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Mathematical Analysis — On the measure of Lagrangian invariant tori in nearly-
integrable mechanical systems, by Luca Biasco and LuiGr CHIERCHIA, commu-
nicated on 11 June 2015.!

ABSTRACT. — Consider an n-degrees-of-freedom real-analytic mechanical system with potential
ef = ¢f (x), x being a n-dimensional angle variable. Then, for “general” potentials f’s and ¢ small
enough, the Liouville measure of the complementary of invariant tori is smaller than ¢|lng|* (for
a suitable a > 0).
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MATHEMATICS SUBJECT CLASSIFICATION: 37J40

1. INTRODUCTION AND RESULTS

The main result of last century in the theory of nearly-integrable Hamiltonian
systems is that, under suitable non-degeneracy and regularity assumptions, “most”
of the regular solutions of the integrable regime, which span Lagrangian tori in phase
space, persist under small perturbations. This celebrated result is due to N. N.
Kolmogorov (1954, [4]) and is the core of the so-called KAM (Kolmogorov-
Arnold-Moser) theory (compare [1] and references therein). “Most”, as it was
later clarified in [5] (in dimension 2) and [7], [8] (in any dimension), means that
the union of Lagrangian invariant tori on which the flow is conjugated to a linear
flow, has relative measure of order (at least) 1 — /e, if ¢ is the perturbation
parameter.

The latter statement is sometimes rephrased by saying that the “‘non-torus
(invariant) set” is of measure less than /e. Indeed, it is easy to see that this result
is optimal if one consider only Lagrangian tori which are graphs over the
angle variables (hence, are homotopically non-trivial). In fact, just consider the
simple pendulum % y? +ecosx with y € R and x € T!: the phase region inside
the separatrix (corresponding to oscillations of the pendulum) does not contain
any invariant torus (circle) which is a global graph over the angle on T' and
this region has measure 4v/2¢. Of course, in this trivial integrable example, the
full phase space is covered by Lagrangian invariant tori with the exception of

! The purpose of this paper is to announce and present results which are to appear (see reference
(2] in the paper).
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the stable equilibrium and the unstable (hyperbolic) equilibrium together with the
separatrix (which coincides with the stable and unstable one-dimensional mani-
fold of the hyperbolic equilibrium). The point is that invariant tori may have dif-
ferent topologies: in the pendulum case, the tori corresponding to librations
(circles above or below the separatrix) are homoptopically non trivial, while the
tori corresponding to oscillations (“secondary tori””), are contractible circles
enclosed by the separatrix. The tori obtained by standard applications of KAM
theory in mechanical systems are homotopically non-trivial and are deformations
of the integrable tori y = const.

In general, when ¢#0 “secondary” (homotopically different) invariant
Lagrangian tori arise near ‘‘resonances’’, i.e., regions of phase space where
w -k =0, where w is the unperturbed frequency, ““-” the standard inner product
and k an integer non vanishing vector (in the pendulum example v = y = 0 and
k = 1). It is therefore natural to expect that the non-torus region is of measure, in
general, smaller than /e. On the other hand a simple argument (see Remark (ii)
below) suggests that the non-torus region is, in general, of measure larger than ¢.
Indeed, Arnold, Kozlov and Neishtadt conjecture that such region has measure
of order ¢ [1, Remark 6.18].

We can prove that Arnold, Kozlov and Neishtadt's conjecture is “essentially”
true in the case of mechanical systems.

The word “essentially’” means that the result holds up to logarithmic correc-
tions in ¢ and for a suitable class of real-analytic potentials, which is of full mea-
sure (on a natural probability function space), contains an open dense set and is
prevalent; we recall that a Borel set P of a Banach space X is called prevalent if
there exists a compactly supported probability measure v such that v(x + P) = 1
for all x € X, compare, e.g., [3].

A precise statement and a sketch of proof will be given below (full proofs will
appear elsewhere [2]).

Functional setting, probability measures and Fourier-projections

We proceed to describe the “good” set of potentials /', for which the result holds.
Roughly speaking, such a set consists of real-analytic functions, whose Fourier-
projections on one-dimensional resonance vectors have a derivative which is a
Morse functions. Incidentally, let us mention that it would be easier to consider
larger function spaces of smooth functions; however, the natural (both from the
theoretical and applicative point of view) and most challenging setting is defini-
tively that of real-analytic potentials.

Let s > 0 and consider the real-analytic functions on T” having zero average
and finite norm

£ == sup |file"? < o0
kez"

where f; denotes Fourier coefficients and, as usual, |k|, for integer vectors, de-
notes the 1-norm ) |k;|. Denote by 4, the Banach space of such functions.
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Now, let ZJ, denote the set of integer vectors k # 0 such that the first non-null
component is positive, and denote /! the Banach space of complex sequences
z= {Zk}kez;; with finite sup-norm |z|, := sup; .71 |z|. The map

(1) Jif € B = {fid Y € O

is an isomorphism of Banach spaces, which allows to identify functions in %'
with points in 7 and the Borellians of ;' with those of 7 ; (recall that since
the functions in 4 are real-analytic one has the reality condition f; =f_;).
Now, consider the standard normalized Lebesgue-product measure on the unit
closed ball of 7, namely, the unique probability measure u on the Borellians
of {ze/} :|z|,, <1} such that, given Lebesgue measurable sets in the unit
complex disk Ex = D :={we C:|w| <1} with E; # D only for finitely many

k, one has
,u( H Ek) = H meas(Ey)

kel {keZ}:E #D}

where “meas’” denotes the normalized Lebesgue measure on the unit complex
disk D. The isometry j in (1) naturally induces a measure p, on the unit ball of B;".

Now, denote by Z the set of vectors k € Z), such that the greater common
divisors of their components is 1. Then, any function f € %,' can be uniquely
decomposed, in Fourier space, as sum of real-analytic functions of one-variable,
which are the projection of f onto the one-dimensional Fourier modulus
{jk : j € Z}, as follows:

(2) () =" Flk,x), where Fi(¢) = > fe'
keZ" Jjez\{0}
Jir being the Fourier coefficient of f with Fourier index jk € Z"; beware of nota-
tion: & — Fy(¢) is a periodic function of one variable, whose Fourier coefficients,
for j € Z, are given by (Fy); = fix-
Notice that, since f € 4", the functions Fy belong to <@|lk|s‘

The class 2 of ““good” potentials

We first define an auxiliary function K,(6) :=2 In% (where ¢ > 1 depends only
on n).

Let 2 be the set of functions in the closed unit ball of %' satisfying the follow-
ing three properties. There exists 6 > 0 such that, for k € 7,

(P1) |/i] = olk|F'e ™", Vik| > K, (0);

(P2) min(|F ()] + | (©)]) > 0, Vik| < K;(9);

(P3) 3F(E)F!" () # 5(F(2))%, for & minimum of Fy and V|k| < K,(5).
Consider a real-analytic mechanical system with Hamiltonian H :=1| yI* +ef (x)

defined on the phase space B x T", B bounded domain in R”", endowed with
standard symplectic form dy A dx.
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THEOREM

(a) Let f € 2 for some s > 0. Then, there exist ¢y > 0 and a > 0 such that, for

any 0 < ¢ < &y, the measure of the set of H-trajectories in B x T", which do
not lie on an invariant Lagrangian torus, is bounded by &|In g|“.

(b) The set P, has full u-measure, contains an open dense set (in the unit ball

of B!") and is prevalent.

Comments and remarks

()

(iii)

(iv)

(vi)

We stress that the set 2 is “large” in many ways: it is of full measure
with respect to a quite natural product probability measure on a weighted
Fourier space; it is generic in the topological sense (Baire), and actually is
more than that, since it contains an open dense set; finally, it is prevalent,
which is a measure-theoretic notion for subsets of infinite-dimensional
spaces that is analogous to “‘full Lebesgue measure” in Euclidean spaces
(compare [3]).
Let us give a simple heuristic argument suggesting that the measure of
the non-torus set is, in general, at least O(e). Let n =2, let p = \/ey, ¢ = x
and divide the Hamiltonian H by & we get a new Hamiltonian, H =
|p|*/2 + f(q), which is parameter free; notice that the trajectories of H
and H are in 1-1 correspondence (but with different times). In general, one
expects an O(1) torus-free region in the (p, ¢) variables: this corresponds to
a torus-free region of measure O(¢) in the original variables. When n > 2
the same argument applies in neighborhoods of double resonances and
lead to the same conclusion.
As far as we know, the only other general result about the measure of sec-
ondary tori nearby simple resonances is discussed by Medvedev, Neishtadt
and Treschev in [6]. They proved that there is a set & inside the separatrix
“eye” & arising near a simple resonance with meas(Z,) ~ /¢ (~ meas(2)),
such that the non-torus set in & is of measure O(¢). This, of course, does
not imply that the non-torus set in bounded regions is O(¢), which is what
is stated in the Theorem above.
We are interested here in global statements, which apply to any region in
phase space. On the other hand, it is well known that the density of invari-
ant tori is non uniform in phase space and there are regions where such
density is of order 1 — e~!/#" for some ¢ > 0; compare the Remark at p. 6.
Even though the proof of the Theorem—briefly sketched below—exploits
the particular structure of the Hamiltonian A in mechanical systems, we
believe that extending the proof to more general settings such as to Hamil-
tonians of the form H = h(y) + ¢f (y, x) with & quasi-convex is an interest-
ing but essentially technical matter.

A more challenging question would be to determine the most general
class of unperturbed Hamiltonians / for which the result holds.
Two naive questions: Can one take out the logarithms? Is the result true for
all potentials?
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(vii) We close this section with a technical comment on the definition of .

Condition (P1) insures that, for |k| > K,(J), the first Fourier coefficient
in the expansion of Fy, namely (F), = f, is large with respect to the other
ones, since |(Fi);| = |fu| < e l1kls Roughly speaking, this means that Fj
“behaves like a cosine”.

(P2) says that F is a “Morse function” uniformly for |k| < K(d). In
particular, all critical points of F; are non degenerate minima or maxima
and the number of critical points of Fy is bounded by a constant times § ',
where f is the strictly positive number in the left hand side of (P2).

(P3) is needed to prove a non degeneracy condition for the action-angle
variables of one-dimensional systems of the type #%/2 + Fi.(&).

2. OUTLINE OF THE PROOF OF THE THEOREM
We begin by discussing part (a), whose proof may be divided in five steps.
Step 1. Geometry of resonances

Define

7" ={keZ"st.0< |kl <|ng?}
and, for k € 7],

Re:={yeB:|y k|l <ellne"},

with ¢, :=2n + 6.
Decompose the phase space .# = B x T" as B= By Ll B; U B, (“LI” denoting
disjoint union), where:

By := B\ U Ri, B, := U Ri "Ry, B := U Ri\B:.
kez] k#k'eZ] kez]

Roughly speaking (and for |k| < [Ine|?), By is the non-resonant set, B; contains
simple resonances and B, contains double (or higher) resonances.

On the non-resonant set By, by an averaging procedure, we can remove the
perturbation at order ¢™¢. Then, applying a standard KAM theorem we obtain
that the measure of the non-torus set in By is O(e!4/?) « .

The set B, can be disregarded since it is of measure O(¢|In ¢|

The main problem comes from the neighborhood B; of simple resonances
(a set whose measure is not negligible since meas(B)) > /¢ > &).

2CH+2)

REMARK. The geometry of resonances here is different from the geometry of
resonances (in the convex case) as discussed, e.g., in [9]. In fact, in [9] more reso-
nances are disregarded in the non-resonant set, namely, the resonances with
k] < (1/¢)“, a > 0; moreover the neighborhood of simple resonances has width
eb, 0 < b < 1/2, which is larger than R;. As a consequence, the set of double
resonances has measure greater than ¢?”, which is a set not negligible for our
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purposes. On the other hand in Nekhoroshev’s theorem one can average out
the perturbation up to an exponentially high order e—<°™!1/9)" while we get only
el (see (3) below).

Step 2. Averaging over a simple resonance
Fix Ry with k € Z]. After performing

— a linear change of variables putting the resonance in {y, = 0},
— an averaging over the “fast angles” xi,...,x,_1,
— a 1/\/e-blow up of y and an e-time rescaling,

the Hamiltonian takes the form:

1, ) )
(3) h(y)+§y§+Fk(y>||k||2xn)+6““ 9y, %), P =1 ya),s

(4) Fe(p kl1Px0) = Fie(wn, 1K1 x0) + O(|Ine| ),

Fy, being defined in (2) and satisfying, for some d > 0, (P1)—(P3), (and ||k||* :=
> k?). Notice that the Hessian of / is non degenerate since /2 is convex.
Note also that the unperturbed Hamiltonian in (3), i.e., when & = 0, is 27/||k||*-
periodic in x,, while the complete Hamiltonian is only 2z-periodic in x,, a well
known fact due to the presence of a k-resonance. 3

To simplify the exposition, in view of (4), henceforth we replace in (3) Fj
with Fj.

Step 3. Action-angle variables
We want to prove that

(x) the measure of the non-torus set in a O(|ln¢|™)-neighborhood of {y, = 0}
for the Hamiltonian in (3) is O(y/g|Ing|),

which, in view of the 1/,/e-blow up of the action variables (Step 2), corresponds,
in the original variables, to a measure of O(¢|lng|).

The idea is to use action-angle variables (p,,q,) — (yu, X,) to integrate the
one degree-of-freedom Hamiltonian

1
(%) := 5 ¥ + Fe(n, IKl1*x0) = Ex(pn)-

Thus, in the new variables (completed with p := y, ¢ := %) the full Hamiltonian
(3) becomes

() h(p) + Ex(pa) + ™5, (p, 9),
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a form suitable (in principle) for applying a standard KAM theorem. However,
there are two (quantitative) problems to overcome:

(S) the transformation putting Ej in action-angle variables becomes singular as
separatrices or elliptic equilibria are approached;

(K) Kolmogorov’s non-degeneracy condition (namely that the Hessian of
h(p) + Ei(py) is invertible) needs to be checked.

These two problems will be overcome in the next two steps.
Step 4. On the singularities of action-angle variables

This analysis will be based on the following lemma:

Assume that in the one-dimensional system E(n,&) :=n*/2 + F(&) the deriv-
ative of the potential F(&) is a Morse function with f:=minscr(|F/(&)|+
|F(&)]) > 0. Then, there exists ¢ > 0, depending only on f, such that for any
“critical”’ energy Ey the measure of the points (n,&) for which E(n,&) is 0-close
to Ey is bounded by c0|In0|; “critical” meaning that Ey := F(&,) with F'(&)) =0
(so that the level set E = E contains equilibria and/or separatrices).

We will discuss, here, only modes k for which |k| < K(J), since the case
|k| > K(0) is easier (recall that assumption (P1) implies that Fj “‘behaves like a
cosine”).

Now, we can use the above result thanks to (P2) with

(6) 0=¢e" 0 <a<a

for a suitable ayp < 1. Thus, up to a small set of measure 0|In 0|, we can use “non-
singular” action-angle variables (p,,¢,). In particular, the p,-radius of analy-
ticity, the width of the complex g,-strip and the C?-norm of E; are of order,
respectively, 6, 1/|In6| and 1/6.

Step 5. On Kolmogorov’s condition

Since /1 is (strictly) convex, Kolmogorov’s non-degeneracy condition amounts to
say that |E}/(p,)| is bounded away from zero and up to a small measure set of p,,.

We also notice that for “high energies’”’, namely for energies larger than then
the maximal critical energy, Ey(p,) is strictly convex and the Kolmogorov’s
condition is easily satisfied. Therefore, we need only to discuss the case inside
separatrices where E;' may become negative or null.

As above, by (P1), the modes |k| > K(J) can be easily handled directly.

The case |k| < K;(0) is more difficult: although it involves only a finite number
of k’s, the structure of the Hamiltonian Ej(p,) is rather “arbitrary’” and it is not
at all obvious how to handle it in a direct way. To overcome this problem we will
check the non degeneracy condition in an indirect way, using the analyticity of the
function Ej.

Fj. has a finite number of critical points, which are non-degenerate local
maxima or minima (recall the comment (vii) on (P2)). The critical energy levels
determine a finite number of open connected components, where one can define
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analytic action-angle variables. Recall that we are discussing the bounded
components and let us fix one of such components. Let the action variable p,,
correspondingly, be defined on an interval (a,b) on which Ej(p,) will be a real-
analytic strictly increasing function. By construction e, := lim,, ..+ Ex(p,) and
ep :=lim,, - Ex(p,) correspond to critical values of Fi. It is simple to see
that e, corresponds to a (local) maximum value of Fj, while e, corresponds to
a (local) maximum or minimum value of Fi. It is also simple to see that
lim,, ;- |E}(pn)| = oo (and the same holds for lim,, _.+|E}(p,)| if also e, corre-
sponds to a maximum). Moreover, when e, corresponds to a minimum, we can
prove that lim,, ., E/(p,) # 0 using assumption (P3). In any case we have
limy, ..+ E/'(ps) # 0, lim,, ;- E'(p,) # 0. Now, as it is not difficult to prove

if f be a non identically zero (real) analytic function in an open interval containing
the closed interval [xi,x,], then there exists a constant ¢ > 1 such that for every
0<O0<1/c

meas{x € [x,x2] : [ f(x)] < 0} < 0.

Thanks to such basic property of level sets of analytic functions, we may con-
clude that there exists ¢ > 1 such that, up to a set of p,’s of measure 0 (as in
(6)), the estimate |E;| > 0 holds. Since the size of the perturbation in (5) is
O(£™#l) this is enough to apply a KAM theorem (recall the choice of parameters
given at the end of Step 4 and choose a small enough in (6)). This concludes the
sketch of the proof of part (a).

Let us now outline the proof of part (b).

To check that u (%) =1 we shall prove that, for every ¢ > 0, the measure
of the sets of potentials f that do not satisfy, respectively, (P1), (P2), (P3) is, re-
spectively, O(6?),0,0; the result will follow letting 5 — 0.

First, by the identification (1), the measure of the set of potentials f that do
not satisfy (P1) with a given d is bounded by 3=, _,»6|k| " < ¢,0°.

Next, recall that properties (P2) and (P3) concern only a finite number of £,
Le., k e Z, |k| < K,(9).

To show that the set of potentials that do not satisfy (P2) has x,-measure zero
it is enough to check that, for every k € Z", |k| < K,(9), the set &*) of f’s for
which F}, has a degenerate critical point has zero u.-measure; (recall the definition
of Fy in (2)).

Fix k € 7", |k| < K,() and denote points in &% by (¢, ¢), where { = f; and
9 = {fitnpr Write

Fi(&) = (e + e + G(¢), where (= fi and G(&) = > fe".

lj1=2

Now, one checks immediately that F/()) =0 = F/(¢) is equivalent to { =
{(Eosp) = e (1G" (&) + G"(&)), which, as & varies in T, describes a smooth
closed “‘critical” curve in C; as a side remark, notice that { depends on ¢
only through the Fourier coefficients f; with |j| > 2. Thus the section é”;“ =
{CeD:(p)eé&WY} is (a piece of) a smooth curve in D={ze C:|z| < 1};
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hence meas(é’w(’”) =0 for every ¢ and by Fubini’s theorem u, (&%) =0, as
claimed.

An analogous result holds true for (P3); in this case the critical curve is given
by {{= )+ /b2(E) — (&) +iG'(E))e™/2, & € R, b%(&) = ¢(&)}, where
) () - G EN2 and ) . OGS 1 SO + AN

We now show that %, contains an open subset 2 which is dense in the unit
ball of %,

Let us define 2 as #, but with the difference that (P1) is replaced by the
stronger condition

(P1) 30 > 0s.t. [ fi| = de ¥, Yk € 77, |k| > K,(9); note that u (2!) = 0.

Let us first prove that 2 is open. Let f € 2. We have to show that there exists
p >0 such that if |g|, < p, then [+ g e 2/. Fix >0 such that (P1’) holds
and choose p < & small enough such that [K(6)] > K(6') — 1, where ¢’ :=6 — p
and [] denotes integer part. Then, it is immediate to verify that |k| > K(0) <
|k| > K,(d"). Moreover

fie + gt = | /il — gl =0 — p=0", Wk eZl, k| > K, ("),

namely f + g satisfies (P1’) (with ¢ instead of 6). Since (P2) and (P3) are “open”
conditions and regard only a finite number of k it is simple to see that they are
satisfied also by f + g for p small enough. Then f + g € 2, for p small enough.
Let us now show that 2/ is dense in the unit ball of .. Take f in the unit ball
of #"and 0 < 0 < 1. Wehavetoﬁndfe 2! with | f — f\ <0.Leto:=0/4 and
denote by f and fk (to be defined) be the Fourler coefficients of, respectively, f
and f. We, then, let Jfr = Ji unless one of the following two cases occurs:

e keZ7" |kl > K,0) and |fi|e/P < &, in which case, f = de KI%;

e ke Z” |k| < K(0) and Fj (defined as in (2)) does not satisfy either (P2) or (P3),
in which case, £, is chosen at a distance less than fe~¥5 from f; but outside the
critical curves defined above.

At this point, it is easy to check that f € 2! and is O-close to f.

We finally prove that Z, is prevalent. Con51der the following compact subset of
N let A= {z = {Zk}kezn zk € Dy}, where Dy :={we C:|w| < 1/|k|}
and let v be the unique probablhty measure supported on % such that, given
Lebesgue measurable sets £y < Dy, with Ey # Dy only for finitely many &,
one has

v( H Ek) = H @ meas(Ey).

](GZ; {kGZ;:E/(#DI/M}

The 1sometry Js in (1) naturally induces a probability measure v, on 4! with
support in the compact set #; := j'#". Now, for § > 0, let #, 5 be the set of
/’s in the unit ball of 4" satisfying (P1)—(P3), so that 2, = | Js.( Zs.5- Reasomng
as in the proof of us(%) =1, one can show that v,(%,5) > | — constd”. It is
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also easy to check that, for every g € 4", the translated set #; + g satisfies
Vo(Ps5 + g) = vs(Zs.5). Thus, one gets vy(Z# + g) = v(%) =1, Vg € 4", which
means that 2 is prevalent.
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