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ABSTRACT. — In this paper we show a density property for fractional weighted Sobolev spaces.
That is, we prove that any function in a fractional weighted Sobolev space can be approximated by
a smooth function with compact support.

The additional difficulty in this nonlocal setting is caused by the fact that the weights are not
necessarily translation invariant.
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1. INTRODUCTION

Goal of this paper is to provide an approximation result by smooth and com-
pactly supported functions for a fractional Sobolev space with weights that are
not necessarily translation invariant.
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The functional framework is the following. Given s € (0,1), p € (1,4 0),
such that sp < n, and

(1.1) ae [0,”_251’)

we introduce the semi-norm

u(x) VI dx dy \Ur
12 -(/, / = .
( ) [ RZI! +P |.x| | | )

We define the space

WP (R") := {u: R" — R measurable s.t. [u] werwn < o0}

Also, we define the weighted norm

o |ue(x )|pY 1/p;
(13> ||u||L:;(Rn) _< R" 2ap¥ dx) )

where p; is the fractional critical Sobolev exponent associated to p, namely

% np
D, = .
n—sp

Moreover, we set

L (R") := {u: R" — R measurable s.t. ||u]

LY (@ < 4w}

The importance of the weighted norm in (1.3) lies in the fact that, when « lies in
the range prescribed by (1.1), a weighted fractional Sobolev inequality holds true,
as proved in [1]: more precisely, there exists a constant C, ; , , > 0 such that

||u|| py (Rn) S C”w‘?l’»d[u] Vi/[f'p“Rn)’

for any u € C(R"). So we define W?(R") := WP(R") A LY (R"), which is
naturally endowed with the norm

(1.4) el = oy + 1l g
The space Wj?” (R™) has recently appeared in the literature in several circum-
stances, such as in a clever change of variable (see [11]), and in a critical and
fractional Hardy equation (see [7]). Even the case with ¢ =0 presents some
applications, see e.g. [6]. )

A natural question is whether functions with finite norm in W;*”(R") can be
approximated by smooth functions with compact support. This is indeed the case,
as stated by our main result:
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THEOREM 1.1. For any ue WS‘P(IR”) there exists a sequence of functions
u, € Co” (R") such that |[u— u|j;srgny — 0 as e — 0. Namely, C5°(R") is dense
in W”’(R”)

We observe that Theorem 1.1 comprises also the “unweighted” case a = 0
(though, in this setting, the proof can be radically simplified, thanks to the trans-
lation invariance of the kernel, see e.g. [9, 13]). The result obtained in Theorem
1.1 here plays also a crucial role in [7] to obtain sharp decay estimates of the
solution of a weighted equation near the singularities and at infinity.

For related results in weighted Sobolev spaces with integer exponents see for
instance 3, 12, 2, 15] and the references therein.

The paper is essentially self-contained. We tried to avoid as much as possible
any unnecessary complication arising from the presence of the weights and to
explain all the technical details of the arguments presented.

The paper is organized as follows. In Section 2 we show a basic lemma that
states that the space under consideration is not trivial. In Section 3 we show that
we can perform an approximation with compactly supported functions.

The approximation with smooth functions is, in general, more difficult to
obtain, due to the presence of weights that are not translation invariant. More
precisely, the standard approximation techniques that rely on convolution need
to be carefully reviewed, since the arguments based on the continuity under
translations in the classical Lebesgue spaces fail in this case. To overcome this
type of difficulties, in Section 4 we estimate the “averaged” error produced by
translations of the weights and we use this estimate to control the norm of a
mollification in terms of the norm of the original function.

Then, in Section 5, we perform an approximation with continuous functions,
by carefully exploiting the Lusin’s Theorem. The approximation with smooth
functions is proved in Section 6, by using all the ingredients that were previously
introduced. Finally, Section 7 is devoted to the proof of Theorem 1.1.

2. A BASIC LEMMA

In this section we consider a more general semi-norm and we show that it is
bounded for functions in C;°(R"). This remark shows that there is an interesting
range of parameters for which the space considered here is not trivial.

We take «, f € R such that

(2.1) —sp<o,f<n and a+pf<n,

and we define

|u(x) —u(y)|” dx dy
(22) // :
T e o= P

LeEMMA 2.1. Let 9 € Cy(R"). Then there exists a positive constant C such that

[(ﬂ] W.Y-p(Rn) S C

o, f
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ProoF. We take ¢ € Cj°(R") and we suppose that the support of ¢ is contained
in the ball Bg (for some R > 1). Therefore, if x, y € R"\ Bg then ¢(x) = ¢(y) = 0,

and so we can assume in the integral in (2.2) for ¢ that x € Bg, up to a factor 2,
i.e. we have to estimate

lp(x) —p(p)|” dx dy
(2.3) // —,H =5+ D,
BrxR" X )

where
’ dx d
// lp(x) n(ﬂ,),' _x_yﬁ and
BrXxBar \x—yl |x| |y|

L // lp(x) —p(»)|” dx dy
Brx(R"\Bir) |X - y|n+ap |x|1 |y|ﬁ

We first estimate /;: we have

(2.4) I <c// =" dx dy
BarxBag |x - y|n+ép |x‘ | |/)”

for some constant cC>0 dependmg on the C'-norm of u. Now, if o, 8 < 0 then
IX|"* < (2R)™ and |y|” < (2R)?. Therefore, by the change of variable
z=Xx-—), we get

I < C(2R)°‘(2R)ﬁ/ dx dz|x — y|'™" P < C,
B Br

up to renaming C, that possibly depends on R.
Now we suppose that o, f > 0. We claim that

dxd
(2.5) L<C // =yl
BorxBox |x|*

Indeed, if |x| < |y|, then formula (2.5) trivially follows from (2.4). On the other
hand, if |x| > |y|, then

11<C// ”""’dx‘ly
B2R><37R | |“+ﬁ

and so by symmetry we get (2.5).
From (2.5) we obtain that

dx dz
I < C/ / — < C,
By |x|oc+/)’ Bug |Z|n+bp ’

thanks to (2.1), up to renaming C.
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Finally, we deal with the case « > 0 and ff <0 (the other situation is sym-
metric). Then, |y|” < (2R)”, and so

- )7}178‘)61 d
I < CQR) ﬂ// I — yjpnw L
BZRXBzR |x‘

< R / A / 1277 e
Byr |x| Byr

<C

)

thanks to (2.1), up to relabelling C (that depends also on R).
Therefore, we have shown that for any o, f§ that satisfy (2.1) we have that

(2.6) I < C,

up to renaming the constant C.
Now we estimate I». For this, we observe that if x € Bg and y € R"\ By then

1l [l B
_ > _ LA L > =
K=z - =F+5 =73
Thus
1 dx d
B < 29 Q)" ] A
Brx(R"\Bag) |y| |x| |y|
< 2" (2|ul] = / /
L |X‘ R™ Bg |y|n+sp+[)'
< C,

thanks to (2.1). Using this and (2.6) into (2.3) we obtain that 7 is bounded. O

As an obvious consequence of Lemma 2.1, we have that C;(R") € W P(R"),
and so, by (1.1), we see that Cj°(R") < Wep ([RR”) This says that the approxima-
tion seeked by Theorem 1.1 is meaningful.

3. APPROXIMATION BY COMPACTLY SUPPORTED FUNCTIONS

In this section we will prove that we can approximate a function in W;’p (R™)
with another function with compact support, by keeping the error small.

LemMA 3.1. Let ue W5P(R"). Let 1€ C(B,[0,1]) with t=1 in By, and
75(x) :== 1(x/j). Then

]B+mgo ||u — Tjan‘/t‘s.P(Rn> = 0
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Proor. We set 5, :=1—1;. Then u—zu=mnu, and n;(x) —n;(y) = 7;(y) —
7;(x). Accordingly |u(x) — 7ju(x)| < 2|u(x)| and so

(3.1) lim ||u—fju|| »

=0
] Foo (R”) )

by the Dominated Convergence Theorem. Moreover,

nju(x) = nu()| < [7;(x) = G |u()] + |u(x) = u(p)ln;(x).

Also, we observe that if both x and y lie in B;, then 7;(x) = 7;(») = 1. Therefore

u—zu)(x) — (u—zu)(»)|” dx dy
(32) //RZn n+3p a a

yl x| ||
< 2// |(u — u) (x) — (u — ) ()]” dxa dya
"x(R"\B x — "7 x| [yl

< C{; +Jj),

- // 7(x) — (V)" |u(p)|” dx dy
! " (R"\B)) Ix— y|"er x| |y

PpP(x
and J; —// <?1|+SZ]()d—xad—J;
"% (R"\B;) - x| |yl

We estimate these two terms separately. First of all, we estimate /;. For this, we
define

where

Do i={(x.y) € B x (R"\B)) s.t. |x| < |y]/2},
D= {(x,3) € B" x (R"\B)) s.t. [x| > |y|/2 and |x — y| > j}
and D= {(x,3) € R" x (R"\B)) s.t. |x| > |y|/2 and |x — 3| < j},

and we write, for k € {0, 1,2},

// |7j(x —fj W) Ju(y)|” dx dy
]k - n+sp a a-
Dj i | |y|

x|

Notice that
(33) Li=1io+ 1L+ 1.
So we define gy := s, and we fix g; € (0,s) and o, € (s,1). We write

%) = 5WI7)I” _ [5() —)I” u(y)I”

B e T T
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Thus we apply the Holder inequality with exponents n/sp and p!/p (which is in
turn equal to n/(n — sp)) and, for any k € {0, 1,2}, we obtain that

sp

(3.4) L < // |7(x) — W/ 3| dxdy
/ k |x - s
n—sp
|pJ !
// kp)n ap‘ apA dx dy
o | ywwwwy

Now we change variable X := x/j and we see that

T ’L' % T(X
R
Dy« —

s

PR [7(X) — «(V)*
// A+6k n dXdY
Du |X —Y| 5

_ ;ak // |z(x) —Z+y)|d .
Dus =y

That is, if we set P := n/s, we get that

T S—aj)n
(3.5) LM" MNW@<J5WWWu<Q57
ik |x—y[

where WP (R") is the usual Gagliardo semi-norm (which coincides with
WP (R") with a = 0, see e.g. [5]).
In addition, if (x, y) € D; o, we have that |x — y| > |y| — |x| > |y|/2 and so

|u( )"
(3'6) // n—oq p)n apy apf dx dy

Diox — | IXI e

|pv
< C// ? (n 4-10/1)n_"_apT dx dy

/0|x| P |y n—sp )

/2wy u(y)|1’;
S C/ [/ pn : ’ n(n—sp+a) dp dy
R"\Bj 0 | n—sp

Y

n(n—sp—

T )
= C/ n(n—sp+a) dy
R"\Bj |y’ n—sp
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Moreover, if k € {1,2}, using the change of variable z := x — y (and integrating
in y € R"\B; separately), we see that

|u( )|

§
A AL Iyl ’
ps

= ¢ // (= ”kl’)’7 |2aﬂ dx dy

jk|x_y| n—sp |y D

PS
= C// u(y Y)| e dxdy
D; | .

O el

d. .
C||M||Lf;(Rn\&)/IR ", IITTWH if k=1,
’ z

dz )
cwmﬁwwmé——sz k2.

||+nyp

IA

Thus, recalling that o; < s < g2, we conclude that, for any k € {1,2},

|“( ) r (o =) pn
o] vy < Clul s 7

Drix —

As a matter of fact, in virtue of (3.6), and recalling that gy = s, we have that the
above equation is valid also for k£ = 0.

So, for k € {0,1,2}, we insert formulas (3.7) and (3.5) into (3.4) and we
conclude that

(s—ap)n_sp —8)pn_n—sp n-sp

B < U (Ml g )

” C(RM\B)

Thus, by (3.3), we obtain
(3.8) L < Cllul| 7,. —0 asj— +oo.

Now we consider J;. For this, we define

|u(x) —u(p)|” 5/ (x)
Ix =y x|y

‘/f_/(xa y) = XR”X(R”\Bj)(xv )

Notice that

Ju(x) — u(y)|” )
|lp'(x7 y)' < n—+s, a a eL (R ”)?
! e = 2" x| v
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thus, by the Dominated Convergence Theorem,

Jj:// Yi(x,y)dxdy — 0 asj— +oo.
RZH
This, (3.2) and (3.8) give that

_ P
(3.9) //Rz” u TJ y)|"“’§|x| |y|)(y)| dxdy — 0 asj— +oo.

The latter formula and (3.1) give the desired result. O

4. ESTIMATES IN AVERAGE AND CONTROL OF THE CONVOLUTION

Here we perform some detailed estimate on the “averaged” effect of the weights
under consideration. Roughly speaking, the weights themselves are not transla-
tion invariant, but we will be able to estimate the averaged effect of the transla-
tions in a somehow uniform way.

From this, we will be able to control the norm of the mollification by the
norm of the original function, and this fact will in turn play a crucial role in the
approximation with smooth functions performed in Section 6 (namely, one will
approximate first a given function in the space with a continuous and compactly
supported function, so one will have to bound the convolution of this difference
in terms of the difference of the original functions).

Due to the presence of two types of weights, the arguments of this part are
quite technical. We start with an averaged weighted estimate:

PROPOSITION 4.1. There exists C > 0 such that

sup dz - C
R N "3 D -1 S | A B R R

for every x, y € R"\{0}.

ProoOF. Fixed r > 0, consider the following four domains:

=

[x]

Dy := {ZEB, st |x+z| > > and |y +z| >

|

\S)

=

zeB st |x+z| <= and |y +z| >

=

and |y +z| <

|

=

and D3 zeB st |x+z|<—and|y+z| <

|

{z €B st |x+z| > —
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Then
dz dz 49|B,|
(4'1) a— S / a a S a
Dy [x 42|y + 2| B ([x[/2)%(|»1/2) x|y
Now we observe that
4.2) if there exists z € B, such that |x + z| < %,

[X]

thenr > |z| > [x| — [x +z| > bR

From this, we observe that if Dy # 0 it follows that r > |x|/2 and so, using the
substitution { := x + z,

dz 2a dz 2a dc
43 = _/ G _/ ¢
3 o F T DT S b 2 = T S, 107
C] (I’+ ‘Xl)n_a < C2(3V)n
B vl = (r+ XDl

C2(3V)n C3Vn

RN RN
for some constants Cy, Cy, C3 > 0. Similarly, by exchanging the roles of x and y,
we see that

dz - Cyr"
p, 2y A2 T X

(4.4)

Moreover, if D3 # (), we deduce from (4.2) (and the similar formula for y) that

x| |yl
> - 1
r max{ 75
and therefore

dz dz dz
(45) VST BT / 5 / 5
ps X+ 2%y + 2 B |x+z| B |y +z|
< \/ [ = ¢ [ -
- B | |2a Bry |c|2a

< sy )" 2 L)
_ Cs(r 4 X))+ )"

(r+ X)) + [7)°
Cs(3r)"*(3r)"?  Cer™

Xl
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Notice that we have used all over in the integrals that ¢ < 2a < n, thanks to

(1.1).
The desired result now follows by combining (4.1), (4.3), (4.4), (4.5) and the
fact that B, = Dy Dy U D, U Ds. O

A simpler (but still useful for our purposes) version of Proposition 4.1 is the
following:

ProPoOSITION 4.2. Let b := 2‘;% = n{% There exists C > 0 such that

r>0 " |x+z| x|b’

for every x € R"\{0}.

PrOOF. The proof is similar to the one of Proposition 4.1, just dropping the
dependence in y. We give the details for the facility of the reader. Fixed r > 0,
consider the following two domains:

DO::{ZEB s.t. |x+z|>‘ |}

and D —{zeB s.t. |x—|—z|<‘ |}

Then
dz dz 2” B,
(4.6) ;< / | b|
Dy |X + Z| (1x/2)" |x|

Now we observe that if there exists z € B, such that |x+z| < |x|/2, then
r>|z| > |x| — |x +z| > |x|/2. From this, we observe that if D; # 0 it follows
that r > |x|/2 and so

d d C " c,(3n)"
(4.7) 72}) - / Ch < Ci(r+ |x)"" = 1(r+ |X|b) - 1 ( Z)
Dy |x + z| B (r+ |x) |x|

for some constant C; > 0. We observe that we have used here above that b < n,
thanks to (1.1). Then, formulas (4.7) and (4.6) imply the desired result. O

Now, we observe that, in this paper, two types of “different” weighted norms
appear all over, namely (1.2) and (1.3). In order to deal with both of them at the
same time, we introduce now an “abstract” notation, by working in R" (then, in
our application, we will choose either N = n or N = 2n). Also, we will consider
two functions @ : R” — RY and ® : RY — [0, 4+c0]. The main assumption that
we will take is that

C
4.
(4.8) S,ggr /@X—i—w _G)(X)’
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for a suitable C > 0, for a.e. X € RY. We point out that the integral in (4.8)
is always performed on an n-dimensional ball B, (i.e., in that notation,
z € B, = R"), but the point X lies in R" (and n and N may be different).

Concretely, in the light of Propositions 4.1 and 4.2, we have that condition
(4.8) holds true when

N =2, w(z)=(z2z), OX)=|x" X=(xp) eR"xR"
and when

2ap;

=n, w(z)=:z x) = |x|” =
(4.9) N=n @)=z 0()=Ix" b »

From (4.8), we obtain a useful bound on (a suitable variant of ) the maximal
function in R” x R":

LeEMMA 4.3. Assume that condition (4.8) holds true. Let q > 1. Let V be a
measurable function from RY to R. Then, for any r > 0,

(4.10) /[R L/ V(X — ooz ))|dzr% < C/RN|I(;((XX))|qu,

for a suitable C > 0.

PrOOF. We may suppose that the right hand side of (4.10) is finite, otherwise
we are done. We use the Holder inequality with exponents ¢ and ¢/(¢ — 1), to
see that

l/B VO =)< M x- W(Z))|qd2]l/q { / | dz} o

S ve st

for some C; >0, and so, by (4.8), and using the change of variable X :=
X — w(z) over RY, we obtain

/R LL/B V(X —w(2))] dz} q%
< w[/'VX w(z quz}
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-2/ {/V(X)Iﬁ} &
S| [ oo

. G -
</ VR G

as desired. O

With the estimate in Lemma 4.3, we are in the position of bounding a (suitable
variant of) the standard mollification. For this, we take a radially symmetric,
radially decreasing function 7, € C*(R"), with n > 0, supp#, = B; and

(4.11) / n,(x)dx =1
R"

With a slight abuse of notation, we write #,(r) = #,(x) whenever |x| = r. Given
a measurable function v = v(x, y) from R*' to R, we also define

(4.12) v*n,(x,y) = /” o(x—z,y—2)n,(z) d=.

Then we have:

PROPOSITION 4.4. For every measurable function v = v(x, y) from R* to R, we

have that
|loxn,(x, »)|” // lv(x, y)|”
dxd <C 2 i dy,
// TN Y S L e

for a suitable C > 0.

PrOOF. The argument is a careful modification of the one on pages 63—65 of
[14]. First of all, we use an integration by parts to notice that

1 1 1
(4.13) / rnl (r)| dr = —/ r'nl(r) dr = n/ "y (r) dr
0 0 0

= Co/ n,(x)dx = Co,
By

for some Cy > 0, due to (4.11). We define
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Ar,x, y) =" / lo(x — rw, y — ro)| d#" (o)
Sn—1
and A y) = [ o=z - 2)|d
B,

Now we use Lemma 4.3 with N :=2n, w(z) :=(z,2), X := (x,y), O(X) =
Ix|“|p|, ¢ == p and V(X) := v(x, ), see (4.9). In this way we obtain that

P
wiay ] [A(r’x’y)] drdy // [Ce DI 4y,
9 s o |y|

for some C; > 0. Moreover, by polar coordinates,

Arx) = G [ [ ot oy = pol o) | dp

:CZ/ ;{(pvx7y)dp7
0

and therefore

0
E,A(ra X, y) = CZ}"(V7 X, y)

Notice also that A(0, x, y) = 0 =1,(1). Consequently, using again polar coordi-
nates and an integration by parts, we obtain

(415)  Joxn,(xy)] < / 0(x = 2,y — 2|, (2) d
1
- C3/ [/ r”*1|v(x —rw,y —ro)|n,(r) d%”fl(w) dr
0 LJsm1
1
e / A, x, )0, (r) dr
0
LoA
= [ S
0 r

1
= —C4/ A(r,x, y)n.(r) dr.
0

We recall that 5/ < 0, so the latter term is indeed non-negative. Now we use the
Minkowski integral inequality (see e.g. Appendix A.l in [14]): this gives that, for

a given F = F(r,x, y), and du(x, y) 1= =4

EHE we have



A DENSITY PROPERTY FOR FRACTIONAL WEIGHTED SOBOLEV SPACES 411

l//RZ” [/o1 [E(r,x, ) d”rdﬂ(x, y)]l/p
< [ L. e auce ] an

Using this with F(r, x, y) :== A(r, x, )5, (r) and recalling (4.15), we conclude that

[v%77,(x, »)I” }'/”
o dxdy
U/ Xy
i [/Arxymo M dx dy
CEEE
1/p
scs/ // AGx )l DT,
I ]

1 P 1/p
— [ [ i {A“”"”] d’idya} Pl () dr

O el ) W

Therefore, recalling (4.14),

I/p
[// [oxn,(x )" dy}
re X
1 r 1/p
_C6/ [// [olx, )17 dxdy} Pl (1) dr.
0 r |X]%[

This and (4.13) give the desired result. O

<C5

A simpler, but still useful, version of Proposition 4.4 holds for the standard
convolution of a function u : R” — R, i.e.

u*n,(x):= /W u(x —z)n,(z) dz.

The reader may compare the latter formula with (4.12). In this more standard
setting, we have:

PROPOSITION 4.5. Let b := p . For every measurable function u from R" to R,
we have that

Py Py
hen s [ MO

R" x| rR" |x

for a suitable C > 0.
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PrROOF. The argument is a simplification of the one given for Proposition 4.4.
For the convenience of the reader, we provide all the details. We define

Ar,x) =" /Snl lu(x — ro)| d#" (o)

and A(r,x) = /B. |u(x — z)| dz.

Here we use Lemma 4.3 with N :=n, w(z) :=z, X :=x, O(X) := ]x|b, q:=p}
and V' (X) := u(x), see (4.9). In this way we obtain that
N

(4.16) / [A(”)r dx _ o [ ™

O L L

dx,
for some C; > 0. Moreover, by polar coordinates,
A = [ [ e polan o) dp =& [ it
0 §n-1 0
and therefore
2A(r x) = GA(r, x)
61" ) — LA, .

Notice also that A(0,x) =0 =#,(1). Consequently, using again polar coordi-
nates and an integration by parts, we obtain

e, (1< [ e =) de
1
= C3/0 [/SM r”_1|u(x— ro)|n,(r) d%"‘l(w) dr
1
= C3/0 Alr, x)n,(r) dr
LoA

e /0 D v, r) dr

1
= C4/ A(r,x)n. (r) dr.
0

Now we use the Minkowski integral inequality (see e.g. Appendix A.l in [14])
and we conclude that
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* 1/p; * 1/pg
Py K 1 Py
l b)) dx] <a|[ [ acomral —d’i]
R" r" LJo x|

|x|”
r 1/p;
1 . . d s
< / / AG, ) ()| —’|i, dr
0 R"

|x

- . 1/17*
! A(r,x)P dx |
= C - — My (r)|dr.
5/0 _/n|: pe :| |X‘b |’7o< >|
So, recalling (4.16),

* 1/p:
Dy s 1
|u * m(;c)l il < C6/
R" x| 0

From this and (4.13) we obtain the desired result. O

Ju(x) |

ar x|

1/ps
dx] "l (r)| dr.

5. APPROXIMATION IN WEIGHTED LEBESGUE SPACES BY
CONTINUOUS FUNCTIONS

In order to deal with the semi-norm in (1.2), it is often convenient to introduce a
weighted norm over R?", by proceeding as follows. Given a measurable function
v =v(x, ) from R* to R, we define

dx dy >l/p
P
p my = vix, y a1 Ta .
Lia(RE) (//[R?Z”|( ) X[ 1]

When ||v[|;» g2 is finite, we say that v belongs to L} (R>"). Notice that

a,a

(5.1) ol

(5.2) if o™ (x, y) = M, then formula (5.1) reduces to (1.2),
x—yr

namely [o®|

L2,y = [Uyer @)

Now we give two approximation results (namely Lemmata 5.1 and 5.2) with
respect to the norm in (5.1).

LEMMA 5.1. Letve Lﬁa(Rz”). Then there exists a sequence of functions vy €
nga(Rz’“) A L* (R*") such that ||v — vmllpr, gy — 0 as M — +oo.

PrROOF. We set

M if v(x,y) > M,
UM(x7y) = U(x7y) if U(X,y)e(—M,M)7
-M  ifo(x,y) <—-M.
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We have that vy, — v a.e. in R* and

loar (x, )17 o(x, p)|”
a a S a a
x|yl |x“[]

e L'(R™),

thus the claim follows from the Dominated Convergence Theorem. O

LEMMA 5.2. Let ve L? ,(R*). Then there exists a sequence of continuous and

compactly supported funclzons vs: R?" — R such that o= osllp, @2y = O as
0—0.

PROOE. In the light of Lemma 5.1, we can also assume that
(5.3) ve L7(R™).

Let 7; € C*(R*,[0,1]), with 7;(P) = 1 if |P| < jand t(P) = 0if |[P| > j + 1. Let
v; := t;u. Then v; — v pointwise in R as j — +o0, and

o5, 9) = i, )P _ 22, )17

a a — a a ELI(Rzn)'
x|yl [x[%|l

As a consequence, by the Dominated Convergence Theorem,

]l}erx lv = vl p, @2y = O-

So, fixed 0 > 0, we find j;5 € N such that
(54) o= v3ll L, 2y <O

Notice that vj, is supported in {PeR¥s.t.|P|<js+1}.
Also, given a set 4 = R*, we set

p / / dx dy
aal [l
By (1.1), we see that y, , is finite over compact sets. So, we can use Lusin’s
Theorem (see e.g. Theorem 7.10 in [10], and page 121 there for the definition
of the uniform norm). We obtain that there exist a closed set E; = R* and a
continuous and compactly supported function vs : R** — R such that v; = vj; in
RN\ E, .o (Es) <07 and [[65] 2y < ]l o
In partlcular since 7;; € [0, 1], we have that [|vs]| - g2y < [|v]| g2, and this
quantity is finite, due to (5.3). Therefore
dx dy

Ujs — Ua”u (R?) // vy (X, ) — ws(x, NpWW

< 27(l3 17 oy + 10611} o o (o) < 27l

or.

0 RZn)
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From this and (5.4), we obtain that ||v — vs||, s, m2) < (1 +4[|v]| - ®2))d, which
concludes the proof. ' O

We remark that a simpler version of Lemma 5.2 also holds true in Lffj(IR”).
We state the result explicitly as follows:

LEMMA 5.3. Let ue La;([Ri”). Then there exists a sequence of continuous and

compactly supported functions us: R" — R such that ||u—u(;|\ 7 (g — 0 as
0—0.

PrROOF. The argument is a simplified version of the one given for Lemma 5.2.
Full details are provided for the reader’s convenience. First of all, by the Domi-
nated Convergence Theorem, we can approximate u in Ly (R™) W1th a sequence
of bounded functions

M if u(x) > M,
up(x) = q u(x) if u(x) e (—M, M),
-M ifulx)<-M.

Consequently, we can also assume that
(5.5) ue L*(R").

Let 7; e C*(R",[0,1]), with 7;(P) = 1 if |P| < j and 7(P) =0 if |P| > j+ 1. Let
u; := tju. Then u; — u pointwise in R" as j — +oc0, and

u(x) — ()" _ 27 fu(x)]” .

1 2n
2ap — L (R )'

2ap?
x|

X[

As a consequence, by the Dominated Convergence Theorem,

So, fixed 0 > 0, we find j5 € N such that

<.

(56) ||u - u]’é L:;(R") —

Notice that uj, is supported in Bj,;. Also, given a set 4 = R", we set

dx
/’ta(A) :_/ 2apf *
A

X[

y (1.1), we see that u, is finite over compact sets. So, we can use Lusin’s
Theorem (see e.g. Theorem 7.10 in [10], and page 121 there for the definition of
the uniform norm). We obtain that there exist a closed set Es = R” and a contin-
uous and compactly supported function us : R" — R such that us = u;, in R™\ Es,
#a(Es) <0 and [lusll - oy < [l | o -
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In particular, since 7;, € [0, 1], we have that [|us||; - ge) < [|ul| ;= gn, and this
quantity is finite, due to (5.5). Therefore

X
o = ol / 1, (x) — ()]~
x |

7 oy + Nt g () < 27 (0] 2 07

<27 (

From this and (5.6), we obtain that |ju — u(;||Lp;(R”) < (1 +4fJull 1 (rn))0, which
concludes the proof. ‘ O

6. APPROXIMATION BY SMOOTH FUNCTIONS

In this section we show that we can approximate a function in the space Wj‘p (R™)
with a smooth one. We remark that, if there are no weights, smooth approxima-
tions are much more standard, since one can use directly the continuity of the
translations in L”(R?"). Since the weights are not translation invariant, and the
continuity of the translations in Lebesgue spaces is, in general, not uniform, a
more careful procedure is needed in our case (namely, to overcome this difficulty
we exploit the techniques developed in Sections 4 and 5).

We take a radially symmetric, radially decreasing function # € C;°(R") such
that # > 0, suppy < B and

(6.1) /B n(x)dx =1,

and, for ¢ > 0, we define the mollifier 7, as

1
n.(x) == —77({), for any x € R".
" \¢&

Then, given u € W57 (R"), we consider its standard convolution with the mollifier
n,. That is, for any ¢ > 0, we define

(6.2) u(x) = (ux*n,)(x) = / u(x —z)n,(z)dz, forany x € R".

By construction, u, € C*(R"). We will show that, if ¢ is sufficiently small, then
the error made approximating u with u, is “small”. The rigorous result is the
following:

LEMMA 6.1. Let u € WP(R"). Then

111}13 ||u - USH W;‘-,p(Rn) — 0
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ProOOF. We first check that

(63) tim e = w7 ) = 0-

To this scope, we start by proving that

(6.4) if #: R" — R is continuous and compactly supported, then
=0.

P*I;I(% ||i2 —ux ”CHLuPS*(Rn)

For this, we fix ¢, > 0 and we use the fact that # is uniformly continuous to write
that

sup |a(x —ez) — a(x)| < &,
ZEB[

provided that ¢ is small enough (possibly in dependence of ¢,). Also, since u is

compactly supported, say in Bg, and writing b := 2? s« we obtain that
_ _ - dx _ ~ 75 dx
i) i ()" S5 < [ {hmwwmuM@W-ﬁ
R" | x| Bryi LB | x|

with C independent of ¢ and ¢,. Since ¢, can be taken arbitrarily small, the proof
of (6.4) is complete.

Now we prove (6.3). For this, we fix ¢, > 0, to be taken as small as we wish in
the sequel, and we use Lemma 5.3 to find a continuous and compactly supported
function % : R” — R such that |ju — a”L”‘*(R”) <&,

By Proposition 4.5, we deduce that ™

s, =l s g = 100 = @) e ) < Cllu =l < C

Furthermore, by (6.4), we know that
||1’~l —ux naHL;’J(Rn) < &,

as long as ¢ is sufficiently small. By collecting these pieces of information, we
conclude that

||u - ugHLup‘;f(R”) < ||u - a”L:‘?(R") + ||l:2 - 12 * 7]£||L”p;(R”) + Ha * ’78 —ux ;7?||L“P;(Rn)

< (2 -+ C)go-

This completes the proof of (6.3).
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Now we recall the notation in (4.12) and we prove that
(6.5) if v: R — R is continuous and compactly supported, then

11_{13 Jo—v *’75||L;H(RZ") =0.

For this, we fix ¢, > 0 and we use the fact that v is uniformly continuous to write
that

sup [o(x — ez, y — e2) — v(x, Y)| < &,

ZGB]

provided that ¢ is small enough (possibly in dependence of ¢,). Also, since v is
compactly supported, say in {|(x, y)| < R}, for some R > 0, we have that

v(x,y) =0=uv(x —ez, y — &z)

if z € By and max{|x|,|y|} = R+ 1, as long as ¢ < 1. Moreover

v(x, p) —vrn,(x,p) = /B (0(x, ¥) —v(x — ez, y — e2))n(2) dz,

and, as a consequence,

dx dy

v(x, y) —vxn(x, p)|”
JL ) = vt
<f U
Bri1xXBry1 LY By
< or // dxdy
- BR+1><BR+1 |‘x|a|y‘a

— Cel
= Cel,

P dxdy

v(x,y) —v(x —ez,y —ez) W

n(z) dz]

with C depending on v, but independent of ¢ and ¢,. Since ¢, can be taken arbi-
trarily small, the proof of (6.5) is complete.

Now we are in the position of completing the proof of Lemma 6.1. We remark
that, by (6.3), and recalling (1.2) and (1.4), in order to prove Lemma 6.1, it only
remains to show that

66 iy ], =l )= uly) +u ()" dv dy

=0 -y X[ [

To this goal, we let

, u(x) —u(y)
v (x, y) = T
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By comparing (4.12) and (6.2), we see that

(6.7) o™ n.(x,y) = / v(”)(x —z,y—z)n,(z)dz
[ ey,
NPT

u* 17,(x) —uxn,(y)
=yt

— o) (x, y).

We fix ¢, > 0, to be taken as small as we wish in the sequel, and use Lemma 5.2,
to find a continuous and compactly supported function v such that

(6.8) [0 — U”Lu’f“(RZ”) =&
Notice that, by (6.5),
(69) ||U —U* ’7£||L:[,(|R2n) S 80,
as long as ¢ is sufficiently small.
Moreover, by Proposition 4.4 (applied here to the function v — v) and (6.8),
we have that

(6.10) (0™ — v) * ol meny < Cllo™ — Ve, wey < Céo

Also, by (5.2)

)= ||v(u) — plwn,)

_ ) — [|pln—n)
[ = wx Lo = 10 g LY (R):

Thus, recalling (6.7),

[ —uxn]gor g, = 0@ — v s || (R

a,a

Accordingly, by (6.8), (6.9) and (6.10),

[ = w1y

< 0" - U“L,,'fa(Rz”) +lv- U*’7g||L,f,,(R3") + [Jown, — o™ *77£||L‘fa(R2”)

< (24 C)e,.

Since ¢, can be taken arbitrarily small, we have proved (6.6), and therefore the
proof of Lemma 6.1 is complete. O
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7. PROOF OF THEOREM 1.1

Letue W;’P(R"), and fix 0 > 0. If 7; is as in Lemma 3.1, then for j large enough
we have that

0
(7.1) e =zl o ey <5

thanks to Lemma 3.1.
Now, for any ¢ > 0, let #, be the mollifier defined at the beginning of Section
6. We set

Pe = TiUKT,.

By construction, p, € C*(R"). Moreover, standard properties of the convolution
imply that

supp p, < supp(zju) + B;.
Also (see e.g. Lemma 9 in [9]) one sees that
supp(zju) < (supp ;) N (suppu) < By N (suppu).
Hence

supp p, < (Baj N (suppu)) + B,.

As a consequence, p, € Ci°(R").
Furthermore, Lemma 6.1 gives that

0
||p.§, - T]uHWa&I)(Rn) < 5,

if ¢ is sufficiently small. Therefore, from this and (7.1) we obtain that

o 0
1= pull ey < Nt = Tl zman, + it = pulloncany < 5 +5 = .

Since 0 can be taken arbitrarily small, this concludes the proof of Theorem 1.1.

REMARK 7.1. We point out that some of the statements of this paper may be
interpreted in the light of the theory of the maximal function and in terms of the
Muckenhoupt weights A;.

For instance, Proposition 4.2 could be written equivalently in terms of the
maximal function (it is sufficient to make a change of variable in the integral,
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translating the center of the balls in x), and it is related to the fact that the weight
|x|_b is in the Muckenhoupt class A; if and only if 0 < b < n (see e.g. page 141
in [8]).

Similarly, formula (4.8) states that the weight 1/® is in 4; and Lemma 4.3
is related to the boundedness of the maximal operator for A4, weights, since
the average over the balls can be majored by the maximal operator (see also
page 136 of [8]).

In this sense, Proposition 4.4 is also related to the theory of convolutions in
functional spaces (see e.g. Corollaire 7.20 on page 387 of [4]).

It is an interesting problem to generalize the results given here to the class of
Muckenhoupt weights in a wider functional setting.
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