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Mathematical Analysis — On the measure of Lagrangian invariant tori in nearly-
integrable mechanical systems, by Luca Biasco and Luigi Chierchia, commu-
nicated on 11 June 2015.1

Abstract. — Consider an n-degrees-of-freedom real-analytic mechanical system with potential

ef ¼ ef ðxÞ, x being a n-dimensional angle variable. Then, for ‘‘general’’ potentials f ’s and e small
enough, the Liouville measure of the complementary of invariant tori is smaller than ejln eja (for

a suitable a > 0).
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1. Introduction and results

The main result of last century in the theory of nearly-integrable Hamiltonian
systems is that, under suitable non-degeneracy and regularity assumptions, ‘‘most’’
of the regular solutions of the integrable regime, which span Lagrangian tori in phase
space, persist under small perturbations. This celebrated result is due to N. N.
Kolmogorov (1954, [4]) and is the core of the so-called KAM (Kolmogorov-
Arnold-Moser) theory (compare [1] and references therein). ‘‘Most’’, as it was
later clarified in [5] (in dimension 2) and [7], [8] (in any dimension), means that
the union of Lagrangian invariant tori on which the flow is conjugated to a linear
flow, has relative measure of order (at least) 1�

ffiffi
e

p
, if e is the perturbation

parameter.
The latter statement is sometimes rephrased by saying that the ‘‘non-torus

(invariant) set’’ is of measure less than
ffiffi
e

p
. Indeed, it is easy to see that this result

is optimal if one consider only Lagrangian tori which are graphs over the
angle variables (hence, are homotopically non-trivial). In fact, just consider the
simple pendulum 1

2 y
2 þ e cos x with y a R and x a T1: the phase region inside

the separatrix (corresponding to oscillations of the pendulum) does not contain
any invariant torus (circle) which is a global graph over the angle on T1 and
this region has measure 4

ffiffiffiffiffi
2e

p
. Of course, in this trivial integrable example, the

full phase space is covered by Lagrangian invariant tori with the exception of

1The purpose of this paper is to announce and present results which are to appear (see reference

[2] in the paper).



the stable equilibrium and the unstable (hyperbolic) equilibrium together with the
separatrix (which coincides with the stable and unstable one-dimensional mani-
fold of the hyperbolic equilibrium). The point is that invariant tori may have dif-
ferent topologies: in the pendulum case, the tori corresponding to librations
(circles above or below the separatrix) are homoptopically non trivial, while the
tori corresponding to oscillations (‘‘secondary tori’’), are contractible circles
enclosed by the separatrix. The tori obtained by standard applications of KAM
theory in mechanical systems are homotopically non-trivial and are deformations
of the integrable tori y ¼ const.

In general, when eA 0 ‘‘secondary’’ (homotopically di¤erent) invariant
Lagrangian tori arise near ‘‘resonances’’, i.e., regions of phase space where
o � k ¼ 0, where o is the unperturbed frequency, ‘‘�’’ the standard inner product
and k an integer non vanishing vector (in the pendulum example o ¼ y ¼ 0 and
k ¼ 1). It is therefore natural to expect that the non-torus region is of measure, in
general, smaller than

ffiffi
e

p
. On the other hand a simple argument (see Remark (ii)

below) suggests that the non-torus region is, in general, of measure larger than e.
Indeed, Arnold, Kozlov and Neishtadt conjecture that such region has measure
of order e [1, Remark 6.18].

We can prove that Arnold, Kozlov and Neishtadt’s conjecture is ‘‘essentially’’
true in the case of mechanical systems.

The word ‘‘essentially’’ means that the result holds up to logarithmic correc-
tions in e and for a suitable class of real-analytic potentials, which is of full mea-
sure (on a natural probability function space), contains an open dense set and is
prevalent; we recall that a Borel set P of a Banach space X is called prevalent if
there exists a compactly supported probability measure n such that nðxþ PÞ ¼ 1
for all x a X , compare, e.g., [3].

A precise statement and a sketch of proof will be given below (full proofs will
appear elsewhere [2]).

Functional setting, probability measures and Fourier-projections

We proceed to describe the ‘‘good’’ set of potentials f , for which the result holds.
Roughly speaking, such a set consists of real-analytic functions, whose Fourier-
projections on one-dimensional resonance vectors have a derivative which is a
Morse functions. Incidentally, let us mention that it would be easier to consider
larger function spaces of smooth functions; however, the natural (both from the
theoretical and applicative point of view) and most challenging setting is defini-
tively that of real-analytic potentials.

Let s > 0 and consider the real-analytic functions on Tn having zero average
and finite norm

j f js :¼ sup
k AZ n

j fkjejkjs < l

where fk denotes Fourier coe‰cients and, as usual, jkj, for integer vectors, de-
notes the 1-norm

P
jkjj. Denote by Bn

s the Banach space of such functions.
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Now, let Zn
a denote the set of integer vectors kA 0 such that the first non-null

component is positive, and denote ln
l the Banach space of complex sequences

z ¼ fzkgk AZn
a
with finite sup-norm jzjl :¼ supk AZn

a
jzkj. The map

j : f a Bn
s ! f fkejkjsgk AZn

a
a ln

lð1Þ

is an isomorphism of Banach spaces, which allows to identify functions in Bn
s

with points in ln
l and the Borellians of Bn

s with those of ln
l; (recall that since

the functions in Bn
s are real-analytic one has the reality condition fk ¼ f�k).

Now, consider the standard normalized Lebesgue-product measure on the unit
closed ball of ln

l, namely, the unique probability measure m on the Borellians
of fz a ln

l : jzjla 1g such that, given Lebesgue measurable sets in the unit
complex disk Ek JD :¼ fw a C : jwja 1g with Ek AD only for finitely many
k, one has

m
� Y

k AZn
a

Ek

�
¼

Y
fk AZn

a:EkADg
measðEkÞ

where ‘‘meas’’ denotes the normalized Lebesgue measure on the unit complex
disk D. The isometry j in (1) naturally induces a measure ms on the unit ball of Bn

s .
Now, denote by Zn

� the set of vectors k a Zn
a such that the greater common

divisors of their components is 1. Then, any function f a Bn
s can be uniquely

decomposed, in Fourier space, as sum of real-analytic functions of one-variable,
which are the projection of f onto the one-dimensional Fourier modulus
f jk : j a Zg, as follows:

f ðxÞ ¼
X
k AZn

�

Fkðk; xÞ; where FkðxÞ :¼
X

j AZnf0g
fjke

ijxð2Þ

fjk being the Fourier coe‰cient of f with Fourier index jk a Zn; beware of nota-
tion: x ! FkðxÞ is a periodic function of one variable, whose Fourier coe‰cients,
for j a Z, are given by ðFkÞj ¼ fjk.

Notice that, since f a Bn
s , the functions Fk belong to B1

jkjs.

The class Ps of ‘‘good’’ potentials

We first define an auxiliary function KsðdÞ :¼ 2
s
ln c

d
(where c > 1 depends only

on n).
Let Ps be the set of functions in the closed unit ball of Bn

s satisfying the follow-
ing three properties. There exists d > 0 such that, for k a Zn

� ,

(P1) j fkjb djkj�
nþ3
2 e�jkjs, Ejkj > KsðdÞ;

(P2) min
x AR

ðjF 0
kðxÞj þ jF 00

k ðxÞjÞ > 0, EjkjaKsðdÞ;
(P3) 3F 00

k ðxÞF 0000
k ðxÞA5ðF 000

k ðxÞÞ2, for x minimum of Fk and EjkjaKsðdÞ.

Consider a real-analytic mechanical system with Hamiltonian H :¼ 1
2 jyj

2 þ ef ðxÞ
defined on the phase space B� Tn, B bounded domain in Rn, endowed with
standard symplectic form dybdx.
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Theorem

(a) Let f a Ps for some s > 0. Then, there exist e0 > 0 and a > 0 such that, for
any 0 < e < e0, the measure of the set of H-trajectories in B� Tn, which do
not lie on an invariant Lagrangian torus, is bounded by ejln eja.

(b) The set Ps has full ms-measure, contains an open dense set (in the unit ball
of Bn

s ) and is prevalent.

Comments and remarks

(i) We stress that the set Ps is ‘‘large’’ in many ways: it is of full measure
with respect to a quite natural product probability measure on a weighted
Fourier space; it is generic in the topological sense (Baire), and actually is
more than that, since it contains an open dense set; finally, it is prevalent,
which is a measure-theoretic notion for subsets of infinite-dimensional
spaces that is analogous to ‘‘full Lebesgue measure’’ in Euclidean spaces
(compare [3]).

(ii) Let us give a simple heuristic argument suggesting that the measure of
the non-torus set is, in general, at least OðeÞ. Let n ¼ 2, let p ¼

ffiffi
e

p
y, q ¼ x

and divide the Hamiltonian H by e: we get a new Hamiltonian, ~HH ¼
jpj2=2þ f ðqÞ, which is parameter free; notice that the trajectories of H
and ~HH are in 1-1 correspondence (but with di¤erent times). In general, one
expects an Oð1Þ torus-free region in the ðp; qÞ variables: this corresponds to
a torus-free region of measure OðeÞ in the original variables. When nb 2
the same argument applies in neighborhoods of double resonances and
lead to the same conclusion.

(iii) As far as we know, the only other general result about the measure of sec-
ondary tori nearby simple resonances is discussed by Medvedev, Neishtadt
and Treschev in [6]. They proved that there is a set D0 inside the separatrix
‘‘eye’’ D arising near a simple resonance with measðD0ÞP

ffiffi
e

p
(PmeasðDÞ),

such that the non-torus set in D0 is of measure OðeÞ. This, of course, does
not imply that the non-torus set in bounded regions is OðeÞ, which is what
is stated in the Theorem above.

(iv) We are interested here in global statements, which apply to any region in
phase space. On the other hand, it is well known that the density of invari-
ant tori is non uniform in phase space and there are regions where such
density is of order 1� e�1=e c for some c > 0; compare the Remark at p. 6.

(v) Even though the proof of the Theorem—briefly sketched below—exploits
the particular structure of the Hamiltonian H in mechanical systems, we
believe that extending the proof to more general settings such as to Hamil-
tonians of the form H ¼ hðyÞ þ ef ðy; xÞ with h quasi-convex is an interest-
ing but essentially technical matter.

A more challenging question would be to determine the most general
class of unperturbed Hamiltonians h for which the result holds.

(vi) Two naive questions: Can one take out the logarithms? Is the result true for
all potentials?
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(vii) We close this section with a technical comment on the definition of Ps.
Condition (P1) insures that, for jkj > KsðdÞ, the first Fourier coe‰cient

in the expansion of Fk, namely ðFkÞ1 ¼ fk, is large with respect to the other

ones, since jðFkÞjj ¼ j fjkja e�j jj jkjs. Roughly speaking, this means that Fk

‘‘behaves like a cosine’’.
(P2) says that F 0

k is a ‘‘Morse function’’ uniformly for jkjaKsðdÞ. In
particular, all critical points of Fk are non degenerate minima or maxima
and the number of critical points of Fk is bounded by a constant times b�1,
where b is the strictly positive number in the left hand side of (P2).

(P3) is needed to prove a non degeneracy condition for the action-angle
variables of one-dimensional systems of the type h2=2þ FkðxÞ.

2. Outline of the proof of the theorem

We begin by discussing part (a), whose proof may be divided in five steps.

Step 1. Geometry of resonances

Define

Zn
e :¼ fk a Zn

� s:t: 0 < jkja jln ej2g

and, for k a Zn
e ,

Rk :¼ fy a B : jy � kja
ffiffi
e

p
jln ejcng;

with cn :¼ 2nþ 6.
Decompose the phase space M ¼ B� Tn as B ¼ B0 t B1 t B2 (‘‘t’’ denoting

disjoint union), where:

B0 :¼ Bn
[

k AZn
e

Rk; B2 :¼
[

kAk 0 AZn
e

Rk BRk 0 ; B1 :¼
[
k AZ n

e

RknB2:

Roughly speaking (and for jkja jln ej2), B0 is the non-resonant set, B1 contains
simple resonances and B2 contains double (or higher) resonances.

On the non-resonant set B0, by an averaging procedure, we can remove the
perturbation at order ejln ej. Then, applying a standard KAM theorem we obtain
that the measure of the non-torus set in B0 is Oðejln ej=2Þf e.

The set B2 can be disregarded since it is of measure Oðejln ej2cnþ2Þ.
The main problem comes from the neighborhood B1 of simple resonances

(a set whose measure is not negligible since measðB1Þb
ffiffi
e

p
g e).

Remark. The geometry of resonances here is di¤erent from the geometry of
resonances (in the convex case) as discussed, e.g., in [9]. In fact, in [9] more reso-
nances are disregarded in the non-resonant set, namely, the resonances with
jkja ð1=eÞa, a > 0; moreover the neighborhood of simple resonances has width
eb, 0 < b < 1=2, which is larger than Rk. As a consequence, the set of double
resonances has measure greater than e2b, which is a set not negligible for our
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purposes. On the other hand in Nekhoroshev’s theorem one can average out
the perturbation up to an exponentially high order e�constð1=eÞa , while we get only
ejln ej (see (3) below).

Step 2. Averaging over a simple resonance

Fix Rk with k a Zn
e . After performing

– a linear change of variables putting the resonance in fyn ¼ 0g,
– an averaging over the ‘‘fast angles’’ x1; . . . ; xn�1,
– a 1=

ffiffi
e

p
-blow up of y and an e-time rescaling,

the Hamiltonian takes the form:

hð ŷyÞ þ 1

2
y2n þ ~FFkðy; kkk2xnÞ þ ejln ejgkðy; xÞ; ŷy :¼ ðy1; . . . ; yn�1Þ;ð3Þ

where

~FFkðy; kkk2xnÞ ¼ Fkðyn; kkk2xnÞ þOðjln ej�cÞ;ð4Þ

Fk being defined in (2) and satisfying, for some d > 0, (P1)–(P3), (and kkk2 :¼Pn
j¼1 k

2
j ). Notice that the Hessian of h is non degenerate since h is convex.

Note also that the unperturbed Hamiltonian in (3), i.e., when e ¼ 0, is 2p=kkk2-
periodic in xn, while the complete Hamiltonian is only 2p-periodic in xn, a well
known fact due to the presence of a k-resonance.

To simplify the exposition, in view of (4), henceforth we replace in (3) ~FFk

with Fk.

Step 3. Action-angle variables

We want to prove that

ð�Þ the measure of the non-torus set in a Oðjln ejcnÞ-neighborhood of fyn ¼ 0g
for the Hamiltonian in (3) is Oð

ffiffi
e

p
jln ejcÞ,

which, in view of the 1=
ffiffi
e

p
-blow up of the action variables (Step 2), corresponds,

in the original variables, to a measure of Oðejln ejcÞ.
The idea is to use action-angle variables ðpn; qnÞ 7! ðyn; xnÞ to integrate the

one degree-of-freedom Hamiltonian

Ekðyn; xnÞ :¼
1

2
y2n þ Fkðyn; kkk2xnÞ ¼ EkðpnÞ:

Thus, in the new variables (completed with p̂p :¼ ŷy, q̂q :¼ x̂x) the full Hamiltonian
(3) becomes

hð p̂pÞ þ EkðpnÞ þ ejln ej~ggkðp; qÞ;ð5Þ
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a form suitable (in principle) for applying a standard KAM theorem. However,
there are two (quantitative) problems to overcome:

(S) the transformation putting Ek in action-angle variables becomes singular as
separatrices or elliptic equilibria are approached;

(K) Kolmogorov’s non-degeneracy condition (namely that the Hessian of
hð p̂pÞ þ EkðpnÞ is invertible) needs to be checked.

These two problems will be overcome in the next two steps.

Step 4. On the singularities of action-angle variables

This analysis will be based on the following lemma:
Assume that in the one-dimensional system Eðh; xÞ :¼ h2=2þ F ðxÞ the deriv-

ative of the potential F ðxÞ is a Morse function with b :¼ minx ARðjF 0
kðxÞj þ

jF 00
k ðxÞjÞ > 0. Then, there exists c > 0, depending only on b, such that for any

‘‘critical’’ energy E0 the measure of the points ðh; xÞ for which Eðh; xÞ is y-close
to E0 is bounded by cyjln yj; ‘‘critical’’ meaning that E0 :¼ Fðx0Þ with F 0ðx0Þ ¼ 0
(so that the level set E ¼ E0 contains equilibria and/or separatrices).

We will discuss, here, only modes k for which jkjaKsðdÞ, since the case
jkj > KsðdÞ is easier (recall that assumption (P1) implies that Fk ‘‘behaves like a
cosine’’).

Now, we can use the above result thanks to (P2) with

y ¼ eajln ej; 0 < a < a0ð6Þ

for a suitable a0 < 1. Thus, up to a small set of measure yjln yj, we can use ‘‘non-
singular’’ action-angle variables ðpn; qnÞ. In particular, the pn-radius of analy-
ticity, the width of the complex qn-strip and the C2-norm of Ek are of order,
respectively, y, 1=jln yj and 1=y.

Step 5. On Kolmogorov’s condition

Since h is (strictly) convex, Kolmogorov’s non-degeneracy condition amounts to
say that jE 00

k ðpnÞj is bounded away from zero and up to a small measure set of pn.
We also notice that for ‘‘high energies’’, namely for energies larger than then

the maximal critical energy, EkðpnÞ is strictly convex and the Kolmogorov’s
condition is easily satisfied. Therefore, we need only to discuss the case inside
separatrices where E 00

k may become negative or null.
As above, by (P1), the modes jkj > KsðdÞ can be easily handled directly.
The case jkjaKsðdÞ is more di‰cult: although it involves only a finite number

of k’s, the structure of the Hamiltonian EkðpnÞ is rather ‘‘arbitrary’’ and it is not
at all obvious how to handle it in a direct way. To overcome this problem we will
check the non degeneracy condition in an indirect way, using the analyticity of the
function Ek.

Fk has a finite number of critical points, which are non-degenerate local
maxima or minima (recall the comment (vii) on (P2)). The critical energy levels
determine a finite number of open connected components, where one can define
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analytic action-angle variables. Recall that we are discussing the bounded
components and let us fix one of such components. Let the action variable pn,
correspondingly, be defined on an interval ða; bÞ on which EkðpnÞ will be a real-
analytic strictly increasing function. By construction ea :¼ limpn!aþ EkðpnÞ and
eb :¼ limpn!b� EkðpnÞ correspond to critical values of Fk. It is simple to see
that eb corresponds to a (local) maximum value of Fk, while ea corresponds to
a (local) maximum or minimum value of Fk. It is also simple to see that
limpn!b�jE 00

k ðpnÞj ¼ l (and the same holds for limpn!aþjE 00
k ðpnÞj if also ea corre-

sponds to a maximum). Moreover, when ea corresponds to a minimum, we can
prove that limpn!aþ E

00
k ðpnÞA 0 using assumption (P3). In any case we have

limpn!aþ E
00
k ðpnÞA 0, limpn!b� E

00
k ðpnÞA 0: Now, as it is not di‰cult to prove

if f be a non identically zero (real) analytic function in an open interval containing
the closed interval ½x1; x2�, then there exists a constant cb 1 such that for every
0 < y < 1=c

measfx a ½x1; x2� : j f ðxÞja yga cy1=c:

Thanks to such basic property of level sets of analytic functions, we may con-
clude that there exists c > 1 such that, up to a set of pn’s of measure y (as in
(6)), the estimate jE 00

k jb yc holds. Since the size of the perturbation in (5) is
Oðejln ejÞ this is enough to apply a KAM theorem (recall the choice of parameters
given at the end of Step 4 and choose a small enough in (6)). This concludes the
sketch of the proof of part (a).

Let us now outline the proof of part (b).
To check that msðPsÞ ¼ 1 we shall prove that, for every d > 0, the measure

of the sets of potentials f that do not satisfy, respectively, (P1), (P2), (P3) is, re-
spectively, Oðd2Þ; 0; 0; the result will follow letting d ! 0.

First, by the identification (1), the measure of the set of potentials f that do
not satisfy (P1) with a given d is bounded by

P
k AZn d2jkj�n�3

a cnd
2.

Next, recall that properties (P2) and (P3) concern only a finite number of k,
i.e., k a Zn

� , jkjaKsðdÞ.
To show that the set of potentials that do not satisfy (P2) has ms-measure zero

it is enough to check that, for every k a Zn
� , jkjaKsðdÞ, the set EðkÞ of f ’s for

which Fk has a degenerate critical point has zero ms-measure; (recall the definition
of Fk in (2)).

Fix k a Zn
� , jkjaKsðdÞ and denote points in EðkÞ by ðz; jÞ, where z ¼ fk and

j ¼ f fhghAk. Write

FkðxÞ ¼ ze ix þ ze�ix þ GðxÞ; where z :¼ fk and GðxÞ :¼
X
j jjb2

fjke
ijx:

Now, one checks immediately that F 0
kðx0Þ ¼ 0 ¼ F 00

k ðx0Þ is equivalent to z ¼
zðx0; jÞ ¼ 1

2 e
�ix0ðiG 0ðx0Þ þ G 00ðx0ÞÞ, which, as x0 varies in T, describes a smooth

closed ‘‘critical’’ curve in C; as a side remark, notice that z depends on j
only through the Fourier coe‰cients fjk with j jjb 2. Thus the section EðkÞ

j ¼
fz a D : ðz; jÞ a EðkÞg is (a piece of ) a smooth curve in D ¼ fz a C : jzja 1g;
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hence measðEðkÞ
j Þ ¼ 0 for every j and by Fubini’s theorem msðEðkÞÞ ¼ 0, as

claimed.
An analogous result holds true for (P3); in this case the critical curve is given

by fz ¼ ð�bðxÞe
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðxÞ � cðxÞ

p
þ iG 0ðxÞÞe�ix=2; x a R; b2ðxÞb cðxÞg, where

bðxÞ :¼ ðG 0000ðxÞ � G 00ðxÞÞ=2 and cðxÞ :¼ �G 00ðxÞG 0000ðxÞ þ 5ðG 0ðxÞ þ G 000ðxÞÞ2=3.
We now show that Ps contains an open subset P 0

s which is dense in the unit
ball of Bn

s .
Let us define P 0

s as Ps but with the di¤erence that (P1) is replaced by the
stronger condition

(P1 0) bd > 0 s.t. j fkjb de�jkjs, Ek a Zn
� , jkj > KsðdÞ; note that msðP 0

s Þ ¼ 0.

Let us first prove that P 0
s is open. Let f a P 0

s . We have to show that there exists
r > 0 such that if jgjs < r, then f þ g a P 0

s . Fix d > 0 such that (P1 0) holds
and choose r < d small enough such that ½KsðdÞ� > Ksðd 0Þ � 1, where d 0 :¼ d� r
and ½�� denotes integer part. Then, it is immediate to verify that jkj > KsðdÞ ,
jkj > Ksðd 0Þ. Moreover

j fk þ gkjejkjs b j fkjejkjs � jgjsb d� r ¼ d 0; Ek a Zn
� ; jkj > Ksðd 0Þ;

namely f þ g satisfies (P1 0) (with d 0 instead of d). Since (P2) and (P3) are ‘‘open’’
conditions and regard only a finite number of k it is simple to see that they are
satisfied also by f þ g for r small enough. Then f þ g a P 0

s for r small enough.
Let us now show that P 0

s is dense in the unit ball of Bn
s . Take f in the unit ball

of Bn
s and 0 < y < 1. We have to find ~ff a P 0

s with j ~ff � f jsa y. Let d :¼ y=4 and
denote by fk and ~ffk (to be defined) be the Fourier coe‰cients of, respectively, f
and ~ff . We, then, let ~ffk ¼ fk unless one of the following two cases occurs:

• k a Zn
� , jkj > KsðdÞ and j fkjejkjs < d, in which case, ~ffk ¼ de�jkjs;

• k a Zn
� , jkjaKsðdÞ and Fk (defined as in (2)) does not satisfy either (P2) or (P3),

in which case, ~ffk is chosen at a distance less than ye�jkjs from fk but outside the
critical curves defined above.

At this point, it is easy to check that ~ff a P 0
s and is y-close to f .

We finally prove thatPs is prevalent. Consider the following compact subset of
ln
l: let K :¼ fz ¼ fzkgk AZn

a
: zk a D1=jkjg, where D1=jkj :¼ fw a C : jwja 1=jkjg,

and let n be the unique probability measure supported on K such that, given
Lebesgue measurable sets Ek JD1=jkj, with Ek AD1=jkj only for finitely many k,
one has

n
� Y

k AZn
a

Ek

�
:¼

Y
fk AZn

a:EkAD1=jkjg

jkj2

p
measðEkÞ:

The isometry js in (1) naturally induces a probability measure ns on Bn
s with

support in the compact set Ks :¼ j�1
s K. Now, for d > 0, let Ps; d be the set of

f ’s in the unit ball of Bn
s satisfying (P1)–(P3), so that Ps ¼

S
d>0 Ps; d. Reasoning

as in the proof of msðPsÞ ¼ 1, one can show that nsðPs; dÞb 1� const d2. It is
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also easy to check that, for every g a Bn
s , the translated set Ps; d þ g satisfies

nsðPs; d þ gÞb nsðPs; dÞ. Thus, one gets nsðPs þ gÞ ¼ nsðPsÞ ¼ 1, Eg a Bn
s , which

means that Ps is prevalent.

Acknowledgements. We are indebted with V. Kaloshin and A. Sorrentino for useful

discussions.
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