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Abstract. — In this paper we show a density property for fractional weighted Sobolev spaces.

That is, we prove that any function in a fractional weighted Sobolev space can be approximated by

a smooth function with compact support.
The additional di‰culty in this nonlocal setting is caused by the fact that the weights are not

necessarily translation invariant.
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1. Introduction

Goal of this paper is to provide an approximation result by smooth and com-
pactly supported functions for a fractional Sobolev space with weights that are
not necessarily translation invariant.
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The functional framework is the following. Given s a ð0; 1Þ, p a ð1;þlÞ,
such that sp < n, and

a a 0;
n� sp

2

� �
ð1:1Þ

we introduce the semi-norm

½u� ~WW s; p
a ðRnÞ :¼

�ZZ
R2n

juðxÞ � uðyÞj p

jx� yjnþsp

dx

jxja
dy

jyja
�1=p

:ð1:2Þ

We define the space

~WWs;p
a ðRnÞ :¼ fu : Rn ! R measurable s:t: ½u� ~WW s; p

a ðRnÞ < þlg:

Also, we define the weighted norm

kuk
L

p�s
a ðRnÞ

:¼
�Z

Rn

juðxÞj p
�
s

jxj
2ap�s
p

dx
�1=p�

s

;ð1:3Þ

where p�
s is the fractional critical Sobolev exponent associated to p, namely

p�
s :¼ np

n� sp
:

Moreover, we set

Lp�
s

a ðRnÞ :¼ fu : Rn ! R measurable s:t: kuk
L

p�s
a ðRnÞ

< þlg:

The importance of the weighted norm in (1.3) lies in the fact that, when a lies in
the range prescribed by (1.1), a weighted fractional Sobolev inequality holds true,
as proved in [1]: more precisely, there exists a constant Cn; s;p;a > 0 such that

kuk
L

p�s
a ðRnÞ

aCn; s;p;a½u� ~WW s; p
a ðRnÞ;

for any u a Cl
0 ðRnÞ. So we define _WWs;p

a ðRnÞ :¼ ~WWs;p
a ðRnÞBL

p�
s

a ðRnÞ, which is
naturally endowed with the norm

kuk _WW s; p
a ðRnÞ :¼ ½u� ~WW s; p

a ðRnÞ þ kuk
L

p�s
a ðRnÞ

:ð1:4Þ

The space _WWs;p
a ðRnÞ has recently appeared in the literature in several circum-

stances, such as in a clever change of variable (see [11]), and in a critical and
fractional Hardy equation (see [7]). Even the case with a ¼ 0 presents some
applications, see e.g. [6].

A natural question is whether functions with finite norm in _WWs;p
a ðRnÞ can be

approximated by smooth functions with compact support. This is indeed the case,
as stated by our main result:
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Theorem 1.1. For any u a _WWs;p
a ðRnÞ there exists a sequence of functions

ue a Cl
0 ðRnÞ such that ku� uek _WW s; p

a ðRnÞ ! 0 as e ! 0. Namely, Cl
0 ðRnÞ is dense

in _WWs;p
a ðRnÞ.

We observe that Theorem 1.1 comprises also the ‘‘unweighted’’ case a ¼ 0
(though, in this setting, the proof can be radically simplified, thanks to the trans-
lation invariance of the kernel, see e.g. [9, 13]). The result obtained in Theorem
1.1 here plays also a crucial role in [7] to obtain sharp decay estimates of the
solution of a weighted equation near the singularities and at infinity.

For related results in weighted Sobolev spaces with integer exponents see for
instance [3, 12, 2, 15] and the references therein.

The paper is essentially self-contained. We tried to avoid as much as possible
any unnecessary complication arising from the presence of the weights and to
explain all the technical details of the arguments presented.

The paper is organized as follows. In Section 2 we show a basic lemma that
states that the space under consideration is not trivial. In Section 3 we show that
we can perform an approximation with compactly supported functions.

The approximation with smooth functions is, in general, more di‰cult to
obtain, due to the presence of weights that are not translation invariant. More
precisely, the standard approximation techniques that rely on convolution need
to be carefully reviewed, since the arguments based on the continuity under
translations in the classical Lebesgue spaces fail in this case. To overcome this
type of di‰culties, in Section 4 we estimate the ‘‘averaged’’ error produced by
translations of the weights and we use this estimate to control the norm of a
mollification in terms of the norm of the original function.

Then, in Section 5, we perform an approximation with continuous functions,
by carefully exploiting the Lusin’s Theorem. The approximation with smooth
functions is proved in Section 6, by using all the ingredients that were previously
introduced. Finally, Section 7 is devoted to the proof of Theorem 1.1.

2. A basic lemma

In this section we consider a more general semi-norm and we show that it is
bounded for functions in Cl

0 ðRnÞ. This remark shows that there is an interesting
range of parameters for which the space considered here is not trivial.

We take a; b a R such that

�sp < a; b < n and aþ b < n;ð2:1Þ

and we define

½u� ~WW s; p
a; b

ðRnÞ :¼
ZZ

R2n

juðxÞ � uðyÞj p

jx� yjnþsp

dx

jxja
dy

jyjb
:ð2:2Þ

Lemma 2.1. Let j a Cl
0 ðRnÞ. Then there exists a positive constant C such that

½j� ~WW s; p
a; b

ðRnÞ aC:
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Proof. We take j a Cl
0 ðRnÞ and we suppose that the support of j is contained

in the ball BR (for some R > 1). Therefore, if x; y a RnnBR then jðxÞ ¼ jðyÞ ¼ 0,
and so we can assume in the integral in (2.2) for j that x a BR, up to a factor 2,
i.e. we have to estimate

I ¼
ZZ

BR�Rn

jjðxÞ � jðyÞj p

jx� yjnþsp

dx

jxja
dy

jyjb
¼ I1 þ I2;ð2:3Þ

where

I1 :¼
ZZ

BR�B2R

jjðxÞ � jðyÞj p

jx� yjnþsp

dx

jxja
dy

jyjb
and

I2 :¼
ZZ

BR�ðRnnB2RÞ

jjðxÞ � jðyÞj p

jx� yjnþsp

dx

jxja
dy

jyjb
:

We first estimate I1: we have

I1 aC

ZZ
B2R�B2R

jx� yj p

jx� yjnþsp

dx

jxja
dy

jyjb
;ð2:4Þ

for some constant C > 0 depending on the C1-norm of u. Now, if a; b < 0 then
jxj�a

a ð2RÞ�a and jyj�b
a ð2RÞ�b. Therefore, by the change of variable

z ¼ x� y, we get

I1 aCð2RÞ�að2RÞ�b

Z
B2R

dx

Z
B2R

dzjx� yj p�n�sp
aC;

up to renaming C, that possibly depends on R.
Now we suppose that a; bb 0. We claim that

I1 aC

ZZ
B2R�B2R

jx� yj p�n�sp dx dy

jxjaþb
:ð2:5Þ

Indeed, if jxja jyj, then formula (2.5) trivially follows from (2.4). On the other
hand, if jxjb jyj, then

I1 aC

ZZ
B2R�B2R

jx� yj p�n�sp dx dy

jyjaþb
;

and so by symmetry we get (2.5).
From (2.5) we obtain that

I1 aC

Z
B2R

dx

jxjaþb

Z
B4R

dz

jzjnþsp�p aC;

thanks to (2.1), up to renaming C.
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Finally, we deal with the case ab 0 and ba 0 (the other situation is sym-
metric). Then, jyj�b

a ð2RÞ�b, and so

I1 aCð2RÞ�b

ZZ
B2R�B2R

jx� yj p�n�sp dx dy

jxja

aCð2RÞ�b

Z
B2R

dx

jxja
Z
B4R

jzj p�n�sp
dz

aC;

thanks to (2.1), up to relabelling C (that depends also on R).
Therefore, we have shown that for any a, b that satisfy (2.1) we have that

I1 aC;ð2:6Þ

up to renaming the constant C.
Now we estimate I2. For this, we observe that if x a BR and y a RnnB2R then

jx� yjb jyj � jxj ¼ jyj
2

þ jyj
2

� jxjb jyj
2
:

Thus

I2 a 2nþspð2kukLlðRnÞÞ
p

ZZ
BR�ðRnnB2RÞ

1

jyjnþsp

dx

jxja
dy

jyjb

a 2nþspð2kukLlðRnÞÞ
p

Z
BR

dx

jxja
Z
RnnB2R

dy

jyjnþspþb

aC;

thanks to (2.1). Using this and (2.6) into (2.3) we obtain that I is bounded. r

As an obvious consequence of Lemma 2.1, we have that Cl
0 ðRnÞJ ~WWs;p

a ðRnÞ,
and so, by (1.1), we see that Cl

0 ðRnÞJ _WWs;p
a ðRnÞ. This says that the approxima-

tion seeked by Theorem 1.1 is meaningful.

3. Approximation by compactly supported functions

In this section we will prove that we can approximate a function in _WWs;p
a ðRnÞ

with another function with compact support, by keeping the error small.

Lemma 3.1. Let u a _WWs;p
a ðRnÞ. Let t a Cl

0 ðB2; ½0; 1�Þ with t ¼ 1 in B1, and
tjðxÞ :¼ tðx=jÞ. Then

lim
j!þl

ku� tjuk _WW s; p
a ðRnÞ ¼ 0:
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Proof. We set hj :¼ 1� tj. Then u� tju ¼ hju, and hjðxÞ � hjðyÞ ¼ tjðyÞ�
tjðxÞ. Accordingly juðxÞ � tjuðxÞja 2juðxÞj and so

lim
j!þl

ku� tjuk
L

p�s
a ðRnÞ

¼ 0;ð3:1Þ

by the Dominated Convergence Theorem. Moreover,

jhjuðxÞ � hjuðyÞja jtjðxÞ � tjðyÞj juðyÞj þ juðxÞ � uðyÞjhjðxÞ:

Also, we observe that if both x and y lie in Bj, then tjðxÞ ¼ tjðyÞ ¼ 1. ThereforeZZ
R2n

jðu� tjuÞðxÞ � ðu� tjuÞðyÞj p

jx� yjnþsp

dx

jxja
dy

jyjað3:2Þ

a 2

ZZ
Rn�ðRnnBjÞ

jðu� tjuÞðxÞ � ðu� tjuÞðyÞj p

jx� yjnþsp

dx

jxja
dy

jyja

aCðIj þ JjÞ;

where

Ij :¼
ZZ

Rn�ðRnnBjÞ

jtjðxÞ � tjðyÞj pjuðyÞj p

jx� yjnþsp

dx

jxja
dy

jyja

and Jj :¼
ZZ

Rn�ðRnnBjÞ

juðxÞ � uðyÞj ph p
j ðxÞ

jx� yjnþsp

dx

jxja
dy

jyja :

We estimate these two terms separately. First of all, we estimate Ij. For this, we
define

Dj;0 :¼ fðx; yÞ a Rn � ðRnnBjÞ s:t: jxja jyj=2g;
Dj;1 :¼ fðx; yÞ a Rn � ðRnnBjÞ s:t: jxj > jyj=2 and jx� yjb jg

and Dj;2 :¼ fðx; yÞ a Rn � ðRnnBjÞ s:t: jxj > jyj=2 and jx� yj < jg;

and we write, for k a f0; 1; 2g,

Ij;k :¼
ZZ

Dj; k

jtjðxÞ � tjðyÞj pjuðyÞj p

jx� yjnþsp

dx

jxja
dy

jyja :

Notice that

Ij ¼ Ij;0 þ Ij;1 þ Ij;2:ð3:3Þ

So we define s0 :¼ s, and we fix s1 a ð0; sÞ and s2 a ðs; 1Þ. We write

jtjðxÞ � tjðyÞj pjuðyÞj p

jx� yjnþspjxjajyja
¼ jtjðxÞ � tjðyÞj p

jx� yjðsþskÞp
� juðyÞj p

jx� yjn�sk pjxjajyja :

402 s. dipierro and e. valdinoci



Thus we apply the Hölder inequality with exponents n=sp and p�
s =p (which is in

turn equal to n=ðn� spÞ) and, for any k a f0; 1; 2g, we obtain that

Ij;k a

ZZ
Dj; k

jtjðxÞ � tjðyÞj
n
s

jx� yj
ðsþsk Þn

s

dx dy

2
4

3
5

sp
n

ð3:4Þ

�
ZZ

Dj; k

juðyÞj p
�
s

jx� yj
ðn�sk pÞn

n�sp jxj
ap�s
p jyj

ap�s
p

dx dy

2
4

3
5

n�sp
n

:

Now we change variable X :¼ x=j and we see thatZZ
Dj; k

jtjðxÞ � tjðyÞj
n
s

jx� yj
ðsþsk Þn

s

dx dy ¼
ZZ

Dj; k

jtðx=jÞ � tðy=jÞj
n
s

jx� yj
ðsþsk Þn

s

dx dy

¼ j 2n�
ðsþsk Þn

s

ZZ
D1; k

jtðXÞ � tðY Þj
n
s

jX � Y j
ðsþsk Þn

s

dX dY

¼ j
ðs�sk Þn

s

ZZ
D1; k

jtðxÞ � tðyÞj
n
s

jx� yjnþsk
n
s

dx dy:

That is, if we set P :¼ n=s, we get thatZZ
Dj; k

jtjðxÞ � tjðyÞj
n
s

jx� yj
ðsþsk Þn

s

dx dya j
ðs�sk Þn

s ktk _WW sk ;PðRnÞ aCj
ðs�sk Þn

s ;ð3:5Þ

where _WW s;PðRnÞ is the usual Gagliardo semi-norm (which coincides with
~WW s;P
a ðRnÞ with a ¼ 0, see e.g. [5]).
In addition, if ðx; yÞ a Dj;0, we have that jx� yjb jyj � jxjb jyj=2 and soZZ

Dj; 0

juðyÞj p
�
s

jx� yj
ðn�s0 pÞn

n�sp jxj
ap�s
p jyj

ap�s
p

dx dyð3:6Þ

aC

ZZ
Dj; 0

juðyÞj p
�
s

jxj
ap�s
p jyj

ðn�s0 pÞn
n�sp

þap�s
p

dx dy

aC

Z
RnnBj

Z jyj=2

0

rn�1�ap�s
p
juðyÞj p

�
s

jyj
nðn�spþaÞ

n�sp

dr

" #
dy

¼ C

Z
RnnBj

jyj
nðn�sp�aÞ

n�sp juðyÞj p
�
s

jyj
nðn�spþaÞ

n�sp

dy

¼ C

Z
RnnBj

juðyÞj p
�
s

jyj
2ap�s
p

dy:
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Moreover, if k a f1; 2g, using the change of variable z :¼ x� y (and integrating
in y a RnnBj separately), we see thatZZ

Dj; k

juðyÞj p
�
s

jx� yj
ðn�sk pÞn

n�sp jxj
ap�s
p jyj

ap�s
p

dx dy

aC

ZZ
Dj; k

juðyÞj p
�
s

jx� yj
ðn�sk pÞn

n�sp jyj
2ap�s
p

dx dy

¼ C

ZZ
Dj; k

juðyÞj p
�
s

jx� yjnþ
ðs�sk Þ pn

n�sp jyj
2ap�s
p

dx dy

a

Ckuk
L

p �s
a ðRnnBjÞ

Z
RnnBj

dz

jzjnþ
ðs�s1Þ pn

n�sp

if k ¼ 1;

Ckuk
L

p �s
a ðRnnBjÞ

Z
Bj

dz

jzjnþ
ðs�s2Þ pn

n�sp

if k ¼ 2:

8>>>>><
>>>>>:

Thus, recalling that s1 < s < s2, we conclude that, for any k a f1; 2g,
ZZ

Dj; k

juðyÞj p
�
s

jx� yj
ðn�sk pÞn

n�sp jxj
ap�s
p jyj

ap�s
p

dx dyaCkuk
L

p �s
a ðRnnBjÞ

j
ðsk�sÞ pn

n�sp :ð3:7Þ

As a matter of fact, in virtue of (3.6), and recalling that s0 ¼ s, we have that the
above equation is valid also for k ¼ 0.

So, for k a f0; 1; 2g, we insert formulas (3.7) and (3.5) into (3.4) and we
conclude that

Ij;k aCð j
ðs�sk Þn

s Þ
sp
n � ðkuk

L
p �s
a ðRnnBjÞ

j
ðsk�sÞ pn

n�sp Þ
n�sp
n aCkuk

n�sp

n

L
p�s
a ðRnnBjÞ

:

Thus, by (3.3), we obtain

Ij aCkuk
n�sp

n

L
p �s
a ðRnnBjÞ

! 0 as j ! þl:ð3:8Þ

Now we consider Jj. For this, we define

cjðx; yÞ :¼ wRn�ðRnnBjÞðx; yÞ
juðxÞ � uðyÞj p h p

j ðxÞ
jx� yjnþspjxjajyja

:

Notice that

jcjðx; yÞja
juðxÞ � uðyÞj p

jx� yjnþspjxjajyja
a L1ðR2nÞ;
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thus, by the Dominated Convergence Theorem,

Jj ¼
ZZ

R2n
cjðx; yÞ dx dy ! 0 as j ! þl:

This, (3.2) and (3.8) give thatZZ
R2n

jðu� tjuÞðxÞ � ðu� tjuÞðyÞj p

jx� yjnþspjxjajyja
dx dy ! 0 as j ! þl:ð3:9Þ

The latter formula and (3.1) give the desired result. r

4. Estimates in average and control of the convolution

Here we perform some detailed estimate on the ‘‘averaged’’ e¤ect of the weights
under consideration. Roughly speaking, the weights themselves are not transla-
tion invariant, but we will be able to estimate the averaged e¤ect of the transla-
tions in a somehow uniform way.

From this, we will be able to control the norm of the mollification by the
norm of the original function, and this fact will in turn play a crucial role in the
approximation with smooth functions performed in Section 6 (namely, one will
approximate first a given function in the space with a continuous and compactly
supported function, so one will have to bound the convolution of this di¤erence
in terms of the di¤erence of the original functions).

Due to the presence of two types of weights, the arguments of this part are
quite technical. We start with an averaged weighted estimate:

Proposition 4.1. There exists C > 0 such that

sup
r>0

1

rn

Z
Br

dz

jxþ zjajyþ zja a
C

jxjajyja ;

for every x; y a Rnnf0g.

Proof. Fixed r > 0, consider the following four domains:

D0 :¼ z a Br s:t: jxþ zjb jxj
2

and jyþ zjb jyj
2

� �
;

D1 :¼ z a Br s:t: jxþ zja jxj
2

and jyþ zjb jyj
2

� �
;

D2 :¼ z a Br s:t: jxþ zjb jxj
2

and jyþ zja jyj
2

� �

and D3 :¼ z a Br s:t: jxþ zja jxj
2

and jyþ zja jyj
2

� �
:
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Then Z
D0

dz

jxþ zjajyþ zja a

Z
Br

dz

ðjxj=2Þaðjyj=2Þa a
4ajBrj
jxjajyja :ð4:1Þ

Now we observe that

if there exists z a Br such that jxþ zja jxj
2
;ð4:2Þ

then rb jzjb jxj � jxþ zjb jxj
2
:

From this, we observe that if D1A j it follows that rb jxj=2 and so, using the
substitution z :¼ xþ z,Z

D1

dz

jxþ zjajyþ zja a
2a

jyja
Z
Br

dz

jxþ zja a
2a

jyja
Z
Brþjxj

dz

jzjað4:3Þ

a
C1ðrþ jxjÞn�a

jyja a
C2ð3rÞn

ðrþ jxjÞajyja

a
C2ð3rÞn

jxjajyja ¼
C3r

n

jxjajyja ;

for some constants C1;C2;C3 > 0. Similarly, by exchanging the roles of x and y,
we see that Z

D2

dz

jxþ zjajyþ zja a
C4r

n

jxjajyja :ð4:4Þ

Moreover, if D3A j, we deduce from (4.2) (and the similar formula for y) that

rb max
jxj
2
;
jyj
2

� �
and thereforeZ

D3

dz

jxþ zjajyþ zja a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Br

dz

jxþ zj2a

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Br

dz

jyþ zj2a

s
ð4:5Þ

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Brþjxj

dz

jzj2a

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ
Brþj yj

dz

jzj2a

s

aC5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ jxjÞn�2a

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrþ jyjÞn�2a

q

¼ C5ðrþ jxjÞn=2ðrþ jyjÞn=2

ðrþ jxjÞaðrþ jyjÞa

a
C5ð3rÞn=2ð3rÞn=2

jxjajyja ¼ C6r
n

jxjajyja :
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Notice that we have used all over in the integrals that aa 2a < n, thanks to
(1.1).

The desired result now follows by combining (4.1), (4.3), (4.4), (4.5) and the
fact that Br ¼ D0 AD1 AD2 AD3. r

A simpler (but still useful for our purposes) version of Proposition 4.1 is the
following:

Proposition 4.2. Let b :¼ 2ap�
s

p
¼ 2an

n�sp
. There exists C > 0 such that

sup
r>0

1

rn

Z
Br

dz

jxþ zjb
a

C

jxjb
;

for every x a Rnnf0g.

Proof. The proof is similar to the one of Proposition 4.1, just dropping the
dependence in y. We give the details for the facility of the reader. Fixed r > 0,
consider the following two domains:

D0 :¼ z a Br s:t: jxþ zjb jxj
2

� �
;

and D1 :¼ z a Br s:t: jxþ zja jxj
2

� �
:

Then Z
D0

dz

jxþ zjb
a

Z
Br

dz

ðjxj=2Þb
a

2bjBrj
jxjb

:ð4:6Þ

Now we observe that if there exists z a Br such that jxþ zja jxj=2, then
rb jzjb jxj � jxþ zjb jxj=2. From this, we observe that if D1Aj it follows
that rb jxj=2 and soZ

D1

dz

jxþ zjb
a

Z
Brþjxj

dz

jzjb
aC1ðrþ jxjÞn�b ¼ C1ðrþ jxjÞn

ðrþ jxjÞb
a

C1ð3rÞn

jxjb
ð4:7Þ

for some constant C1 > 0. We observe that we have used here above that b < n,
thanks to (1.1). Then, formulas (4.7) and (4.6) imply the desired result. r

Now, we observe that, in this paper, two types of ‘‘di¤erent’’ weighted norms
appear all over, namely (1.2) and (1.3). In order to deal with both of them at the
same time, we introduce now an ‘‘abstract’’ notation, by working in RN (then, in
our application, we will choose either N ¼ n or N ¼ 2n). Also, we will consider
two functions $ : Rn ! RN and Y : RN ! ½0;þl�. The main assumption that
we will take is that

sup
r>0

1

rn

Z
Br

dz

YðX þ$ðzÞÞ a
C

YðX Þ ;ð4:8Þ
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for a suitable C > 0, for a.e. X a RN . We point out that the integral in (4.8)
is always performed on an n-dimensional ball Br (i.e., in that notation,
z a Br HRn), but the point X lies in RN (and n and N may be di¤erent).

Concretely, in the light of Propositions 4.1 and 4.2, we have that condition
(4.8) holds true when

N ¼ 2n; $ðzÞ ¼ ðz; zÞ; YðXÞ ¼ jxjajyja; X ¼ ðx; yÞ a Rn � Rn;

and when

N ¼ n; $ðzÞ ¼ z; YðxÞ ¼ jxjb; b ¼ 2ap�
s

p
:ð4:9Þ

From (4.8), we obtain a useful bound on (a suitable variant of ) the maximal
function in Rn � Rn:

Lemma 4.3. Assume that condition (4.8) holds true. Let q > 1. Let V be a
measurable function from RN to R. Then, for any r > 0,

Z
RN

1

rn

Z
Br

jVðX �$ðzÞÞj dz
� �q

dX

YðX Þ aC

Z
RN

jVðX Þjq

YðX Þ dX ;ð4:10Þ

for a suitable C > 0.

Proof. We may suppose that the right hand side of (4.10) is finite, otherwise
we are done. We use the Hölder inequality with exponents q and q=ðq� 1Þ, to
see that

1

rn

Z
Br

jVðX �$ðzÞÞj dza 1

rn

Z
Br

jVðX �$ðzÞÞjq dz
� �1=q Z

Br

1 dz

� �ðq�1Þ=q

¼ C1

rn=q

Z
Br

jVðX �$ðzÞÞjq dz
� �1=q

;

for some C1 > 0, and so, by (4.8), and using the change of variable ~XX :¼
X �$ðzÞ over RN , we obtain

Z
RN

1

rn

Z
Br

jVðX �$ðzÞÞj dz
� �q

dX

YðXÞ

a
C

q
1

rn

Z
RN

Z
Br

jVðX �$ðzÞÞjq dz
� �

dX

YðX Þ

¼ C
q
1

rn

Z
Br

Z
RN

jVðX �$ðzÞÞjq dX

YðXÞ

� �
dz
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¼ C
q
1

rn

Z
Br

Z
RN

jVð ~XX Þjq d ~XX

Yð$ðzÞ þ ~XXÞ

� �
dz

¼ C
q
1

rn

Z
RN

jVð ~XX Þjq
Z
Br

dz

Yð$ðzÞ þ ~XXÞ

� �
d ~XX

a

Z
RN

jVð ~XX Þjq C2

Yð ~XX Þ
d ~XX ;

as desired. r

With the estimate in Lemma 4.3, we are in the position of bounding a (suitable
variant of ) the standard mollification. For this, we take a radially symmetric,
radially decreasing function ho a ClðRnÞ, with hb 0, supp ho JB1 and

Z
Rn

hoðxÞ dx ¼ 1ð4:11Þ

With a slight abuse of notation, we write hoðrÞ ¼ hoðxÞ whenever jxj ¼ r. Given
a measurable function v ¼ vðx; yÞ from R2n to R, we also define

v ? hoðx; yÞ :¼
Z
Rn

vðx� z; y� zÞ hoðzÞ dz:ð4:12Þ

Then we have:

Proposition 4.4. For every measurable function v ¼ vðx; yÞ from R2n to R, we
have that

ZZ
R2n

jv ? hoðx; yÞj
p

jxjajyja dx dyaC

ZZ
R2n

jvðx; yÞj p

jxjajyja dx dy;

for a suitable C > 0.

Proof. The argument is a careful modification of the one on pages 63–65 of
[14]. First of all, we use an integration by parts to notice that

Z 1

0

rnjh 0
oðrÞj dr ¼ �

Z 1

0

rnh 0
oðrÞ dr ¼ n

Z 1

0

rn�1hoðrÞ drð4:13Þ

¼ C0

Z
B1

hoðxÞ dx ¼ C0;

for some C0 > 0, due to (4.11). We define
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lðr; x; yÞ :¼ rn�1

Z
Sn�1

jvðx� ro; y� roÞj dHn�1ðoÞ

and Lðr; x; yÞ :¼
Z
Br

jvðx� z; y� zÞj dz:

Now we use Lemma 4.3 with N :¼ 2n, $ðzÞ :¼ ðz; zÞ, X :¼ ðx; yÞ, YðX Þ :¼
jxjajyja, q :¼ p and VðX Þ :¼ vðx; yÞ, see (4.9). In this way we obtain that

ZZ
R2n

Lðr; x; yÞ
rn

� �p
dx dy

jxjajyja aC1

ZZ
R2n

jvðx; yÞj p

jxjajyja dx dy;ð4:14Þ

for some C1 > 0. Moreover, by polar coordinates,

Lðr; x; yÞ ¼ C2

Z r

0

rn�1

Z
Sn�1

jvðx� ro; y� roÞj dHn�1ðoÞ
� �

dr

¼ C2

Z r

0

lðr; x; yÞ dr;

and therefore

q

qr
Lðr; x; yÞ ¼ C2lðr; x; yÞ:

Notice also that Lð0; x; yÞ ¼ 0 ¼ hoð1Þ. Consequently, using again polar coordi-
nates and an integration by parts, we obtain

jv ? hoðx; yÞja
Z
B1

jvðx� z; y� zÞjhoðzÞ dzð4:15Þ

¼ C3

Z 1

0

Z
Sn�1

rn�1jvðx� ro; y� roÞjhoðrÞ dHn�1ðoÞ
� �

dr

¼ C3

Z 1

0

lðr; x; yÞhoðrÞ dr

¼ C4

Z 1

0

qL

qr
ðr; x; yÞhoðrÞ dr

¼ �C4

Z 1

0

Lðr; x; yÞh 0
oðrÞ dr:

We recall that h 0
o a 0, so the latter term is indeed non-negative. Now we use the

Minkowski integral inequality (see e.g. Appendix A.1 in [14]): this gives that, for

a given F ¼ Fðr; x; yÞ, and dmðx; yÞ :¼ dx dy

jxjajyja , we have
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ZZ
R2n

Z 1

0

jF ðr; x; yÞj dr
� �p

dmðx; yÞ
" #1=p

a

Z 1

0

ZZ
R2n

jF ðr; x; yÞj p dmðx; yÞ
� �1=p

dr:

Using this with Fðr; x; yÞ :¼ Lðr; x; yÞh 0
oðrÞ and recalling (4.15), we conclude that

ZZ
R2n

jv ? hoðx; yÞj
p

jxjajyja dx dy

� �1=p

aC5

ZZ
R2n

Z 1

0

Lðr; x; yÞjh 0
oðrÞj dr

� �p
dx dy

jxjajyja

" #1=p

aC5

Z 1

0

ZZ
R2n

jLðr; x; yÞj pjh 0
oðrÞj

p dx dy

jxjajyja
� �1=p

dr

¼ C5

Z 1

0

ZZ
R2n

Lðr; x; yÞ
rn

� �p
dx dy

jxjajyja
� �1=p

rnjh 0
oðrÞj dr:

Therefore, recalling (4.14),

ZZ
R2n

jv ? hoðx; yÞj
p

jxjajyja dx dy

� �1=p

aC6

Z 1

0

ZZ
R2n

jvðx; yÞj p

jxjajyja dx dy

� �1=p
rnjh 0

oðrÞj dr:

This and (4.13) give the desired result. r

A simpler, but still useful, version of Proposition 4.4 holds for the standard
convolution of a function u : Rn ! R, i.e.

u � hoðxÞ :¼
Z
Rn

uðx� zÞhoðzÞ dz:

The reader may compare the latter formula with (4.12). In this more standard
setting, we have:

Proposition 4.5. Let b :¼ 2ap �
s

p
. For every measurable function u from Rn to R,

we have that Z
Rn

ju � hoðxÞj
p�
s

jxjb
dxaC

Z
Rn

juðxÞj p
�
s

jxjb
dx;

for a suitable C > 0.
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Proof. The argument is a simplification of the one given for Proposition 4.4.
For the convenience of the reader, we provide all the details. We define

lðr; xÞ :¼ rn�1

Z
Sn�1

juðx� roÞj dHn�1ðoÞ

and Lðr; xÞ :¼
Z
Br

juðx� zÞj dz:

Here we use Lemma 4.3 with N :¼ n, $ðzÞ :¼ z, X :¼ x, YðX Þ :¼ jxjb, q :¼ p�
s

and VðX Þ :¼ uðxÞ, see (4.9). In this way we obtain that

Z
Rn

Lðr; xÞ
rn

� �p�
s dx

jxjb
aC1

Z
Rn

juðxÞj p
�
s

jxjb
dx;ð4:16Þ

for some C1 > 0. Moreover, by polar coordinates,

Lðr; xÞ ¼ C2

Z r

0

rn�1

Z
Sn�1

juðx� roÞj dHn�1ðoÞ
� �

dr ¼ C2

Z r

0

lðr; xÞ dr;

and therefore

q

qr
Lðr; xÞ ¼ C2lðr; xÞ:

Notice also that Lð0; xÞ ¼ 0 ¼ hoð1Þ. Consequently, using again polar coordi-
nates and an integration by parts, we obtain

ju � hoðxÞja
Z
B1

juðx� zÞjhoðzÞ dz

¼ C3

Z 1

0

Z
Sn�1

rn�1juðx� roÞjhoðrÞ dHn�1ðoÞ
� �

dr

¼ C3

Z 1

0

lðr; xÞhoðrÞ dr

¼ C4

Z 1

0

qL

qr
ðr; xÞhoðrÞ dr

¼ �C4

Z 1

0

Lðr; xÞh 0
oðrÞ dr:

Now we use the Minkowski integral inequality (see e.g. Appendix A.1 in [14])
and we conclude that
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Z
Rn

ju � hoðxÞj
p�
s

jxjb
dx

" #1=p�
s

aC5

Z
Rn

Z 1

0

Lðr; xÞjh 0
oðrÞj dr

� �p�
s dx

jxjb

" #1=p�
s

aC5

Z 1

0

Z
Rn

jLðr; xÞj p
�
s jh 0

oðrÞj
p�
s
dx

jxjb

" #1=p�
s

dr

¼ C5

Z 1

0

Z
Rn

Lðr; xÞ
rn

� �p�
s dx

jxjb

" #1=p�
s

rnjh 0
oðrÞj dr:

So, recalling (4.16),Z
Rn

ju � hoðxÞj
p�
s

jxjb
dx

" #1=p�
s

aC6

Z 1

0

Z
Rn

juðxÞj p
�
s

jxjb
dx

" #1=p�
s

rnjh 0
oðrÞj dr:

From this and (4.13) we obtain the desired result. r

5. Approximation in weighted Lebesgue spaces by

continuous functions

In order to deal with the semi-norm in (1.2), it is often convenient to introduce a
weighted norm over R2n, by proceeding as follows. Given a measurable function
v ¼ vðx; yÞ from R2n to R, we define

kvkL p
a; aðR2nÞ :¼

ZZ
R2n

jvðx; yÞj p dx

jxja
dy

jyja
	 �1=p

:ð5:1Þ

When kvkL p
a; aðR2nÞ is finite, we say that v belongs to Lp

a;aðR2nÞ. Notice that

if vðuÞðx; yÞ :¼ uðxÞ � uðyÞ
jx� yj

n
p
þs

; then formula ð5:1Þ reduces to ð1:2Þ;ð5:2Þ

namely kvðuÞkL p
a; aðR2nÞ ¼ ½u� ~WW s; p

a ðRnÞ:

Now we give two approximation results (namely Lemmata 5.1 and 5.2) with
respect to the norm in (5.1).

Lemma 5.1. Let v a Lp
a;aðR2nÞ. Then there exists a sequence of functions vM a

Lp
a;aðR2nÞBLlðR2nÞ such that kv� vMkL p

a; aðR2nÞ ! 0 as M ! þl.

Proof. We set

vMðx; yÞ :¼
M if vðx; yÞbM;

vðx; yÞ if vðx; yÞ a ð�M;MÞ;
�M if vðx; yÞa�M:

8><
>:
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We have that vM ! v a.e. in R2n and

jvMðx; yÞj p

jxjajyja a
jvðx; yÞj p

jxjajyja a L1ðR2nÞ;

thus the claim follows from the Dominated Convergence Theorem. r

Lemma 5.2. Let v a Lp
a;aðR2nÞ. Then there exists a sequence of continuous and

compactly supported functions vd : R
2n ! R such that kv� vdkL p

a; aðR2nÞ ! 0 as
d ! 0.

Proof. In the light of Lemma 5.1, we can also assume that

v a LlðR2nÞ:ð5:3Þ

Let tj a ClðR2n; ½0; 1�Þ, with tjðPÞ ¼ 1 if jPja j and tðPÞ ¼ 0 if jPjb j þ 1. Let
vj :¼ tju. Then vj ! v pointwise in R2n as j ! þl, and

jvðx; yÞ � vjðx; yÞj p

jxjajyja a
2 pjvðx; yÞj p

jxjajyja a L1ðR2nÞ:

As a consequence, by the Dominated Convergence Theorem,

lim
j!þl

kv� vjkL p
a; aðR2nÞ ¼ 0:

So, fixed d > 0, we find jd a N such that

kv� vjdkL p
a; aðR2nÞ a d:ð5:4Þ

Notice that vjd is supported in fP a R2n s:t: jPja jd þ 1g.
Also, given a set AJR2n, we set

ma;aðAÞ :¼
ZZ

A

dx dy

jxjajyja :

By (1.1), we see that ma;a is finite over compact sets. So, we can use Lusin’s
Theorem (see e.g. Theorem 7.10 in [10], and page 121 there for the definition
of the uniform norm). We obtain that there exist a closed set Ed HR2n and a
continuous and compactly supported function vd : R

2n ! R such that vd ¼ vjd in
R2nnEd, ma;aðEdÞa d p and kvdkLlðR2nÞ a kvjdkLlðR2nÞ.

In particular, since tjd a ½0; 1�, we have that kvdkLlðR2nÞ a kvkLlðR2nÞ, and this
quantity is finite, due to (5.3). Therefore

kvjd � vdk p

L
p
a; aðR2nÞ ¼

ZZ
Ed

jvjdðx; yÞ � vdðx; yÞj p
dx

jxja
dy

jyja

a 2 pðkvjdk
p

LlðR2nÞ þ kvdk p

LlðR2nÞÞma;aðEdÞa 2 pþ1kvk p

LlðR2nÞd
p:
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From this and (5.4), we obtain that kv� vdkL p
a; aðR2nÞ a ð1þ 4kvkLlðR2nÞÞd, which

concludes the proof. r

We remark that a simpler version of Lemma 5.2 also holds true in L
p�
s

a ðRnÞ.
We state the result explicitly as follows:

Lemma 5.3. Let u a L
p�
s

a ðRnÞ. Then there exists a sequence of continuous and
compactly supported functions ud : R

n ! R such that ku� udk
L

p�s
a ðRnÞ

! 0 as
d ! 0.

Proof. The argument is a simplified version of the one given for Lemma 5.2.
Full details are provided for the reader’s convenience. First of all, by the Domi-
nated Convergence Theorem, we can approximate u in L

p�
s

a ðRnÞ with a sequence
of bounded functions

uMðxÞ :¼
M if uðxÞbM;

uðxÞ if uðxÞ a ð�M;MÞ;
�M if uðxÞa�M:

8><
>:

Consequently, we can also assume that

u a LlðRnÞ:ð5:5Þ

Let tj a ClðRn; ½0; 1�Þ, with tjðPÞ ¼ 1 if jPja j and tðPÞ ¼ 0 if jPjb j þ 1. Let
uj :¼ tju. Then uj ! u pointwise in Rn as j ! þl, and

juðxÞ � ujðxÞj p
�
s

jxj
2ap�s
p

a
2 p�

s juðxÞj p
�
s

jxj
2ap�s
p

a L1ðR2nÞ:

As a consequence, by the Dominated Convergence Theorem,

lim
j!þl

ku� ujk
L

p�s
a ðRnÞ

¼ 0:

So, fixed d > 0, we find jd a N such that

ku� ujdkL p�s
a ðRnÞ

a d:ð5:6Þ

Notice that ujd is supported in Bjdþ1. Also, given a set AJRn, we set

maðAÞ :¼
Z
A

dx

jxj
2ap�s
p

:

By (1.1), we see that ma is finite over compact sets. So, we can use Lusin’s
Theorem (see e.g. Theorem 7.10 in [10], and page 121 there for the definition of
the uniform norm). We obtain that there exist a closed set Ed HRn and a contin-
uous and compactly supported function ud : R

n ! R such that ud ¼ ujd in RnnEd,
maðEdÞa d p�

s and kudkLlðRnÞ a kujdkLlðRnÞ.
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In particular, since tjd a ½0; 1�, we have that kudkLlðRnÞ a kukLlðRnÞ, and this
quantity is finite, due to (5.5). Therefore

kujd � udk p�
s

L
p �s
a ðRnÞ

¼
Z
Ed

jujdðxÞ � udðxÞj p
�
s

dx

jxj
2ap�s
p

a 2 p�
s ðkujdk

p�
s

LlðRnÞ þ kudk p�
s

LlðRnÞÞmaðEdÞa 2 p�
s þ1kvk p�

s

LlðRnÞd
p�
s :

From this and (5.6), we obtain that ku� udk
L

p�s
a ðRnÞ

a ð1þ 4kukLlðRnÞÞd, which
concludes the proof. r

6. Approximation by smooth functions

In this section we show that we can approximate a function in the space _WWs;p
a ðRnÞ

with a smooth one. We remark that, if there are no weights, smooth approxima-
tions are much more standard, since one can use directly the continuity of the
translations in LpðR2nÞ. Since the weights are not translation invariant, and the
continuity of the translations in Lebesgue spaces is, in general, not uniform, a
more careful procedure is needed in our case (namely, to overcome this di‰culty
we exploit the techniques developed in Sections 4 and 5).

We take a radially symmetric, radially decreasing function h a Cl
0 ðRnÞ such

that hb 0, supp hJB1 and Z
B1

hðxÞ dx ¼ 1;ð6:1Þ

and, for e > 0, we define the mollifier he as

heðxÞ :¼
1

en
h

x

e

	 �
; for any x a Rn:

Then, given u a _WWs;p
a ðRnÞ, we consider its standard convolution with the mollifier

he. That is, for any e > 0, we define

ueðxÞ :¼ ðu � heÞðxÞ ¼
Z
Rn

uðx� zÞheðzÞ dz; for any x a Rn:ð6:2Þ

By construction, ue a ClðRnÞ. We will show that, if e is su‰ciently small, then
the error made approximating u with ue is ‘‘small’’. The rigorous result is the
following:

Lemma 6.1. Let u a _WWs;p
a ðRnÞ. Then

lim
e!0

ku� uek _WW s; p
a ðRnÞ ¼ 0:
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Proof. We first check that

lim
e!0

ku� uek
L

p�s
a ðRnÞ

¼ 0:ð6:3Þ

To this scope, we start by proving that

if ~uu : Rn ! R is continuous and compactly supported; thenð6:4Þ
lim
e!0

k~uu� ~uu � hekL p �s
a ðRnÞ

¼ 0:

For this, we fix eo > 0 and we use the fact that ~uu is uniformly continuous to write
that

sup
z AB1

j~uuðx� ezÞ � ~uuðxÞja eo;

provided that e is small enough (possibly in dependence of eo). Also, since ~uu is
compactly supported, say in BR, and writing b :¼ 2ap�

s

p
, we obtain that

Z
Rn

j~uuðxÞ � ~uu � heðxÞj
p�
s
dx

jxjb
a

Z
BRþ1

Z
B1

j~uuðxÞ � ~uuðx� ezÞjhðzÞ dz
� �p�

s dx

jxjb

a e p
�
s

o

Z
BRþ1

dx

jxjb
¼ Ce p

�
s

o ;

with C independent of e and eo. Since eo can be taken arbitrarily small, the proof
of (6.4) is complete.

Now we prove (6.3). For this, we fix eo > 0, to be taken as small as we wish in
the sequel, and we use Lemma 5.3 to find a continuous and compactly supported
function ~uu : Rn ! R such that ku� ~uuk

L
p�s
a ðRnÞ

a eo.
By Proposition 4.5, we deduce that

ku � he � ~uu � hekL p�s
a ðRnÞ

¼ kðu� ~uuÞ � hekL p�s
a ðRnÞ

aCku� ~uuk
L

p�s
a ðRnÞ

aCeo:

Furthermore, by (6.4), we know that

k~uu� ~uu � hekL p�s
a ðRnÞ

a eo;

as long as e is su‰ciently small. By collecting these pieces of information, we
conclude that

ku� uek
L

p �s
a ðRnÞ

a ku� ~uuk
L

p�s
a ðRnÞ

þ k~uu� ~uu � hekL p�s
a ðRnÞ

þ k~uu � he � u � hekL p�s
a ðRnÞ

a ð2þ CÞeo:

This completes the proof of (6.3).
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Now we recall the notation in (4.12) and we prove that

if v : R2n ! R is continuous and compactly supported; thenð6:5Þ
lim
e!0

kv� v ? hekL p
a; aðR2nÞ ¼ 0:

For this, we fix eo > 0 and we use the fact that v is uniformly continuous to write
that

sup
z AB1

jvðx� ez; y� ezÞ � vðx; yÞja eo;

provided that e is small enough (possibly in dependence of eo). Also, since v is
compactly supported, say in fjðx; yÞjaRg, for some R > 0, we have that

vðx; yÞ ¼ 0 ¼ vðx� ez; y� ezÞ

if z a B1 and maxfjxj; jyjgbRþ 1, as long as e < 1. Moreover

vðx; yÞ � v ? heðx; yÞ ¼
Z
B1

ðvðx; yÞ � vðx� ez; y� ezÞÞhðzÞ dz;

and, as a consequence,ZZ
R2n

jvðx; yÞ � v ? heðx; yÞj
p dx dy

jxjajyja

a

ZZ
BRþ1�BRþ1

Z
B1





vðx; yÞ � vðx� ez; y� ezÞ




hðzÞ dz

� �p
dx dy

jxjajyja

a e po

ZZ
BRþ1�BRþ1

dx dy

jxjajyja

¼ Ce po ;

with C depending on v, but independent of e and eo. Since eo can be taken arbi-
trarily small, the proof of (6.5) is complete.

Now we are in the position of completing the proof of Lemma 6.1. We remark
that, by (6.3), and recalling (1.2) and (1.4), in order to prove Lemma 6.1, it only
remains to show that

lim
e!0

ZZ
R2n

juðxÞ � ueðxÞ � uðyÞ þ ueðyÞj p

jx� yjnþsp

dx

jxja
dy

jyja ¼ 0:ð6:6Þ

To this goal, we let

vðuÞðx; yÞ :¼ uðxÞ � uðyÞ
jx� yj

n
p
þs

:
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By comparing (4.12) and (6.2), we see that

vðuÞ ? heðx; yÞ ¼
Z
Rn

vðuÞðx� z; y� zÞheðzÞ dzð6:7Þ

¼
Z
Rn

uðx� zÞ � uðy� zÞ
jx� yj

n
p
þs

heðzÞ dz

¼ u � heðxÞ � u � heðyÞ
jx� yj

n
p
þs

¼ vðu�heÞðx; yÞ:

We fix eo > 0, to be taken as small as we wish in the sequel, and use Lemma 5.2,
to find a continuous and compactly supported function v such that

kvðuÞ � vkL p
a; aðR2nÞ a eo:ð6:8Þ

Notice that, by (6.5),

kv� v ? hekL p
a; aðR2nÞ a eo;ð6:9Þ

as long as e is su‰ciently small.
Moreover, by Proposition 4.4 (applied here to the function vðuÞ � v) and (6.8),

we have that

kðvðuÞ � vÞ ? hekL p
a; aðR2nÞ aCkvðuÞ � vkL p

a; aðR2nÞ aCeo:ð6:10Þ

Also, by (5.2)

½u� u � he� ~WW s; p
a ðRnÞ ¼ kvðu�u�heÞkL p

a; aðR2nÞ ¼ kvðuÞ � vðu�heÞkL p
a; aðR2nÞ:

Thus, recalling (6.7),

½u� u � he� ~WW s; p
a ðRnÞ ¼ kvðuÞ � vðuÞ ? hekL p

a; aðR2nÞ:

Accordingly, by (6.8), (6.9) and (6.10),

½u� u � he� ~WW s; p
a ðRnÞ

a kvðuÞ � vkL p
a; aðR2nÞ þ kv� v ? hekL p

a; aðR2nÞ þ kv ? he � vðuÞ ? hekL p
a; aðR2nÞ

a ð2þ CÞeo:

Since eo can be taken arbitrarily small, we have proved (6.6), and therefore the
proof of Lemma 6.1 is complete. r
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7. Proof of Theorem 1.1

Let u a _WWs;p
a ðRnÞ, and fix d > 0. If tj is as in Lemma 3.1, then for j large enough

we have that

ku� tjuk _WW s; p
a ðRnÞ <

d

2
;ð7:1Þ

thanks to Lemma 3.1.
Now, for any e > 0, let he be the mollifier defined at the beginning of Section

6. We set

re :¼ tju � he:

By construction, re a ClðRnÞ. Moreover, standard properties of the convolution
imply that

supp re J suppðtjuÞ þ Be:

Also (see e.g. Lemma 9 in [9]) one sees that

suppðtjuÞJ ðsupp tjÞB ðsupp uÞJB2j B ðsupp uÞ:

Hence

supp re J ðB2j B ðsupp uÞÞ þ Be:

As a consequence, re a Cl
0 ðRnÞ.

Furthermore, Lemma 6.1 gives that

kre � tjuk _WW s; p
a ðRnÞ <

d

2
;

if e is su‰ciently small. Therefore, from this and (7.1) we obtain that

ku� rek _WW s; p
a ðRnÞ a ku� tjuk _WW s; p

a ðRnÞ þ ktju� rek _WW s; p
a ðRnÞ <

d

2
þ d

2
¼ d:

Since d can be taken arbitrarily small, this concludes the proof of Theorem 1.1.

Remark 7.1. We point out that some of the statements of this paper may be
interpreted in the light of the theory of the maximal function and in terms of the
Muckenhoupt weights A1.

For instance, Proposition 4.2 could be written equivalently in terms of the
maximal function (it is su‰cient to make a change of variable in the integral,
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translating the center of the balls in x), and it is related to the fact that the weight
jxj�b is in the Muckenhoupt class A1 if and only if 0a b < n (see e.g. page 141
in [8]).

Similarly, formula (4.8) states that the weight 1=Y is in A1 and Lemma 4.3
is related to the boundedness of the maximal operator for Aq weights, since
the average over the balls can be majored by the maximal operator (see also
page 136 of [8]).

In this sense, Proposition 4.4 is also related to the theory of convolutions in
functional spaces (see e.g. Corollaire 7.20 on page 387 of [4]).

It is an interesting problem to generalize the results given here to the class of
Muckenhoupt weights in a wider functional setting.
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