that dHðSPðF Þ;SP 0 ðFÞÞa kbnk (and limnkbnk ¼ 0). This is
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precisely the Cauchy condition for the (H)-integral of F , and this implies that

J :¼ ðHÞ
Z
T

F dm exists, thanks to Theorem 3.4. Now, in order to prove that J is

also the (oH)-integral of F , fix n and let P be any gn-fine partition. Moreover, for
each e > 0 there exists a gauge g 0 such that dHðSP 0 ðFÞ; JÞa e for any g 0-fine par-
tition P 0. In particular, if P 0 is g 0bgn-fine, one has

SPðFÞHSP 0 ðFÞ þ ½�bn; bn�H J þ ½�bn; bn� þ eBX :

Now, since ½�bn; bn� is closed (see [30, Lemma 354B(c)]) and J is weakly compact,
J þ ½�bn; bn� is closed too. So, by letting e tend to 0, it follows easily

SPðFÞH J þ ½�bn; bn�

for any gn-fine partition P. A perfectly symmetric reasoning proves also the re-
verse inclusion:

JHSPðF Þ þ ½�bn; bn� i:e: J ¼ ðoHÞ
Z

F dm: r

The next result is inspired at [34, Lemma 5.35], and will be applied later.

Proposition 3.17. Let F : T ! cwkðXÞ be any set-valued mapping. Assume
that there exists an ðoÞ-sequence ðbnÞn in X such that, for every n a couple of oH-
integrable mappings G1, G2 exist, from T to cwkðXÞ, such that G1ðtÞHF ðtÞH

G2ðtÞ for every t a T, and (oH)-

Z
T

G2 dmHU
�Z

T

G1 dm; bn

�
. Then F is oH-

integrable.

Proof. Let ðbnÞn be an ðoÞ-sequence as in the hypothesis. Let also ðbnÞn and
ðgnÞn be an ðoÞ-sequence and its corresponding sequence of gauges regulating
oH-integrability of G1 and G2 (without loss of generality they can be taken the
same for both multifunctions). Now, fix n a N and take two gn-fine partitions P
and P 0 of T . Then, denoting by J1 and J2 the integrals of G1 and G2 respectively,
one has

SPðFÞHSPðG2ÞH J2 þ ½�bn; bn�H J1 þ ½�bn � bn; bn þ bn�

and

J1 þ ½�bn � bn; bn þ bn�HSP 0 ðG1Þ þ ½�bn � 2bn; bn þ 2bn�
HSP 0 ðF Þ þ ½�bn � 2bn; bn þ 2bn�:

So, comparing the last two formulas, and taking cn :¼ bn þ 2bn, one gets

SPðF ÞHUðSP 0 ðFÞ; cnÞ

for all gn-fine partitions P, P 0. Integrability now follows from Lemma 3.16. r
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4. The ½0; 1� interval case

In this section, one considers functions defined on the unit interval ½0; 1�, endowed
with the Lebesgue measure l, and taking values in an arbitrary Banach lattice
with order-continuous norm. In order to define Henstock integrability (and inte-
gral), the only partitions allowed consist of (pairwise non-overlapping) sub-
intervals of ½0; 1�. This produces the well-known distinction between Henstock
and McShane integrability: indeed, in the latter type, the partitions allowed still
consist of subintervals, but the tags need not belong to the corresponding sub-
intervals. However, if f is McShane-integrable in this sense, then the integral
can be equivalently defined by allowing also partitions consisting of general mea-
surable subsets: see [29, Proposition 1F]. For this reason, McShane integrability
in this sense will be still mentioned as oH-integrability.

A first result is that, in this case, monotonicity implies oH-integrability: it is
inspired at [34, Example 5.36].

Theorem 4.1. Assume that F : ½0; 1� ! cwkðXÞ is an increasing mapping, with
respect to the inclusion. Then F is oH-integrable.

Proof. Since FðtÞ is order-bounded for all t, one can set K :¼
supfjxj : x a Fð1Þg and obtain that FðtÞH ½�K;K � for all t. Now, for each in-
teger n let ti :¼ in�1, i ¼ 0; . . . ; n, and define two multivalued mappings, G1 and
G2, in the following way:

G1ðtÞ ¼
F ðtiÞ; t a ½ti; tiþ1½; i ¼ 0; 1; . . . ; n� 1

F ðtn�1Þ; if t ¼ 1;

�

G2ðtÞ ¼
F ðtiþ1Þ; t a �ti; tiþ1�; i ¼ 0; 1; . . . ; n� 1

F ð0Þ; if t ¼ 0:

�

Clearly G1 and G2 are oH-integrable since they are simple (see Remark 3.11),
and it is obvious that G1ðtÞHFðtÞHG2ðtÞ for all t. Now, it will be proven thatZ

G2 dlH
Z

G1 dlþ ½�2Kn�1; 2Kn�1�: thanks to Proposition 3.17 this will

yield integrability of F . Of course,

Z
G2 dl ¼ n�1

Xn

i¼1

F ðtiÞ;
Z

G1 dl ¼ n�1
Xn

i¼1

Fðti�1Þ:

Now, take any element z a

Z
G2 dl: then z ¼ n�1ðx1 þ x2 þ � � � þ xnÞ; for suit-

able elements xi a FðtiÞ, i ¼ 1; . . . ; n. Let us choose arbitrarily x0 a F ð0Þ and de-

fine w :¼ n�1ðx0 þ x1 þ x2 þ � � � þ xn�1Þ: Of course, w a

Z
G1 dl and jz� wj ¼
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n�1ðjxn � x0jÞa 2Kn�1: In conclusion, for every element z a

Z
G2 dl there

exists an element w a

Z
G1 dl such that jz� wja 2Kn�1, i.e.

Z
G2 dlH

Z
G1 dlþ ½�2Kn�1; 2Kn�1�

as announced. The proof is now complete. r

Observe here that the last Theorem is not a consequence of [12, Theorem 19]
and Theorem 3.4: in fact, combining these two results one only obtains norm-
integrability of F .

Conclusions

In this paper the notions of Henstock (Mc Shane) integrability for functions and
multifunctions defined in a metric compact regular space and taking values in a
Banach lattice with an order-continuous norm are investigated. Both the norm-
type and the order-type integrals have been examined. Thanks to the structure
of near vector space of cwkðX Þ, it is proved that the Henstock norm integrability
of a multifunction F is equivalent to the Henstock integrability (both in the norm
and in the order sense) of its embedded function iðFÞ. Selections and decomposi-
tion results are also obtained.

Also the case of ckðX Þ-valued mapping can be discussed by using an analo-
gous construction, with similar conclusions.
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