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ABSTRACT. — Henstock-type integrals are considered, for multifunctions taking values in the
family of weakly compact and convex subsets of a Banach lattice X. The main tool to handle the
multivalued case is a Radstrom-type embedding theorem established by C. C. A. Labuschagne,
A. L. Pinchuck, C. J. van Alten in 2007. In this way the norm and order integrals reduce to that of
a single-valued function taking values in an M-space, and new proofs are deduced for some decom-
position results recently stated in two recent papers by Di Piazza and Musial based on the existence
of integrable selections.
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1. INTRODUCTION

After the pioneering works of Aumann and Debreu, the multivalued case has
been intensively studied, several notions of integral for multivalued functions in
Banach and other vector spaces have been developed. These notions have shown
to be useful when modelling some theories in different fields as optimal control
and mathematical economics, see for example [19, 27]. The choice to deal with
these types of integration is motivated by the fact that Bochner integrability of
selections is a strong condition; moreover selection theorems for the Aumann—
Bochner integral are stated in the separable context. In order to overcome this
problem contributions have been given also in [16, 17, 21, 22].

The starting point of this research are the papers [6-8, 12] in which the
comparison between norm and order-(multi) valued integration is examined in
Banach and vector lattices. Another fundamental tool of this paper is the em-
bedding theorem given in [35], in which a vector lattice version of the Radstréom
embedding theorem is stated. As far as we know a first result which uses an em-
bedding theorem was given in [3] and then by Debreu, Castaing and his school
(see for example [18]) and later on by many other authors: see for example,
[2, 7, 15, 16, 22-26, 37-39]. This paper aims to provide a comparison between
different types of multivalued integration, in Banach lattices. Throughout this
paper (T,d) is a compact metric Hausdorff topological space, X its Borel
o-algebra and u : £ — Ry a regular, pointwise non atomic measure, X a Banach
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(lattice) space and ewk(X) the family of all convex weakly compact non-empty
subsets of X

In Section 3 the Henstock multivalued integral is introduced (H-integral for
multifunctions). A very important tool for the study of set-valued integration is
the Kuratowski and Ryll-Nardzewski’s theorem which guarantees the existence
of measurable selectors, though it has the handicap of the requirement of sepa-
rability for the range space. Recently this result was extended to the non sepa-
rable case in [16, 17, 24] for other kinds of multivalued integrals or for the
ck(X)-valued case, while here a selection theorem is given for cwk(X)-valued,
H-integrable multifunctions.

Moreover, thanks to the structure of near vector space of ewk(X), it is proved
that the H-integrability of F is equivalent to the H-integrability (and also order-
type integrability) of its embedded function i(F), and that the multivalued integral
here obtained coincides with the one given in [7]. This fact also implies that the
H-integral of F and the norm-integral ®(F,-) given in [7] are countably additive
multimeasures. Of course, if the target space is a general Banach lattice (not nec-
essarily an M-space), considering order convergence gives rise to a new concept
of integral. In Subsection 3.2, indeed, the order structure is considered, since vec-
tor lattices play an important role (see for example [1, 4-6, 10, 11, 13, 20, 36, 40])
also in applications, and an H-(multivalued) integral with respect to the order is
studied.

2. PRELIMINARIES ON HENSTOCK AND M CSHANE INTEGRALS

Given a compact metric Hausdorff topological space (7,d) and its Borel o-
algebra X, let £ : £ — R be a pointwise non atomic (namely x({¢}) = 0 for every
t € T) g-additive (bounded) regular measure, so that (7, d,Z, 1) is a Radon mea-
sure space. Let X be a Banach space. The following concept of Henstock integra-
bility was presented in [28] for bounded measures in the Banach space context.
See also [6] for the following definitions and investigations.

A gauge is any map y: T — R*. A decomposition TI of T is a finite family
M= {(E,t):i=1,...,k} of pairs such that t; € T, E; € £ and u(E;n E;) =0
for i # j. The points ¢;, i = 1,..., k, are called tags. If moreover U,k:1 E=T11
is called a partition.

A Perron partition is a partition such that #; € E; for every i.

Given a gauge 7, any partition IT is said to be y-fine (I1 < y) if d(w, #;) < y(t;)
forevery w e E;and i = 1,..., k. Equivalently a gauge y can be also defined as a
mapping associating with each point # € T an open set which contains the point z.

DEFINITION 2.1. A function f : T — X is Ms-integrable (resp. H-integrable) if
there exists I € X such that, for every ¢ > 0 there is a gauge y : T — R™ such that
for every y-fine partition (resp. Perron partition) of 7', IT = {(E;, t;),i = 1,...,q},
one has:

lo(f I — 1] <,
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where the symbol o(f,IT) means > 7, f(¢;)u(E;). In this case, the following
notation will be used: I = (Ms) / fdu (resp. I = (H) / fdu).
T T

REMARK 2.1. It is not difficult to deduce, in case f is H-integrable in the set
T, that also the restrictions f 1z are, for every measurable set E, thanks to the
Cousin Lemma (see [41, Proposition 1.7]). This is not true in the classical theory,
where 7 = [0,1] and the partitions allowed are only those consisting of sub-
intervals. As it is well-known, in such classical case H-integrability is different
from McShane integrability and also from Pettis integrability. Nevertheless,
McShane integrability of a mapping 1 : [0, 1] — X (here X is any Banach space)
is equivalent to Henstock and Pettis simultaneous integrabilities to hold (see |28,
Theorem 8§]).

Since the measure u is assumed to be pointwise non atomic, all the con-
cepts in the Henstock sense turn out to be equivalent to the same concepts in
the McShane sense (i.e. without requiring that the rags are contained in the
corresponding sets of the involved partitions) as shown in [14, Proposition 2.3],
in fact it will be sufficient to observe that, for every gauge y and any y-fine
partition

n’ .= {(B,‘,l[) = 1,...,]{},

there exists a Henstock-type y-fine partition IT' satisfying o(f,11°) = o(f,IT).
Without loss of generality, all the tags #; can be supposed to be distinct. Now,
set A :={t;,i =1,...,k} and define, for each j:

Bl = (B\A) {4},

Then the pairs (B;, ¢;) form a j-fine Henstock-type partition I1" and u(B/) = u(B;)
for all j, so a(f, HO) = o(f,IT"). So the Perron condition will no longer be neces-
sary.

For the sake of clearness, it is useful to remark that actually McShane integra-
bility in the classical case for a mapping f : [0, 1] — X is equivalent to the present
definition of Ms-integrability (see [29]), while Henstock integrability (in the clas-
sic case) is strictly weaker than McShane. However, since in this context (for
pointwise non atomic measures) the two notions coincide, they will be no more
distinguished, and will be simply referred as the Henstock integral.

From now on suppose that X is a Banach lattice, X T is its positive cone and
X+ is the subset of strictly positive elements of X. A sequence (p,), in X is
called (0)-sequence iff it is decreasing and /\  p, = 0.

The symbols | |, || || refer to modulus and norm of X, respectively; for the
relation between them see for example [6, 10, 11, 30].

An element e of Xt is an order unit in X if X is the solid linear subspace
of itself generated by e; that is, if for every u € X there is an n € N such that
lu| < ne.
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An M-space is a Banach lattice M in which the norm is an order-unit norm,
namely there is an order unit e in M and an equivalent Riesz norm || - ||, defined
on M by the formula ||u||, := min{o : |[u| < ae} for every u € M. In this case one
has also ||u + v|| = |ju|| v ||v|| for positive u,v € M.

An L-space is a Banach lattice L such that ||u+ v|| = |ju|| + ||v|]] whenever
u,v € L. For further details about L- and M-spaces see also [30].

In the setting of Banach lattices the notion of order-type integral can be given
as follows.

DErFINITION 2.2. A function f: T — X is order-integrable in the Henstock
sense ((oH)-integrability for short) if there exists J € X together with an (o)-
sequence (b,), in X and a corresponding sequence (y,), of gauges, such that for
every n and every y,-fine (Perron) partition of 7', I1 = {(E;, t;),i = 1,...,q}, it is

lo(f, 1) — J| < by; then the integral J will be denoted with (oH) / f.

Also in this case there is no difference in taking y,-fine arbitrary partitions
rather than Perron-type partitions. So from now on, unless otherwise specified,
only arbitrary y,-fine partitions will be considered.

3. GAUGE MULTIVALUED INTEGRALS

The previous notions of integral can be extended to the case of multivalued
mappings. For the norm integral, the concept given in [§] will be adopted here,
comparing it with other definitions: thanks to a well-known Radstrém-type em-
bedding theorem given in [35], the multivalued case can be reduced to the single-
valued one, which can help to study the integral.

When the space X is a Banach lattice, also the notion of order-type integral
will be introduced, for multivalued mappings, essentially following the lines of
the paper [6]. Also for this notion, some properties and comparisons will be
stated.

Let Py(X) be the set of all nonempty subsets of the Banach space X, and
bf (X) be the set of all nonempty, bounded and closed subsets of X; moreover,
let ¢bf (X), ewk(X), ck(X) denote respectively the subfamilies of bf(X) of con-
vex, weakly compact and convex, compact and convex sets.

For all 4, B € Py(X) and 1 € R the Minkowski addition and scalar multipli-
cation are defined as

A+B={a+b:ae Abe B}, and A4d={la:ae A}.
As in [18, 35] the operation @ on bf(X) is defined by setting 4 @ B :=
cl(A+B). If 4, e bf (X),i=1,...,n, then

> Aii=cl(Ar+ -+ Ay).
i=1
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Observe that if 4, B € bf (X) then A @ B € bf (X). In case 4 and B are in cwk(X)
(or in ck(X)), then the Minkowski addition is already closed, so in these cases the
closure in the previous operation is not needed. For all unexplained terminology
on multifunctions we refer to [18]. Since the set inclusion is a natural ordering on
Py(X), which is compatible with the Minkowski addition and scalar multiplica-
tion, in [35] a Radstrom embedding theorem is extended to the space cwk(X) as
follows.

THEOREM 3.1 ([35, Theorems 5.6 and 5.3]). There exist a compact, Stonian,
Hausdorff space Q and a positively linear map i : cwk(X) — C(Q) such that

3.1.1) dy(A4,C) = li(4) —i(C)|| ., 4, C € ewk(X) (of course, here dy denotes the
Hausdorff distance (see [18, 35])),
3.1.2) i(ewk(X)) = cl(i(ewk(X))) (norm closure).
3.1.3) i(co(A v C)) =max{i(A4),i(C)} for all A, C in cwk(X).
3.1. Norm multivalued integrals

In this section a short survey is presented of the different notions of the multi-
valued integral in the norm sense, in order to compare them and possibly improve
some results.

DEFINITION 3.1. For a multifunction F : T — Py(X) let S} ;; be the set of all
H-integrable selections of F in the sense of Definition 2.1, namely: S} =
{f:f(t) e F(t) u — a.e. and f is H-integrable.}

DErFINITION 3.2, If S}H is non- empty, then for every E € X the Aumann-
Henstock integral ((AH)-integral) of F is defined as the set

(AH) [ = { [ rduse S},H}-

In order to prove existence of the previous selections, the following concept of
integrability is also introduced, for a multifunction F : T — cwk(X).

DEFINITION 3.3. Given a multifunction F : T — c¢wk(X), F is H-integrable if
there exists an element J € cwk(X), such that for every ¢ > 0 there exists a gauge
y such that, for every y-fine partition II, the following holds: dy (> F,J) < e. In

this case one writes J := (H) / Fdu.
T

Also in this case, existence of the integral in 7" implies existence in all mea-
surable subsets £ of T (which will be denoted by J£(F)) analogously to Remark
2.1. Indeed, as later shown, the last definition of integrability reduces to H-
integrability for a corresponding single-valued function F taking values in the
space C(Q), where Q is a suitable compact Stonian space: see Theorems 3.1 and
3.4 below.
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For the definitions of Mc Shane and Pettis integrals for multifunctions see for
example [7, Definition 2|, [8, Definition 3.1], omitting the “limsup” in the first
definition since here 7" is compact and u is bounded. One can observe also that,
in case a multifunction F : T — cwk(X) is H-integrable, then there exist H-
integrable selections. This result has been proved in [16, Theorem 2.5] for Pettis
integrable selections and in [26, Theorem 3.1], but for Henstock integrable multi-
valued mappings defined in the real interval [0, 1].

THEOREM 3.3. If F : T — cwk(X) is H-integrable, then Sy ;; # 0.

PRrOOF. Observe that, thanks to Hérmander equality (see e.g. [26, formula (3)]),
the function F is scalarly H-integrable, i.e. the support mappings ¢+

s(x*, F(t)) are H-integrable, for all x* € X*. Set K := (H) / F du, and choose
T

any strongly exposed point x € K: such a point exists, since K is in ecwk(X).
Then there exists a functional xj € X* such that xj(x) < xj(xo) for every
x € K, x # xp. Let

G(1) = {x e F(1) : x5 (x) = 5(xg, F(1))},

for every ¢ € T. Proceeding like in the proof of [16, Theorem 2.5], one has that G
is Pettis integrable in the sense of [16] (i.e. the support mappings s(x*, G) are inte-
grable for every x* € X* and for every measurable subset £ — T there exists an

element Pr(G) € ewk(X) (denoted also by (P) / G dp) such that
E

S(x*, Py(F)) = / s(x*, G) dy),

E

and has a Pettis integrable selector g (which is also therefore a selector of F), for
which xj(xo) = / x9(t) du. Moreover (P)/ Gdu={xo}, and x*(g) = s(x*, G)
T T

u-a.e. for all x*, and every selector g of G. So, for each x*, the mapping x*(g) is
Lebesgue-integrable, and therefore McShane-integrable (see [31, Theorem 10]),
which in this setting means Henstock integrability. Then, proceeding as in the
proof of [26, Theorem 3.1], the conclusion follows, i.e. g is H-integrable. |

The multivalued norm integral, introduced in [6, Definition 3.13] will be
now recalled. This definition is inspired at a similar notion introduced in [33,
Definition 3] in order to study differential relations. In the subsection 3.2 a corre-
sponding notion for the order-type multivalued integral will be introduced in the
Banach lattice context and compared with this.

DEFINITION 3.4 [6, Definition 3.13]. Let F: T — Py(X) be a multifunction,
and E € X. We call (]| - ||)-integral of F on E the set



HENSTOCK MULTIVALUED INTEGRABILITY IN BANACH LATTICES WITH RESPECT 369

O(F,E) :{zeX:foreveryae R* thereis a gauge y: T — R :

inf ||z — ¢|| < ¢ for every y-fine partition
ce l.IVF

Hy = {(E[,[[) = 17,k} OfE}

Alternatively, one can write ([6, Proposition 3.7])

(3.2.1) O(F, E) = ﬂ U Pﬂ {ZHF@ %}

]
/

where P, ¢ is the family of all (Perron) y-fine partitions of E.

REMARK 3.3. Some relations are collected here between the previous definitions
of integral, and also with the Aumann integral. In case F is cwk(X)-valued and
H-integrable on E there exists an element Jz(F) € cwk(X) such that, for every
n € N it is possible to find a gauge y, such that

(33.1) Y FcJe(F)+n'By and Jg(F)<= Y F+n 'By
I1 IT

hold true, for every y,-fine partition Il, where By is the unit ball in X. So, in this
case it follows Jg(F) = ®(F, E). Later also the converse inclusion will be proven
(see Proposition 3.6).

Observe that, for every E € X, the following inclusion holds:

(AH) /E Fduc ®(F,E)

since, if f € S }p 11, then its H-integral belongs by definition to the right member of
(3.2.1). However, in case F is H-integrable, then

(AH)/EFd,u c Je(F):

indeed, if f € S}py - for each n there exists a gauge y;, such that

(H) —/fdu eInF ®n 'By
E

for all y,-fine partitions IT; then, if ITis (y, Ay, )-fine,

(H) —/Efdu e Jp(F) @ 2n ' By.
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(here y, is the gauge corresponding to # in the definition of Jg(F)). By arbitrari-
ness of n and closedness of Ji(F), we get that

(H) - /E fdu e J5(F);

and, by arbitrariness of f, the announced inclusion follows.

Moreover since f is H-integrable for every E € X then Definition 3.3 is equiv-
alent to the (x)-integral given in [7, Definition 2].

Assuming that X is a separable Banach space and that there exists a countable
family (x;), in X’ which separates points of X then, thanks to [7, Theorem 1] the
following equalities follow, for any measurable and integrably bounded multi-
function F with values in cwk(X):

Jp(F) = (AH) /E Fdy = (F, E).

Using Theorem 3.1, according to [15, Definition 2.1] and [7, Definition 3], the
following main result can be stated, which is analogous to [16, Proposition 4.4]
(given for the Pettis integrability), together with a decomposition theorem that
can be compared with previous ones obtained in [24, Theorem 1] and in [26, Cor-
ollary 3.2]. A definition is needed, however.

DerFINITION 3.5. If F: T — cwk(X) is a multivalued mapping and X any
Banach space, we say that F is non-negative if i(F) : T — C(Q) is, where 7 is the
embedding found in Theorem 3.1.

THEOREM 3.4. Let F : T — cwk(X) be a multifunction. The following are equiv-
alent:

3.4.1) F is H-integrable (in the sense of Definition 3.3);
3.4.2) the embedded function i(F): T — C(Q) is H-integrable, and in that case

(- [ iF) du = 107(F))

3.4.3) for every E € X and ¢ > 0 there exists a gauge y such that ||o(i(F),I1;) —
a(i(F),IL)||,, < e for every y-fine partitions Iy, I, of E;

3.4.4) F is the sum of a non-negative H-integrable multifunction G with values in
ewk(X) and an H-integrable single-valued function f: T — X.

Moreover, the previous statements imply
3.4.5) the family Wi = {s(x*,F) : x* € By} is uniformly integrable.

PrOOF. Thanks to Theorem 3.1, it is easy to see that 3.4.1) is equivalent to
3.4.2). Obviously 3.4.1) implies 3.4.3). The next step is to prove that 3.4.3) implies
3.4.2), i.e., if the Cauchy-Bolzano condition is true, then i(F) is H-integrable.
Taking ¢ = n~!, then there exists a gauge y, such that, for every pair (I}, T1})
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of y,-fine partitions of E,
lo(i(F), 11}) — o(i(F), 15)||,, <n”".

Without loss of generality assume that (y,), is decreasing in n.
Since C(Q) is Dedekind complete ([40, Proposition 2.1.4]), then
Niiep, 0(i(F), 1), \/;p. a(i(F), 1) are in C(Q) and for every n € N it is obvi-

7n

ous that

N oli(F), )< \/ o(i(F),1).

MMer,, MMep,,

Let z = \/, /\pcp o(i(F),IT). Then it is easy to see that z verifies the definition
of integrability. In order to prove that 3.4.2) implies 3.4.5), observe that the single
valued function i(F) is H-integrable so i(F) is Pettis integrable and then, by [16,
Proposition 4.4] F is Pettis integrable and so the assertion follows from [16, The-
orem 4.1].

Also, it is obvious that 3.4.4) implies 3.4.1). Now it will be proven that 3.4.1)
implies 3.4.4).

To this aim, let /' be any H-integrable selection of F (see Theorem 3.2), and
define G by translation: F(¢) = f(¢) + G(t). This implies that 0 € G(¢) for all ¢,
and therefore s(x*, G(¢)) > 0 for all # and x*. So the Radstrom embedding of
G(t) is a non-negative element of /*(By-); and, since the Kakutani isomorphism
preserves order, also i(G(z)) is non-negative, and therefore G is a non-negative
cwk(X)-valued mapping. Integrability of G follows immediately from the fact
that i(F) = i(f) + i(G), and linearity of the H-integral. The last implication fol-
lows easily by 3.4.2) and [16, Theorem 4.1]. O

From now on in this subsection, all multivalued mappings will be assumed
to be ewk(X)-valued. Thanks to well-known results concerning the H-integral of
single-valued functions (see [31, Corollary 2F and Proposition 1C(a)]) and to
Theorem 3.1, one also has easily

PROPOSITION 3.5. If F is H-integrable, then for every A,B € L with An B =0 it
holds

(H)/AUBFd,u_(H)/Aqu—i—(H)/BFd,u.

The following Proposition compares the integral Jz(F) (when it exists) with
the integral ®(F, E) of Definition 3.4.

Later, in the Example 3.14, it will be shown that ®(F, E) can be in cwk(X)
even when F is not H-integrable.

PROPOSITION 3.6. Let F be H-integrable. Then, for every E € X one has
Jg(F) = O(F, E), and therefore ®(F, E) is in cwk(X).
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PRrOOF. From the hypothesis one has that, for every integer n, a gauge y, exists,
such that

(3.6.1) li(EnF) — i(Je(F))|l, <

whenever IT is a y,-fine partition of E, and so, thanks to Theorem 3.1, Jg(F) <
InF + n~!'By: indeed, from Theorem 3.1 it follows that

dy(EnF,Jg(F)) <n .

This clearly implies that

Je(F) = (Y [\[EnF +n~'By] = ©(F,E).
noy P

(This was also proved in (3.3.1)). On the other hand, from the formula (3.6.1) it
can be deduced that EnF = Jg(F) +n~'By. Now, if z € ®(F, E), for the same
integer n a gauge y/, exists, such that z € £ F + n~! By for every y!-fine partition
IT of E. So, if one takes y; :=y, ny,, then, for every y:-fine partition IT of E:
YnF c Jg(F) +n"'By, z€ XnF +n'By, and therefore z € Jg(F) + 2n~'By.
Since this must be true for all n, and Jg(F) is closed, it follows that z € Jg(F),
and so the converse inclusion is proved. |

Due to this fact one can consider ®(F,E) as a multivalued set function,
as soon as F: T — cwk(X) is H-integrable, and for any Banach space X. In
particular

DEerFINITION 3.6 [16, Definition 3.1]. A multivalued set function M : %X —
ewk(X) is a finitely additive (respectively countably additive) multimeasure if
M(0) =0 and M(A U B) = M(A) + M(B) for every A,B € X, with AnB=0
(respectively if for every disjoint sequence (E,) in X the series >, M(E,) is un-
conditionally convergent and M (|J,(E,)) = >, M(E,)).

COROLLARY 3.7. Let F: T — cwk(X) be any H-integrable multifunction. Then,
for every E € X, M(E) := ®(F,E) is a countably additive multimeasure. More-
over, in the topology of C(Q), M is g-additive and u-absolutely continuous.

ProOOF. The first part is an immediate consequence of Propositions 3.6, 3.4 and
[16, Theorem 4.1] since F is Pettis integrable. As to the second part, thanks to
[14, Proposition 2.3], i(F) is McShane integrable. So, by [29, Theorem 1Q], i(F)
is Pettis integrable and therefore M turns out to be g-additive and g-continuous,
thanks to well-known properties of the Pettis integral. O

Finally:
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ProrosiTiON 3.8. If F: T — cwk(X) is H-integrable then, for every E € X

it is:
uﬂAFm:{AfWJeﬂJ,

(here, S}, has a similar meaning as S} ;, but with Pettis in the place of Henstock
integrability) while, if X is reflexive,

aﬂAsz{AfmJeﬂﬁ}

PrROOF. Observe that the Aumann integrals involved are non empty thanks to
[16, Theorem 2.5] and Theorem 3.2 respectively. So the assertion is an obvious
consequence of [8, Theorem 4.3] since x is pointwise non atomic and reflexivity
of the space avoids the hypothesis on free cardinals. m|

3.2. Order multivalued integrals

Now, the multivalued integral in the order sense will be studied, with the follow-
ing assumption:

(Hy) X is a weakly a-distributive Banach lattice with an order continuous norm,

Also in this subsection, a small survey is presented, comparing some different
notions of integral in the order sense. Some new results will be obtained, similar
to those already existing in the normed case: nevertheless, sometimes there are
differences, which may look at first sight not so deep as they really are.

DEFINITION 3.7 ([6, Definition 3.6, Proposition 3.7]). Let F : T — 2% be a mul-
tifunction with non-empty values, and E € Z. The (0)-integral of F on E is the set

o(F.E):= | ([ #%Eu(F) by,
On)s Gy 1 Py

where (b,), denotes any (0)-sequence, (y,), any sequence of gauges, P, the fam-

ily of all y,-fine partitions of E, and #%(C,b) :={z € X such that |z— y| <b

for some y € C}.

Of course, when F is single-valued, F = {f}, the integral ®°(F,E)=
(oH) / f du, if non-empty, is a singleton, and in this case f is oH-integrable.
E

Moreover, for multivalued mappings F : T — cwk(X) and for any measurable
set £ the following inclusion holds, thanks to order-continuity of the norm:
®°(F,E) « O(F,E); in case X is also an M-space, then also the reverse inclusion
holds true as in [6, Proposition 3.14].
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Similarly as for the norm integral, an alternative notion can be given, parallel
to Definition 3.3:

DEFINITION 3.8. Let F : T — cwk(X) be any multifunction. F is oH-integrable
if, for every measurable E = T there exist an element Jz € cwk(X), an (0)-
sequence (b,), in X and a corresponding sequence (y,), of gauges in 7', such
that, for every n and every y, -fine partition Il of E, Zy(F) < %(Jg,b,), and
Jg < U(ZEn(F),by).

ProrosIiTION 3.9. If F: T — cwk(X) is oH-integrable, then the element Ji is
unique.

ProOOF. Without loss of generality, assume that £ = T, and suppose that
J :=Jrand J' := Jj are two elements of cwk(X') satisfying the condition in Def-
inition 3.8. Let (b,), and (b;), be the (0)-sequences relative to J and J' respec-
tively, and (y,),, (7,), be the corresponding gauges. Then, fixed n, and taken
any (y, A y,)-fine partition I1, one has

J < UZn(F),b,) < U(J' by +by),
and also

J' < UEn(F),b) < U, by +b)).

' “n

So, for every element « € J and every integer n, there exists an element a, € J'
such that |a —a,| < b, + b,. This clearly means that the sequence (q,), is (0)-
convergent to a, and so also norm-convergent to a. Since J' is closed, this implies
aeJ'. So, J = J'. Reversing the role of J and J’, also the converse inclusion is

obtained, and then J = J'. O
This integral is related to @, in the following sense.

THEOREM 3.10. Let F be as above, and assume it is oH-integrable. Then, for
every measurable E < T, ®°(F,E) = Jg, and so ®°(F,E) is in cwk(X).

PROOF. Again, the proof will be given only for the case £ = T'. Let (b,), and
(y,), be the (0)-sequence and the corresponding sequence of gauges regulating
oH-integrability of F.

Let w be any arbitrary element of Jr, and fix n. Then, if Il is any y,-fine
partition, clearly w € % (2n(F),b,). But this is precisely the condition that w e
®°(F, T). By arbitrariness of w, one obtains the inclusion Jy < ®°(F,T) (and
also that ®°(F, T) # 0).

In order to prove the converse inclusion, take any element z € ®°(F, T'), and
let (b)), and (y;), be the (0)-sequence and the corresponding sequence of gauges
related to the definition of ®’(F, T'). Now, if IT is any (y, A y,)-fine partition,

z e U(En(F),b)) = U(J7, b+ by).

’n
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As above, this implies that z is in the norm-closure of J7, i.e. z € Jr. By arbitrari-
ness of z, this gives ®°(F, T) = Jy. This proves the reverse inclusion, and there-
fore the announced equality. O

Observe that, also for the order integral, the set ®°(F, T') can be in cwk(X)
even when F is not oH-integrable, see Example 3.14.

From now on, order-boundedness of the sets F(t) will be assumed, for any multi-
valued mapping F and every t € T.

REMARK 3.11. Observe that, thanks to [6, Theorem 3.12] if F is a simple func-
tion with values in ewk(X) (namely F =3",_, Cilg, C; € ewk(X), E;nE; = 0,
i # j, i <n)then ®°(F,E) is in ¢cwk(X) and

£) = Y- Gt ={ (ott) [ fau: 10 € Fu— ae.}

i<n

In fact, in the quoted result the equivalence is stated among the ®’-integral and
the order-closure of the Aumann-Henstock integral, when the C;’s are in chf (X).
But C; € ewk(X) so one has direct coincidence with the Aumann integral.

A kind of selection theorem is stated now. This result is parallel in some sense
to the Kuratowski-Ryll Nardzewski selection theorem, but related to the order
structure of the space X rather than to its topology. Some consequences will be
shown later.

THEOREM 3.12. Let F : T — c¢wk(X) be any oH-integrable mapping, with inte-
gral J, and define g(t) .= sup F(t), S :=supJ. Then, g is oH-integrable, and its
integral is S.

Proor. Let (b,), and (y,), be the sequences introduced in the Definition 3.8,
and fix any y,-fine partition I1. Then

(3.12.1) a(g,TT) € ¥'(S, b,)
where
V(A,b) :={z e X :Jay € A with z < ay + b},

for every (4,b) € (ewk(X), X" 1). Indeed, as I1 = (4, ;) is y,-fine, > oyu(l;) <
S + by, for every choice of the points o; € F(¢;). Hence

() <S+b, — foi#(lz)

i>1
and, by varying just oy one gets g(f)u(ly) < S+ b, — ;. wu(l;), from which
Zaz,u < -9 ZLl) (Il)+S+bn

i>1
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Now, isolating o, and proceeding in the same fashion, it follows
> ou(l) < —g(0)u(h) — g(t)u(h) + S + by;
i>2
then it is clear that, continuing in this way, (3.12.1) is proven. On the other hand,
easily one has
J =V (En(F),ba) = 7 (a(g, 1), by),
hence S < (g, IT) + b,. So, there exist an (0)-sequence (b,), and a sequence (y,,),

of gauges such that, for every n and every y,-fine partition I1, a(g,IT) < S + by,
and S < a(g,I1) + b, i.e.

|G'(g,1—[) - S| < bm
from which the assertion follows. 0O

In some cases, one can obtain a decomposition similar to Theorem 3.4.4), for
oH-integrable multifunctions.

THEOREM 3.13. Let F : T — cwk(X) be any oH-integrable function, such that
(3.13.1) sup F(z) € F(¢) for each t € T.

Then F is the sum of an oH-integrable single-valued mapping g : T — X and an
oH-integrable mapping G : T — cwk(X) such that s(x*, G(t)) > 0 for all elements
x* € X* and s(x*, G(t)) = 0 for all positive elements x* € X*.

PROOE. Let g(t) = sup F(¢) for all ¢, and define G(7) = F(¢) — g(t) by transla-
tion. Then clearly sup G(¢) = 0. Moreover, from (3.13.1) it follows 0 € G(¢), by
a translation argument. Now, for every fixed ¢ and any element x* € X*, clearly
s(x*,G(1)) = 0.

In case x* is positive, we also have 0 = x*(0) > x*(u) for all u € G(7), so 0 >
s(x*,G(¢)). Combining this result with the previous one, we get s(x*, G(¢)) =0
for all positive x*.

It only remains to show that G is oH-integrable. Indeed, it will be proved that

its integral is J — sup{J}, where J = (oH) / F du. By integrability of F and g,
T

there exist an (o0)-sequence (b,), in X and a corresponding sequence (y,), of
gauges, such that, as soon as Il is any y,-fine partition, one has

En(F) = U(J,by),  J = UEn(F),by), |o(g,1I) —supJ| < by.
From this, it is easy to see that
2n(G) < U(J —supJ,2b,), J—supJ < %(Zn(G),2b,).

This suffices to prove integrability of G. O
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Observe here that condition (3.13.1) is fulfilled, for example, if F(z) is upwards
directed for every ¢: in this case sup F(¢) € F(t) thanks to [30, Proposition 354 E].

The previous results can be used to introduce an example, in which the set
®°(F,T) is in ewk(X), but the mapping F is not (oH)-integrable.

ExAaMPLE 3.14. Let T = [0,1] and 4 < [0, 1] be any non-measurable set, so that
the mapping 1 4 is not Lebesgue integrable. Clearly, this also means that 1, is not
H-integrable (in any sense, both in order and topology, since here the space X is
R). Next, define the following multivalued map F : [0, 1] — ck(R) as follows:

F(1) = [0,14(0)],

for every ¢ € [0, 1] (here, of course, [0,0] means {0}).

Clearly, F is an order-bounded map, and the element 0 belongs to all the sums
2 (F), for whatsoever partition P of [0,1]. Hence ®’(F,T) = ®(F,T) is non-
empty and compact, thanks also to [6, Proposition 3.8].

But F is not (oH)-integrable, otherwise the mapping ¢ — max F(z) would be
(oH)-integrable by Theorem 3.12, which is impossible.

This example shows that the quantity ®°(F, T') might replace the integral in
some cases of non-integrability, when the previous Theorem 3.10 is not valid.

For single-valued mappings, [12, Theorem 15] shows that, at least in L-spaces,
oH-integrability implies Bochner integrability (with the same integral). Observe
also that this result is somewhat similar to [32, Theorem 5.12]. A consequence
of [12, Theorem 15] is the following result, which can be viewed as a particular
version of Theorem 3.13.

COROLLARY 3.15. Let L be any L-space, and F : T — c¢wk(L) be an oH-
integrable mapping. Assume also that sup F(t) € F(t) for all t. Then F is the sum
of a Bochner integrable single-valued mapping f : T — L and an oH-integrable
mapping G : T — cwk(L) such that s(x*,G(t)) > 0 for all elements x* € L* and
s(x*, G(1)) = 0 for all positive elements x*.

PRrOOF. 1t is enough to combine Theorem 3.13 with [12, Theorem 15]. O

Some conditions will be given now, ensuring oH-integrability of a multivalued
function. The first is a Lemma of the Cauchy-type.

LemMMA 3.16. Let F: T — cwk(X) be any set-valued mapping. Then F is oH-
integrable if and only if there exists an (o)-sequence (b,), in X and a corresponding
sequence of gauges (y,), such that for every n, and every pair I1, I1" of y,-fine par-
titions of T one has 21 (F) < U (X (F), b,).

ProoOF. The necessary condition is obvious. For the converse implication
observe that #%(C,b) = C + [—b,b] for all sets C = X and all b€ X", Since
[—b,b] < ||b||By for all be X", and (b,), is an (0)-sequence, the condition
above implies that dy(En(F),Zq(F)) < ||by|| (and lim,|b,|| = 0). This is
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precisely the Cauchy condition for the (H)-integral of F, and this implies that
J:=(H) / F du exists, thanks to Theorem 3.4. Now, in order to prove that J is
T

also the (oH)-integral of F, fix n and let IT be any y,-fine partition. Moreover, for
each & > 0 there exists a gauge y’ such that dy (Zy(F),J) < ¢ for any y’-fine par-
tition IT". In particular, if IT' is " A y,-fine, one has

n(F) c 2y (F) + [=bu, by) = J + [—by, by] + €Byx.

Now, since [—by, b,] is closed (see [30, Lemma 354B(c)]) and J is weakly compact,
J + [=by, by 1s closed too. So, by letting ¢ tend to 0, it follows easily

2n(F) < J + [—by, by
for any y,-fine partition Il. A perfectly symmetric reasoning proves also the re-
verse inclusion:

J < Zn(F) + [=by,by] 1e. J= (OH)/Fd,u. O

The next result is inspired at [34, Lemma 5.35], and will be applied later.

PrOPOSITION 3.17. Let F: T — cwk(X) be any set-valued mapping. Assume
that there exists an (o)-sequence (b,), in X such that, for every n a couple of oH-
integrable mappings Gy, G, exist, from T to cwk(X), such that G,(t) = F(t)

Gy(t) for every te T, and (OH)—/ sz,uc%(/ Gy du, bn). Then F is oH-
integrable. T T

ProoOF. Let (b,), be an (0)-sequence as in the hypothesis. Let also (f,), and
(y,), be an (o)-sequence and its corresponding sequence of gauges regulating
oH-integrability of G|, and G, (without loss of generality they can be taken the
same for both multifunctions). Now, fix n € N and take two y,-fine partitions IT
and IT" of T. Then, denoting by J; and J, the integrals of G| and G, respectively,
one has

In(F) < Zn(Ga) = Jo + [=B Bl = J1 + [=bu — By bu + )]
and

Ji+ [_bﬂ _ﬁnabn +ﬂn] < ZH/(Gl) + [_bn - 2ﬂn7bn + 2ﬂn]
< Zq(F) + [=by — 20, by + 25,

So, comparing the last two formulas, and taking ¢, := b, + 2f,, one gets
In(F) = U(Zy (F), )

for all y,-fine partitions IT, TT'. Integrability now follows from Lemma 3.16. [
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4. THE [0, 1] INTERVAL CASE

In this section, one considers functions defined on the unit interval [0, 1], endowed
with the Lebesgue measure A, and taking values in an arbitrary Banach lattice
with order-continuous norm. In order to define Henstock integrability (and inte-
gral), the only partitions allowed consist of (pairwise non-overlapping) sub-
intervals of [0, 1]. This produces the well-known distinction between Henstock
and McShane integrability: indeed, in the latter type, the partitions allowed still
consist of subintervals, but the tags need not belong to the corresponding sub-
intervals. However, if f is McShane-integrable in this sense, then the integral
can be equivalently defined by allowing also partitions consisting of general mea-
surable subsets: see [29, Proposition 1F]. For this reason, McShane integrability
in this sense will be still mentioned as oH-integrability.

A first result is that, in this case, monotonicity implies oH-integrability: it is
inspired at [34, Example 5.36].

THEOREM 4.1. Assume that F : [0,1] — ewk(X) is an increasing mapping, with
respect to the inclusion. Then F is oH-integrable.

PrOOF. Since F(¢) is order-bounded for all 7 one can set K :=
sup{|x| : x € F(1)} and obtain that F(¢) = [-K, K] for all 7. Now, for each in-

teger n let t;:=in"', i =0,...,n, and define two multivalued mappings, G, and
G», in the following way:
F(t; teltiytim],i=0,1,...,n—1
Gl([) ( ) ) € [ +1[ ! n
F(t,-1), ift=1;
F(tiy1), telt,tin],i=0,1,....n—1
G (t
2(f) = { F(0), ifr=0.

Clearly G; and G, are oH-integrable since they are simple (see Remark 3.11),
and it is obvious that G(1) = F(¢) = G,(¢) for all . Now, it will be proven that

/Gz di < /G1 dJ+[-2Kn~' 2Kn™']: thanks to Proposition 3.17 this will
yield integrability of F. Of course,

/ Gydi=n""Y_F(1y), / Gdi=n"> F(ii1).
i=1 i=1

Now, take any element z € / Gydj: then z =n~Y(x; +x, + -+ + x,), for suit-
able elements x; € F(t;), i = 1,...,n. Let us choose arbitrarily xo € F(0) and de-

fine w:=n"1(xo+x; +x2+---+x,_1). Of course, w € /G1 dJ and |z —w| =
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n~(|x, — xo|) <2Kn~!. In conclusion, for every element z e / G, d). there

exists an element w € [ G d/ such that |z — w| < 2Kn~ !, ie.

/szac /G1 dJ+[-2Kn~' 2Kn™]

as announced. The proof is now complete. |

Observe here that the last Theorem is not a consequence of [12, Theorem 19]
and Theorem 3.4: in fact, combining these two results one only obtains norm-
integrability of F.

CONCLUSIONS

In this paper the notions of Henstock (Mc Shane) integrability for functions and
multifunctions defined in a metric compact regular space and taking values in a
Banach lattice with an order-continuous norm are investigated. Both the norm-
type and the order-type integrals have been examined. Thanks to the structure
of near vector space of cwk(X), it is proved that the Henstock norm integrability
of a multifunction F is equivalent to the Henstock integrability (both in the norm
and in the order sense) of its embedded function i(F). Selections and decomposi-
tion results are also obtained.

Also the case of ck(X)-valued mapping can be discussed by using an analo-
gous construction, with similar conclusions.
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