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Partial Differential Equations — 4 Harnack’s inequality and Hélder continuity
for solutions of mixed type evolution equations, by FABIO PARONETTO, communi-
cated on 8§ May 2015.

ABSTRACT. — We define a homogeneous parabolic De Giorgi classes of order 2 which suits a
mixed type class of evolution equations whose simplest example is y(x)g—‘; — Au =0 where u can
be positive, null and negative, so that elliptic-parabolic and forward-backward parabolic equations
are included. For functions belonging to this class we prove local boundedness and show a Harnack
inequality which, as by-products, gives Holder-continuity, in particular in the interface I where u
change sign, and a maximum principle.
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1. INTRODUCTION

The purpose of this paper is to announce and present in a very short version a
result which is to appear (see [8]). Moreover the result we present here regards a
simplified situation with respect to that considered in [8]. In [8] we consider equa-
tions like (2) satistying

(A(x, t,u, Du), Du) > ¢ (x)|Du)?,
(1) |A(x,t,u, Du)| < CA(x)|Dul,

|B(x,t,u, Du)| < MA(x)|Dul
with u, 4 € L (Q), 2> 0 almost everywhere, while sgn(x) can change and be
zero also in some set of positive measure. One simple example (to stress that we
are interested in the changing type equations) is

w(x) % — div(A(x)Du) = 0.

Mixed type equations have been considered in connection with many applica-
tions: for instance random processes, kinetic theory, electron scattering. Among
the first papers where some mixed type equation of this type was considered we
recall [1], [7], [2]. In all these papers the coefficient u is of the type

sgnx|x|”, p>0.
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A general and noteworthy result, but confined to x>0, is [11]. In [10] and
[9] we give some existence results for a quite wider class of mixed type
equations.

Coming back to the present paper, we refer for every details, for a wider list
of references, for the more general results and for the proofs to the appearing
paper [8] which has already been submitted. In the present paper, on the contrary,
we focus our attention on a simpler situation where 2 = 1 and u € L*(Q) instead
of u, 2 € Ll .(Q). We consider a class of functions, a suitable De Giorgi class of
functions, which in particular contains solutions of a wide class of equations, pre-
cisely equations like

(2) u(x) % —div A(x,t,u, Du) = B(x,t,u, Du)

with A4 and B satisfying

(A(x, t,u, Du), Du) > ¢|Dul?,
(3) |A(x, t,u, Du)| < C|Dul,
|B(x, t,u, Du)| < M|Dul

for some positive constants ¢, C, M.

We give a local boundedness result, a Harnack type inequality and a result of
regularity (the functions we consider are locally Holder continuous as a byprod-
uct of the Harnack’s inequality) for a particular class of functions containing the
solutions of a mixed type equation like

ou
#(X)E —Au=0

(but also of (2)). We recall that Harnack inequalities and results of Holder con-
tinuity for elliptic and parabolic equations have been widely studied and here
we recall brifly some of the people who started to study these topics: we recall
De Giorgi and Nash for the regularity of the solutions, Hadamard, Pini, Moser,
Aronson, Serrin, Trudinger for the Harnack inequality.

More recently a technique due to De Giorgi was adapted to the parabolic case
by DiBenedetto, Gianazza and Vespri and, to prove our result, we adapt this
technique, following [4] and [6] (see also [5] for a result regarding non-linear
equations).

As already said, in [8] we consider a more general situation, but here we con-
fine to state the result for this simpler situation.

The main results are Theorem 3.1 and Theorem 4.1. Theorem 3.1 is needed
also to start to prove the Harnack inequality stated in Theorem 4.1. Theorem
4.2 is just a corollary of Theorem 4.1, where is stressed the behaviour of u in the
points of the interfaces where x« changes sign.

Finally, in the last sections, some important consequences of the Harnack in-
equality are stated, together with some examples.
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2. NOTATIONS, PRELIMANARY DEFINITIONS AND ASSUMPTIONS

Consider the coefficient # appearing in (2). Even if we consider the equation with
(x,1) € Qx (0,T), and in particular x € Q < R", for simplicity we suppose that

w#:R" — R,
i.e. u defined in the whole R". Consider
Q. ={xeQ|ulx)>0}, Q :={xeQ|u(x)<0} and
Q) =0\(Q uQ.)
and define
I, =00,nQ, [ =0Q_nQ Iy=00nQ, =10l Ul.

We will suppose that Q,, Q  and Q)\/j are the union of a finite number of open
and connected subsets of Q. In the same way for every ball B,(x,) we will write

B, (x,) := By(x,) nQy, B, (X,) = By(x,) nQ_, Bg(xg) = B,(x,) N Q.
Then we define the positive (almost everywhere) weight

Ky in Q+7
Ai=qpu. inQ_|
1 n Q()

where u, denotes the positive part of 4 and u_ the negative part of g, i.e.
1. (x) = max{u(x), 0} > 0, pu_(x) = max{—u(x), 0} > 0.

The extension with 1 in {x € Q|u(x) =0}, thanks to assumptions (H.2) and
(H.3), permits to have the Sobolev-Poincaré inequality stated in Theorem 2.1.

First we introduce the Sobolev-type spaces we will need. Given a u € L™ (Q)
we define L2(Q, ji) as the closure of C'(Q) with respect to the norm

(/Q uz(x)ﬂa’x)l/2

and H'(Q, fi, 1) the closure of C!(Q) with respect to the norm

(/Quz(x)ﬂdx—i—/Q|Du\2(x)dx)1/2.

In this case the notion of u = 0 in dQ coincides with the classical trace in H'(Q).
We assume that i is doubling, i.e that there is a constant q > 1 such that

(H.0) /B . A(x) dx < q/ f(x) dx

B,(%)
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for every ball B,,(X) = Q. For a fixed positive ¢ and A4 a subset of R" we define
A= {x e Q|dist(x, 4) < &}.

The assumptions about the function u are the following: we will suppose the ex-
istence of two positive constants K,, K3 (the choice of the names of the constants
is the same considered in [8]), a constant ¢ > 2, ¢ € (0,1), g > 1 (for simplicity
the same as in (H.0)) such that:

(H.1) - e L7(Q),

(H.2) - W ( /B ) dx>1/q x W ( /B e dx)l/q

1 . 1 _
(H.3) - W/S,u(x) dx < K3 W/B,u(x) dx

ti(By,(x)) < quy(B,y(x)) forevery x e Q. U,
(H4) - |1 (By,(y)) < au_(By(y)) foreveryyeQ vl
1B, (2)] < q|BY(2)] for every z € Qo U Iy,

(H.5) - I is a such that lilgl+ |7¢| =0,

where (H.2) has to hold for every pairs of concentric balls B,(X) < Bg(¥) < R"
with r < R, (H.3) has to hold for every ball B < R" and every measurable set
S < B, (H.4) has to hold for every p > 0 for which B,,(x) = Q.

By (H.2) one can prove (see [8]) that there is « € (0, 1) such that

(H.2) - W (/B’.(g)ﬂ(x) dx)l/‘f - Kzﬁ (/BR(E),;(X) dx)l/q.

A o < 1 is needed twice in the proof of Theorem 7.1 in [8] (Theorem 4.1 below).
By (H.3) one can prove (see [8]) that there are two positive constants T and k
such that

S| AGS)\T A(S) [SIy
4 o Skl T <Kl
W 5 ="Gw) ww =~(m)
for every measurable S = B, for every B ball of R" (this is needed in the proof of
Lemma 6.6 in [8]).
The following result is needed (we refer to [3] for the proof).

THEOREM 2.1. Suppose (H.0) and (H.2) are satisfied and consider p >0,
xo € R™ Then there is a constant y, depending (only) on n, q, K, q such that

| 1/2
(5) ] /B 1D dx]

1/q
ﬂ%B,)) | ol dx] <
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for every u Lipschitz continuous function defined in B, = B,(xo), with either sup-
port contained in B,(xo) or with null mean value.

The constant ¢ > 2 appearing in (H.2) is the same appearing in (5). Thanks
to this inequality one can prove the following useful result, which is indeed a cor-
ollary.

THEOREM 2.2. Assume the same assumptions of Theorem 2.1. There is i > 1 such
that for every s1,s, € (0, T), for every family of open sets A(t), t € (s1,52) in such

a way E = U,6 (s1.52) A(2) is an open subset of B, x (s1,52) and for every v e
CO([s1,52); L*(B,, 1)) O L (s1,52; HY (B,, i, 1)) it holds

// > (x, ))v(x) dx di

<*(= (lp))’“(ﬂgg& / o) ) B

1o ,
C— Du|”(x,t)dxdt
w[l /Bp| 2(x, 1

where the inequality holds both with v = fi and v = 1.

Now we define the De Giorgi class DG(Q, T, 1, 7) as the class of functions
u € Lin (0, T3 Hioe (R, 1, 1)) 0 Lige (0, T); Ly (. 2))

satisfying

| Rk mun @ [ Rl () ds
B, (xo)

By (xo)

5]
+/ / |D(u — k), |*C dxdr
I3 B, X() -

<y// (u— K)2(1DL + L) dv s
T / (1 — k)2 (x, )3, ) (x)
B, (xo)

+/ (”_k)i(X, 1) (x, ) (x) dx
By(xo)

for every k € R, every { € Lip(Q x (0, 7)) such that {(-,¢) € Lip,(Q) for every
t € (0,T) and for every B,(xo) x (t1,62) = Q x (0, T).
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A typical choice of a function { will be done in such a way that {,u > 0 and in
such a way that

1
———3 B, ()|
”

DB x0)| ~ Ll Byloxo)) ~ s

and
A(By(x0))
|B)(x0)]

but for a detailed and clearer definition of the De Giorgi class we refer to [8].
From now on we will denote by / the following function

 f(B,(x0))
M) =g Col

h—t ~

3. LOCAL BOUNDEDNESS FOR FUNCTIONS IN DG
By | - | we denote the n-dimensional Lebesgue measure.

THEOREM 3.1. Suppose u e DG(Q,T,u,y) and consider (xo,t) € Q x (0,7T).
Then there is a constant c., depending only on vy, y,, k such that:

i) for every Br(xo) x (10,70 + h(xo, R)R?) = Q x (0, T) if u.(Br(xo)) >0 we
have

ess sup |u]
B;/Z(xo)x (tg+%h(xo,R)R2, to+h(onR)R2)
— u”u, dx dt
h(x0, R)R*[i(Br(X0)) /) By () x (10, 0+ hx0, R)R?) -
2

12

< Cq

STl 2
=+ u dxdt|
h(xo, R)R?[BR(x0)[ JJ B, (x0) x (10,10 +hx0. R R2)
2

ii) for every Bgr(xg) x (tp — h(xo,R)Rz,lo) cQx(0,7T) if u (Br(xg)) >0 we
have

ess sup |ul
By (x0)x (t0—h(xo, )R, tg—Sh(x0, R)R?)

. 2
— u u_dxdt
h(xo, R)R*i(Br(X0)) J.) B (xo) % (10— h(xo, RIR? 1)
2

1/2

<co

i, 2
+ udxdt| ;
h(xo, R)R?|BR(x0)[ /) B (xo) x (10 —h(x0. R)R2. 10)
2
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iii) for every Br(xo) x (01,02) = Q x (0,T), 62 — 01 = R?, if|B%(xo)| >0

1 12
esssup  |u| < co (27 // u? dxdt) .
B, (0)x(01,02) R2[Br(x0)| L) Byyxa) x(e1.02)

R/2

4. THE HARNACK TYPE INEQUALITY

THEOREM 4.1. Assume ue DG(Q,T,u,y), u=0, (x,,t,) € Qx (0,T) and fix
p > 0.

i) Suppose x,e€Q Ul.. For every 3, € (0,1] for which Bsy(x,) x
[to — h(xo, p)p?, to + 16h(x,,4p)p? + 34 h(x0, p)p?] = Q x (0, T) there exists
¢t > 0 depending (only) on y,, v, q, K, 0, ¥, T, K2, K3, ¢, ¢, 3+ such that

u(x,,t,) < cy inf u(x, 1, + S p*h(x,,p)).

B;r (x0)

ii) Suppose x,e€Q_ul.. For every 9_€(0,1] for which Bs,(x,) x
[to — 16/’1()60,4/))/)2 + Sih(xmp)pz’ lo + h(xo,p)pz] = Qx (0,T) there exists
c_ > 0 depending (only) on y,, v, q, k, o, ¥, T, K2, K3, ¢, ¢, $_ such that

u(x,,1,) < c_ inf u(x,t, — 8 p*h(x,,p)).

B ', (o

iii) Suppose X, € Qo u 1. Suppose Bs,(x,) x [t, — 16h(x,, dp)p*,t, +
16h(x0,4p)p2] = Q x (0,T). For every sy, sy for which s, —t, =1, — s <
16h(x,,4p)p>, suppose sy —t, = t, — 51 = 0h(x,,4p)p?> for w € (0,16], there
is ¢o depending (only) on Ky, K3, q, ¢, K, 71, ¥, ©, h(x,,4p), q such that

sup u<c inf u.
B (x0) % [s1, 5] B (x0)x[s1,52]

iv) Suppose Bs,(x,) = Q. Then there is ¢ depending (only) on K>, K3, q, ¢, 1, 71, 7,
q such that for almost every t € (0, T)

sup u(-,t) < c inf u(-,1).
B, (x,) B,(x,)

The following result, as already said, is in fact a corollary of the previous result.
We state it just to stress the result for points in the interface / where u changes
sign.

THEOREM 4.2. Assume u € DG(Q, T, u,y), u>0. Fix p>0 and 9 € (0,1] for
which Bs,(x,) X [ty — 16h(xy, 4p)p* — Sh(X0, p)p?, 1o + 16h(x,,4p)p? + Sh(x,, p)p?]
= Q x (0,T). Suppose x, € 1. Then there exists ¢ > 0 depending on vy, y, q, K, o,
¥, 1, K1, K>, K3, q, ¢, ¢ such that

u(x,,t,) < c inf u(x)
(o)
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where
o+ h(xy,p)p?) if x € B (x,
N I Ay
u(x, o — 9h(xo, p)p?) if x € Bp_(xo)
slo + Ih(x0,p)p?) i x € B (x,
sy = {1t I ) X B
u(x,t,) if xe Bg(x,))
u(x, t, — 9h(x,, p)p?) if x € B (x,
i(x) = ( o) f ﬁ( : if xpe NI,
u(x,t,) if x € B)(x,)
(st + (0 p)p?) if x € BF(x,)
i(x) = { u(x,t, — 9h(x,,p)p?) if x € B (x,) if x,el.nl nl.
u(x,t,) if xe Bg(xo).

5. SOME CONSEQUENCES OF THE HARNACK INEQUALITY

An important and standard consequence for a function satisfying a Harnack’s in-
equality is Holder-continuity. By classical computations and assuming (if neces-
sary taking y bigger)

one can get that if u € DG(Q, T, i, y) then u is locally a-Holder continuous with
respect to x and o/2-Holder continuous with respect to ¢, where o = (10g2 /%1), in
(QruQ_uUl)x (0,T). As regards Qy we can only get that for every 7 € (0, T)
u(-,t) is locally a-Holder continuous in €. Notice that in the interface I separat-
ing Qp and Q, U Q_ the function u is regular also with respect to .

Another consequence is a strong maximum pronciple, which one can get,
again by standard arguement. If, for instance, we suppose x, € Iy NIy n I_ (and
again with obvious generalization in the other cases) we could briefly state the
maximum principles as follows: suppose (x,,%,) € Q x (0, T) is a maximum point
for u in a set

(B (x0) X (tg — 3h(x, p)p* o + Ih(x0, p)p7)) U (B (x,) X {1o})
U (U B, (x0) x (1o = (X0, p)p*, 1o + Ih(x0, p)p*))

for some 9 € (0, 1], then u is constant in the set

(B;(XO) X (to = 9h(x0, p)p?, 1)) U (B/())(XO) x {to})
v (U B, (x) x [t0, 1o + Hh(x0, p)p?))-
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6. EXAMPLES

Here we give a couple of examples of possible interfaces we manage to treat,
without giving some counterexamples for the ones we are not able to treat. So it
is not clear if the conditions we require are sharp or not.

For a more detailed series of examples we refer to [8]. Anyway here we pro-
pose two possible bad behaviours of the interface where we get, as a particular
case, Holder continuity for the solutions.

The first one is the following: suppose (part of ) the interface is that in the pic-
ture below and the vertex is the point (0,0) and suppose x = 1 on the left of the
interface and u = —1 on the right. To require that 4, and u_ satisfy (H.4) means

lu+(B2/1(07 O)) < Q:qu(B/I((O? 0)))7
1 (B2,(0,0)) < qu_(B,((0,0))).

One can verify that not every cusp is admitted and satisfies the above conditions.
For instance, if the curve in the picture is the union of the graphs of f(x) = x”"
and g(x) = —x" for x € [0,L], L >0, and n e N, n > 1, the above conditions
are satisfied, while if, for instance, the curve in the picture is the union of the
graphs of f(x) = e~ '/* and g(x) = —e~!/* the above inequalities does not hold
any more.

0,5

—0,5 i

Another example we show is the following: again for simplicity suppose |u| =
J =1 1in R? and suppose x = 1 in the region above the graphic of f, which we
will call Q,, and = —1 in the region below the graphic of f, which we will
call Q_, where
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In spite of the fact that the length of the graphic inside the ball B:= B;(0,0)
is infinite, the measure (the 2-dimensional Lebesgue measure #?) of the &-
neighbourhood of 7 is of order ¢ and then going to zero when ¢ — 0. Moreover,
due to the simmetry of the graphic of / we have that

1 1 1
1, (B2(0,0)) = ifz(sz(0,0)) = Ecgz(Bp(Ov 0)) = Ec,qu(B,,(O, 0))
where ¢ denotes the doubling constant for #2. Therefore also in this case as-
sumptions (H.4) and (H.5) are satisfied and even if 7 is not rectifiable can be an
admissible interface.
In the point (0,0) a solution is then Holder continuous.

0,6 - -
0,4} .
0,2} .
ol 1
-0,2} N

—0,4

| L

| | |
—0,6 —04-02 0 02 04 0,6

)
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