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Abstract. — We define a homogeneous parabolic De Giorgi classes of order 2 which suits a

mixed type class of evolution equations whose simplest example is mðxÞ qu
qt
� Du ¼ 0 where m can

be positive, null and negative, so that elliptic-parabolic and forward-backward parabolic equations

are included. For functions belonging to this class we prove local boundedness and show a Harnack
inequality which, as by-products, gives Hölder-continuity, in particular in the interface I where m

change sign, and a maximum principle.
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1. Introduction

The purpose of this paper is to announce and present in a very short version a
result which is to appear (see [8]). Moreover the result we present here regards a
simplified situation with respect to that considered in [8]. In [8] we consider equa-
tions like (2) satisfying

ðAðx; t; u;DuÞ;DuÞb clðxÞjDuj2;
jAðx; t; u;DuÞjaClðxÞjDuj;
jBðx; t; u;DuÞjaMlðxÞjDuj

ð1Þ

with m; l a L1
locðWÞ, l > 0 almost everywhere, while sgnðmÞ can change and be

zero also in some set of positive measure. One simple example (to stress that we
are interested in the changing type equations) is

mðxÞ qu
qt

� divðlðxÞDuÞ ¼ 0:

Mixed type equations have been considered in connection with many applica-
tions: for instance random processes, kinetic theory, electron scattering. Among
the first papers where some mixed type equation of this type was considered we
recall [1], [7], [2]. In all these papers the coe‰cient m is of the type

sgn xjxj p; pb 0:



A general and noteworthy result, but confined to mb 0, is [11]. In [10] and
[9] we give some existence results for a quite wider class of mixed type
equations.

Coming back to the present paper, we refer for every details, for a wider list
of references, for the more general results and for the proofs to the appearing
paper [8] which has already been submitted. In the present paper, on the contrary,
we focus our attention on a simpler situation where lC 1 and m a LlðWÞ instead
of m; l a L1

locðWÞ. We consider a class of functions, a suitable De Giorgi class of
functions, which in particular contains solutions of a wide class of equations, pre-
cisely equations like

mðxÞ qu
qt

� divAðx; t; u;DuÞ ¼ Bðx; t; u;DuÞð2Þ

with A and B satisfying

ðAðx; t; u;DuÞ;DuÞb cjDuj2;
jAðx; t; u;DuÞjaCjDuj;
jBðx; t; u;DuÞjaMjDuj

ð3Þ

for some positive constants c, C, M.
We give a local boundedness result, a Harnack type inequality and a result of

regularity (the functions we consider are locally Hölder continuous as a byprod-
uct of the Harnack’s inequality) for a particular class of functions containing the
solutions of a mixed type equation like

mðxÞ qu
qt

� Du ¼ 0

(but also of (2)). We recall that Harnack inequalities and results of Hölder con-
tinuity for elliptic and parabolic equations have been widely studied and here
we recall brifly some of the people who started to study these topics: we recall
De Giorgi and Nash for the regularity of the solutions, Hadamard, Pini, Moser,
Aronson, Serrin, Trudinger for the Harnack inequality.

More recently a technique due to De Giorgi was adapted to the parabolic case
by DiBenedetto, Gianazza and Vespri and, to prove our result, we adapt this
technique, following [4] and [6] (see also [5] for a result regarding non-linear
equations).

As already said, in [8] we consider a more general situation, but here we con-
fine to state the result for this simpler situation.

The main results are Theorem 3.1 and Theorem 4.1. Theorem 3.1 is needed
also to start to prove the Harnack inequality stated in Theorem 4.1. Theorem
4.2 is just a corollary of Theorem 4.1, where is stressed the behaviour of u in the
points of the interfaces where m changes sign.

Finally, in the last sections, some important consequences of the Harnack in-
equality are stated, together with some examples.
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2. Notations, prelimanary definitions and assumptions

Consider the coe‰cient m appearing in (2). Even if we consider the equation with
ðx; tÞ a W� ð0;TÞ, and in particular x a WHRn, for simplicity we suppose that

m : Rn ! R;

i.e. m defined in the whole Rn. Consider

Wþ :¼ fx a W j mðxÞ > 0g; W� :¼ fx a W j mðxÞ < 0g and

W0 :¼ WnðWþ AW�Þ

and define

Iþ ¼ qWþBW; I� ¼ qW�BW; I0 ¼ qW0BW; I :¼ Iþ A I� A I0:

We will suppose that Wþ, W� and W0nI0 are the union of a finite number of open
and connected subsets of W. In the same way for every ball BrðxoÞ we will write

Bþ
r ðxoÞ :¼ BrðxoÞBWþ; B�

r ðxoÞ :¼ BrðxoÞBW�; B0
rðxoÞ :¼ BrðxoÞBW0:

Then we define the positive (almost everywhere) weight

~mm :¼
mþ in Wþ;

m� in W�;

1 in W0

8<
:

where mþ denotes the positive part of m and m� the negative part of m, i.e.

mþðxÞ :¼ maxfmðxÞ; 0gb 0; m�ðxÞ :¼ maxf�mðxÞ; 0gb 0:

The extension with 1 in fx a W j mðxÞ ¼ 0g, thanks to assumptions (H.2) and
(H.3), permits to have the Sobolev-Poincaré inequality stated in Theorem 2.1.

First we introduce the Sobolev-type spaces we will need. Given a m a LlðWÞ
we define L2ðW; ~mmÞ as the closure of C1ðWÞ with respect to the norm

�Z
W

u2ðxÞ~mm dx
�1=2

and H 1ðW; ~mm; 1Þ the closure of C1ðWÞ with respect to the norm

�Z
W

u2ðxÞ~mm dxþ
Z
W

jDuj2ðxÞ dx
�1=2

:

In this case the notion of u ¼ 0 in qW coincides with the classical trace in H 1ðWÞ.
We assume that ~mm is doubling, i.e that there is a constant q > 1 such that

ðH:0Þ
Z
B2rðxÞ

~mmðxÞ dxa q

Z
BrðxÞ

~mmðxÞ dx
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for every ball B2rðxÞHW. For a fixed positive e and A a subset of Rn we define

Ae :¼ fx a W j distðx;AÞ < eg:

The assumptions about the function m are the following: we will suppose the ex-
istence of two positive constants K2, K3 (the choice of the names of the constants
is the same considered in [8]), a constant q > 2, v a ð0; 1Þ, q > 1 (for simplicity
the same as in (H.0)) such that:

ðH:1Þ - m a LlðWÞ;

ðH:2Þ - r

jBrðxÞj1=2
�Z

BrðxÞ
~mmðxÞ dx

�1=q
aK2

R

jBRðxÞj1=2
�Z

BRðxÞ
~mmðxÞ dx

�1=q

ðH:3Þ - 1

jSjv
Z
S

~mmðxÞ dxaK3
1

jBjv
Z
B

~mmðxÞ dx

ðH:4Þ -
mþðBþ

2rðxÞÞa qmþðBrðxÞÞ for every x a Wþ A Iþ;

m�ðB�
2rðyÞÞa qm�ðBrðyÞÞ for every y a W� A I�;

jB0
2rðzÞja qjB0

rðzÞj for every z a W0 A I0;

�������
ðH:5Þ - I is a such that lim

e!0þ
jI ej ¼ 0;

where (H.2) has to hold for every pairs of concentric balls BrðxÞHBRðxÞHRn

with r < R, (H.3) has to hold for every ball BHRn and every measurable set
SHB, (H.4) has to hold for every r > 0 for which B2rðxÞHW.

By (H.2) one can prove (see [8]) that there is a a ð0; 1Þ such that

ðH:2Þ0 - ra

jBrðxÞj1=2
�Z

BrðxÞ
~mmðxÞ dx

�1=q
aK2

Ra

jBRðxÞj1=2
�Z

BRðxÞ
~mmðxÞ dx

�1=q
:

A a < 1 is needed twice in the proof of Theorem 7.1 in [8] (Theorem 4.1 below).
By (H.3) one can prove (see [8]) that there are two positive constants t and k

such that

jSj
jBj a k

�~mmðSÞ
~mmðBÞ

�t
;

~mmðSÞ
~mmðBÞ a k

�jSj
jBj

�t
ð4Þ

for every measurable SHB, for every B ball of Rn (this is needed in the proof of
Lemma 6.6 in [8]).

The following result is needed (we refer to [3] for the proof ).

Theorem 2.1. Suppose ðH:0Þ and ðH:2Þ are satisfied and consider r > 0,
x0 a Rn. Then there is a constant g1 depending (only) on n, q, K2, q such that

1

~mmðBrÞ

Z
Br

juðxÞjq ~mmðxÞ dx
" #1=q

a g1r
1

jBrj

Z
Br

jDuðxÞj2 dx
" #1=2

ð5Þ

388 f. paronetto



for every u Lipschitz continuous function defined in Br ¼ Brðx0Þ, with either sup-
port contained in Brðx0Þ or with null mean value.

The constant q > 2 appearing in (H.2) is the same appearing in (5). Thanks
to this inequality one can prove the following useful result, which is indeed a cor-
ollary.

Theorem 2.2. Assume the same assumptions of Theorem 2:1. There is k > 1 such
that for every s1; s2 a ð0;TÞ, for every family of open sets AðtÞ, t a ðs1; s2Þ in such
a way E ¼

S
t A ðs1; s2Þ AðtÞ is an open subset of Br � ðs1; s2Þ and for every v a

C0ð½s1; s2�;L2ðBr; ~mmÞÞBL2ðs1; s2;H 1
0 ðBr; ~mm; 1ÞÞ it holds

1

uðBrÞ

ZZ
E

juj2kðx; tÞuðxÞ dx dt

a g21r
2
� 1

~mmðBrÞ

�k�1�
sup

s1<t<s2

Z
AðtÞ

juj2ðx; tÞ~mmðxÞ dx
�k�1

� 1

jBrj

Z s2

s1

Z
Br

jDuj2ðx; tÞ dx dt

where the inequality holds both with u ¼ ~mm and uC 1.

Now we define the De Giorgi class DGðW;T ; m; gÞ as the class of functions

u a L2
locð0;T ;H 1

locðW; ~mm; 1ÞÞBLl
locðð0;TÞ;L2

locðW; ~mmÞÞ

satisfying

Z
Brðx0Þ

ðu� kÞ2eðx; t2Þz
2ðx; t2ÞmþðxÞ dxþ

Z
Brðx0Þ

ðu� kÞ2eðx; t1Þz
2ðx; t1Þm�ðxÞ dx

þ
Z t2

t1

Z
Brðx0Þ

jDðu� kÞej
2z2 dx dt

a g

Z t2

t1

Z
Brðx0Þ

ðu� kÞ2eðjDzj2 þ zztmÞ dx dt

þ
Z
Brðx0Þ

ðu� kÞ2eðx; t2Þz
2ðx; t2Þm�ðxÞ dx

þ
Z
Brðx0Þ

ðu� kÞ2eðx; t1Þz
2ðx; t1ÞmþðxÞ dx

for every k a R, every z a LipðW� ð0;TÞÞ such that zð�; tÞ a LipcðWÞ for every
t a ð0;TÞ and for every Brðx0Þ � ðt1; t2ÞHW� ð0;TÞ.
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A typical choice of a function z will be done in such a way that ztmb 0 and in
such a way that

jDzj2jBrðx0ÞjP zztmðBrðx0ÞÞP
1

ðR� rÞ2
jBrðx0Þj

and

t2 � t1 P
~mmðBrðx0ÞÞ
jBrðx0Þj

r2

but for a detailed and clearer definition of the De Giorgi class we refer to [8].
From now on we will denote by h the following function

hðx0; rÞ :¼
~mmðBrðx0ÞÞ
jBrðx0Þj

:

3. Local boundedness for functions in DG

By j � j we denote the n-dimensional Lebesgue measure.

Theorem 3.1. Suppose u a DGðW;T ; m; gÞ and consider ðx0; t0Þ a W� ð0;TÞ.
Then there is a constant cl depending only on g, g1, k such that:

i) for every BRðx0Þ � ðt0; t0 þ hðx0;RÞR2ÞHW� ð0;TÞ if mþðBRðx0ÞÞ > 0 we
have

ess sup
Bþ
R=2

ðx0Þ�
�
t0þ1

2hðx0;RÞR2; t0þhðx0;RÞR2
� juj

a cl

2
4 1

hðx0;RÞR2 ~mmðBRðx0ÞÞ

ZZ
Bþ
3R
2

ðx0Þ�ðt0; t0þhðx0;RÞR2Þ
u2mþdx dt

þ 1

hðx0;RÞR2jBRðx0Þj

ZZ
Bþ
3R
2

ðx0Þ�ðt0; t0þhðx0;RÞR2Þ
u2 dx dt

3
5
1=2

;

ii) for every BRðx0Þ � ðt0 � hðx0;RÞR2; t0ÞHW� ð0;TÞ if m�ðBRðx0ÞÞ > 0 we
have

ess sup
B�
R=2

ðx0Þ�
�
t0�hðx0;RÞR2; t0�1

2hðx0;RÞR2
� juj

a cl

2
4 1

hðx0;RÞR2 ~mmðBRðx0ÞÞ

ZZ
B�
3R
2

ðx0Þ�ðt0�hðx0;RÞR2; t0Þ
u2m� dx dt

þ 1

hðx0;RÞR2jBRðx0Þj

ZZ
B�
3R
2

ðx0Þ�ðt0�hðx0;RÞR2; t0Þ
u2 dx dt

3
5
1=2

;
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iii) for every BRðx0Þ � ðs1; s2ÞHW� ð0;TÞ, s2 � s1 ¼ R2, if jB0
Rðx0Þj > 0

ess sup
B0
R=2

ðx0Þ�ðs1;s2Þ
juja cl

� 1

R2jBRðx0Þj

ZZ
B0
3R
2

ðx0Þ�ðs1;s2Þ
u2 dx dt

�1=2
:

4. The Harnack type inequality

Theorem 4.1. Assume u a DGðW;T ; m; gÞ, ub 0, ðxo; toÞ a W� ð0;TÞ and fix
r > 0.

i) Suppose xo a Wþ A Iþ. For every Qþ a ð0; 1� for which B5rðxoÞ �
½to � hðxo; rÞr2; to þ 16hðxo; 4rÞr2 þ Qþhðxo; rÞr2�HW� ð0;TÞ there exists
cþ > 0 depending ðonlyÞ on g1, g, q, k, a, k, t, K2, K3, q, v, Qþ such that

uðxo; toÞa cþ inf
Bþ
r ðxoÞ

uðx; to þ Qþr
2hðxo; rÞÞ:

ii) Suppose xo a W� A I�. For every Q� a ð0; 1� for which B5rðxoÞ �
½to � 16hðxo; 4rÞr2 þ Q�hðxo; rÞr2; to þ hðxo; rÞr2�HW� ð0;TÞ there exists
c� > 0 depending ðonlyÞ on g1, g, q, k, a, k, t, K2, K3, q, v, Q� such that

uðxo; toÞa c� inf
B�
r ðxoÞ

uðx; to � Q�r
2hðxo; rÞÞ:

iii) Suppose xo a W0 A I0. Suppose B5rðxoÞ � ½to � 16hðxo; 4rÞr2; to þ
16hðxo; 4rÞr2�HW� ð0;TÞ. For every s1, s2 for which s2 � to ¼ to � s1 a
16hðxo; 4rÞr2, suppose s2 � to ¼ to � s1 ¼ ohðxo; 4rÞr2 for o a ð0; 16�, there
is c0 depending ðonlyÞ on K2, K3, q, v, k, g1, g, o; hðxo; 4rÞ, q such that

sup
Bþ
r ðxoÞ�½s1; s2�

ua c0 inf
Bþ
r ðxoÞ�½s1; s2�

u:

iv) Suppose B5rðxoÞHW0. Then there is c depending ðonlyÞ on K2, K3, q, v, k, g1, g,
q such that for almost every t a ð0;TÞ

sup
BrðxoÞ

uð�; tÞa c inf
BrðxoÞ

uð�; tÞ:

The following result, as already said, is in fact a corollary of the previous result.
We state it just to stress the result for points in the interface I where m changes
sign.

Theorem 4.2. Assume u a DGðW;T ; m; gÞ, ub 0. Fix r > 0 and Q a ð0; 1� for
which B5rðxoÞ� ½to � 16hðxo; 4rÞr2 � Qhðxo; rÞr2; to þ 16hðxo; 4rÞr2 þ Qhðxo; rÞr2�
HW� ð0;TÞ. Suppose xo a I . Then there exists c > 0 depending on g1, g, q, k, a,
k, t, K1, K2, K3, q, v, Qþ such that

uðxo; toÞa c inf
BrðxoÞ

~uuðxÞ
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where

~uuðxÞ ¼
uðx; to þ Qhðxo; rÞr2Þ if x a Bþ

r ðxoÞ
uðx; to � Qhðxo; rÞr2Þ if x a B�

r ðxoÞ

(
if xo a IþB I�;

~uuðxÞ ¼
uðx; to þ Qhðxo; rÞr2Þ if x a Bþ

r ðxoÞ
uðx; toÞ if x a B0

rðxoÞ

(
if xo a IþB I0;

~uuðxÞ ¼
uðx; to � Qhðxo; rÞr2Þ if x a B�

r ðxoÞ
uðx; toÞ if x a B0

rðxoÞ

(
if xo a I�B I0;

~uuðxÞ ¼
uðx; to þ Qhðxo; rÞr2Þ if x a Bþ

r ðxoÞ
uðx; to � Qhðxo; rÞr2Þ if x a B�

r ðxoÞ
uðx; toÞ if x a B0

rðxoÞ:

8><
>: if xo a IþB I�B I0:

5. Some consequences of the Harnack inequality

An important and standard consequence for a function satisfying a Harnack’s in-
equality is Hölder-continuity. By classical computations and assuming (if neces-
sary taking g bigger)

g

g� 1
< 2

one can get that if u a DGðW;T ; m; gÞ then u is locally a-Hölder continuous with
respect to x and a=2-Hölder continuous with respect to t, where a ¼

�
log2

g
g�1

�
, in

ðWþ AW� A IÞ � ð0;TÞ. As regards W0 we can only get that for every t a ð0;TÞ
uð�; tÞ is locally a-Hölder continuous in W0. Notice that in the interface I separat-
ing W0 and Wþ AW� the function u is regular also with respect to t.

Another consequence is a strong maximum pronciple, which one can get,
again by standard arguement. If, for instance, we suppose xo a IþB I0B I� (and
again with obvious generalization in the other cases) we could briefly state the
maximum principles as follows: suppose ðxo; toÞ a W� ð0;TÞ is a maximum point
for u in a set

ðBþ
r ðxoÞ � ðto � Qhðxo; rÞr2; to þ Qhðxo; rÞr2ÞÞA ðB0

rðxoÞ � ftogÞ
A ð

S
B�
r ðxoÞ � ðto � Qhðxo; rÞr2; to þ Qhðxo; rÞr2ÞÞ

for some Q a ð0; 1�, then u is constant in the set

ðBþ
r ðxoÞ � ðto � Qhðxo; rÞr2; to�ÞA ðB0

rðxoÞ � ftogÞ
A ð

S
B�
r ðxoÞ � ½to; to þ Qhðxo; rÞr2ÞÞ:
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6. Examples

Here we give a couple of examples of possible interfaces we manage to treat,
without giving some counterexamples for the ones we are not able to treat. So it
is not clear if the conditions we require are sharp or not.

For a more detailed series of examples we refer to [8]. Anyway here we pro-
pose two possible bad behaviours of the interface where we get, as a particular
case, Hölder continuity for the solutions.

The first one is the following: suppose (part of ) the interface is that in the pic-
ture below and the vertex is the point ð0; 0Þ and suppose m ¼ 1 on the left of the
interface and m ¼ �1 on the right. To require that mþ and m� satisfy (H.4) means

mþðB2rð0; 0ÞÞa qmþðBrðð0; 0ÞÞÞ;
m�ðB2rð0; 0ÞÞa qm�ðBrðð0; 0ÞÞÞ:

One can verify that not every cusp is admitted and satisfies the above conditions.
For instance, if the curve in the picture is the union of the graphs of f ðxÞ ¼ xn

and gðxÞ ¼ �xn for x a ½0;L�, L > 0, and n a N, nb 1, the above conditions
are satisfied, while if, for instance, the curve in the picture is the union of the
graphs of f ðxÞ ¼ e�1=x and gðxÞ ¼ �e�1=x the above inequalities does not hold
any more.

Another example we show is the following: again for simplicity suppose jmjC
lC 1 in R2 and suppose mC 1 in the region above the graphic of f , which we
will call Wþ, and mC�1 in the region below the graphic of f , which we will
call W�, where

f ðyÞ ¼ y cos
1

y
ð f ð0Þ ¼ 0Þ:
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In spite of the fact that the length of the graphic inside the ball B :¼ B1ð0; 0Þ
is infinite, the measure (the 2-dimensional Lebesgue measure L2) of the e-
neighbourhood of I is of order e and then going to zero when e ! 0þ. Moreover,
due to the simmetry of the graphic of f we have that

mþðB2rð0; 0ÞÞ ¼
1

2
L2ðB2rð0; 0ÞÞa

1

2
cL2ðBrð0; 0ÞÞ ¼

1

2
cmþðBrð0; 0ÞÞ

where c denotes the doubling constant for L2. Therefore also in this case as-
sumptions (H.4) and (H.5) are satisfied and even if I is not rectifiable can be an
admissible interface.

In the point ð0; 0Þ a solution is then Hölder continuous.
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