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Abstract. — In this paper, we prove L p estimates for the fractional derivatives of solutions to

elliptic fractional partial di¤erential equations whose coe‰cients are VMO. In particular, our work
extends the optimal regularity known in the second order elliptic setting to a spectrum of fractional

order elliptic equations.
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1. Introduction

In his 1959 paper on some composition formulas for vector-valued potentials,
J. Horváth introduced [9, p. 434] the di¤erential object

Dsu :¼ DI1�su:ð1:1Þ

Here, s a ð0; 1Þ and I1�s is the Riesz potential of order 1� s.
This object was subsequently termed the Riesz fractional gradient by the sec-

ond and third author in [15], where it was utilized to generalize divergence form
elliptic partial di¤erential equations from the second order setting to that of
di¤erential order 2s a ð0; 2Þ. In particular, assuming that A is uniformly elliptic,
i.e.

ljxj2 aAðxÞx � xaLjxj2;ð1:2Þ

for all x; x a RN and some 0 < laL < þl, the authors showed that given
j a HsðRNÞ and g a L2ðWÞ there exists u a HsðRNÞ that satisfiesZ

RN

AðxÞDsuðxÞ �DsvðxÞ dx ¼
Z
RN

gvð1:3Þ
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for all v a Cl
c ðRNÞ and u ¼ j in RNnW. Here, WHRN is open and bounded,

Nb 2, and

HsðRNÞ :¼ fu a L2ðRNÞ : Dsu a L2ðRN ;RNÞg;

which coincides with any standard definition of the fractional Sobolev space (see,
for example, [7, p. 524, 532]).

One observes that when s ¼ 1 and the boundary of W is su‰ciently nice, the
equation (1.3) agrees with the weak formulation of a divergence form elliptic
PDE, since prescribing u on the complement gives rise to a trace that would be
a more standard way to frame the existence. Meanwhile for s a ð0; 1Þ one obtains
a family of fractional partial di¤erential equations with analogous structure. The
interest in generalizing partial di¤erential equations via (1.1) is two-fold. Firstly,
that one should be concerned with non-integer order di¤erential objects can be
simply explained by quoting Sobolev and Nikol’skiı̆’s 1963 paper (who even
implicitly consider (1.1), see [14, p. 148]) where they note that ‘‘an imbedding
theory containing only derivatives of integral order is incomplete and imperfect.’’
Secondly, the structure of (1.1) closely resembles the gradient and therefore such
a generalization preserves the structural properties of the equation, a point which
we will return to later. This aspect has been important in the development of L1

fractional Sobolev inequalities in terms of (1.1) in [13], as such inequalities are
known to be false for the fractional Laplacian.

In this paper we continue to develop this perspective of classical equations as a
part of a continuous spectrum. In particular, we take the first step in addressing
for this class of equations a question of fundamental importance in the second
order case, that of regularity. As there are a number of possible assumptions
one can make to investigate the question of regularity of u that satisfies (1.3), let
us further describe the hypothesis of interest to us. In addition to the ellipticity
condition (1.2), we will assume A is of vanishing mean oscillation.

Definition 1.1. We define the semi-norm (on the space of functions of
bounded mean oscillation)

½j�BMO :¼ sup
Q

Z
Q

j�
Z
Q

j

����
����;

where the supremum is taken over all cubes QHRN . Then we define the space of
functions of vanishing mean oscillation by

VMOðRNÞ :¼ fCl
c ðRNÞg½��BMO :

The main result of this paper is the following theorem on the regularity of
such equations with VMO coe‰cients.

Theorem 1.2. Suppose that A a VMOðRN ;RN�NÞ satisfies (1.2), that G a
LpðRN ;RNÞ for some 1 < p < þl and u a HsðRNÞ satisfiesZ

RN

AðxÞDsuðxÞ �DsvðxÞ dx ¼
Z
RN

G �Dsvð1:4Þ
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for all v a Cl
c ðWÞ. Then Dsu a L

p
locðWÞ and for any K HHW there exists a con-

stant C ¼ CðK ;W;A; s; pÞ > 0 such that

kDsukL pðK;RN Þ aCðkGkL pðRN ;RN Þ þ kð�DÞ
s
2ukL2ðRN ÞÞ:

Here, ð�DÞ
s
2u denotes the fractional Laplacian of u of order s, which can be

defined as a Fourier multiplier with symbol ð2pjxjÞs, see [16, p. 117] or [7,
p. 528, 530]. The fractional Laplacian is related to the fractional gradient via
the identity

DsuCRð�DÞ
s
2u;ð1:5Þ

for s a ð0; 1Þ and u with su‰cient smoothness and integrability, and where
R ¼ DI1 is the vector-valued Riesz transform. In what follows we take (1.5) as
our definition of Dsu, which enables us to include the classical case s ¼ 1 (and
more generally s > 1 though one loses the interpretation of a fractional gradient
in this range).

Our proof is based on the beautiful technique of Iwaniec and Sbordone, intro-
duced in [10] for u satisfying (1.4) with v a Cl

c ðRNÞ and s ¼ 1. We recall that
in this setting they had shown [10, p. 186] that (1.4) has exactly one (up to a
constant) solution with the estimate

kDukL pðRN ;RN Þ aCkGkL pðRN ;RN Þ:

Comparing this with our result, one sees that the preservation of structure in
the equation results in regularity that is completely analogous to the well-studied
elliptic theory.

As a consequence of this result we can return to the question of regularity of
solutions to (1.3). In particular, one can transform equation (1.3) into (1.4) by
defining G ¼ IsRg (where one extends g by zero outside W), since one hasZ

RN

gv dx ¼
Z
RN

IsRg � Rð�DÞ
s
2v dx

¼
Z
RN

G �Dsv dx

for v a Cl
c ðRNÞ and g a L2ðRNÞ. The assumption g a L2ðWÞ then implies that

G a L2N=ðN�2sÞðRN ;RNÞ, and so our result allows us to conclude that for the
solution to (1.3) we have for every KHHW the estimate

kDsukL2N=ðN�2sÞðK ;RN Þ aCðkgkL2ðWÞ þ kð�DÞ
s
2ukL2ðRN ÞÞ:

When s ¼ 1 this localizes the result of Iwaniec and Sbordone and can be com-
pared with a result of Di Fazio in [6] (who in fact obtains regularity up to the
boundary).
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2. Estimates and proof of the main result

The main tool we utilize is the following result of Iwaniec and Sbordone [10, see
p. 187, 201–206].

Theorem 2.1 (Iwaniec, Sbordone). Let A a VMOBLlðRN ;RN�NÞ satisfy
(1.2). Then for all 1 < q < þl, the operator

T :¼ RiAijRj : L
qðRNÞ ! LqðRNÞ

is invertible, and moreover, there exists C ¼ CðA; qÞ > 0 such that

k f kLqðRN Þ aCkTf kLqðRN Þð2:1Þ

for all f a LqðRNÞ.

From this we obtain the localization:

Proposition 2.2. Let A, T as in Theorem 2.1. Then for any W1, W2 open and
bounded with W1 HHW2, 2 < q < þl, there exists C ¼ CðA; q;W1;W2Þ > 0 such
that

k f kLqðW1Þ aCðkTf kLqðW2Þ þ k f kL2ðRN ÞÞ

for all f a L2ðRNÞ.

One of the important ideas underlying Theorem 2.1 (see [10, p. 202]) is
Uchiyama’s compactness result for certain commutators involving Riesz trans-
forms and VMO functions [17]—itself an extension of the celebrated commutator
estimates by Coifman, Rochberg, and Weiss [2]. Here we additionally will make
use of the following more elementary commutator estimate, whose proof we
provide for the convenience of the reader.

Proposition 2.3. Let b; f : RN ! R and define the commutator Cðb;RiÞ½ f � by

Cðb;RiÞ½ f � :¼ bRi½ f � � Ri½bf �;

where Ri is the i-th Riesz transform. If b is Lipschitz, then

kCðb;RiÞ½ f �kL pðRN Þ aC½b�LipðRN ÞkI1j f j kL pðRN Þ:

Proof. Since

RigðxÞ ¼ cN

Z
RN

xi � zi

jx� zjNþ1
gðzÞ dz;
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we have

Cðb;RiÞ½ f �ðxÞ ¼ cN

Z
RN

xi � zi

jx� zjNþ1
ðbðxÞ � bðzÞÞ f ðzÞ dz;

and consequently,

jCðb;RiÞ½ f �ðxÞja cN ½b�LipðRN Þ

Z
RN

jx� zj�Nþ1j f jðzÞ dz ¼ C½b�LipðRN ÞI1j f jðxÞ: r

Proof of Proposition 2.2. Let h a Cl
0 ðW2Þ be a usual cuto¤ function, i.e.

hb 0 and hC 1 on a neighbourhood of W1. From (2.1) we have

k f kLqðW1Þ a khf kLqðRN Þ aCkTðhf ÞkLqðRN Þ:

Let us now recall the definition of the commutator of an operator T and two
functions b, f (which can be thought of as the error term to a product rule).
We have

Cðb;TÞ½ f � :¼ bT ½ f � � T ½bf �:

Then we continue the preceding estimate as follows. For supp hHHK0 HH
L1 HHW2 and denoting wL1

the characteristic function of L1, we estimate

kTðh f ÞkLqðRN Þ ¼ kTðhwL1
f ÞkLqðRN Þ

a khTðwL1
f ÞkLqðRN Þ þ kCðh;TÞ½wL1

f �kLqðRN Þ

a kTðwL1
f ÞkLqðK0Þ þ kCðh;TÞ½wL1

f �kLqðRN Þ

a kTð f ÞkLqðK0Þ þ kTðwLc
1
f ÞkLqðK0Þ þ kCðh;TÞ½wL1

f �kLqðRN Þ

¼: kTð f ÞkLqðK0Þ þ I þ II :

Note that in the display above with our T we have

Cðh;TÞ½wL1
f � ¼ RiAij½Cðh;RjÞ½wL1

f �� þ Cðh;RiÞ½AijRjðwL1
f Þ�:

As for I , since the supports of Lc
1 and K0 are disjoint, we have the estimate

kTðwLc
1
f ÞkLqðK0Þ a jjAjjlCK0;L1

k f kL2ðRN Þð2:2Þ

Indeed, let ~KK be so that K0 HH ~KKHHL1. Then by the boundedness of the Riesz
transform on LqðRNÞ,

kTðwLc
1
f ÞkLqðK0Þ a kRiðw ~KKAijRjððwLc

1
f ÞÞkLqðK0Þ þ kRiðw ~KK cAijRjððwLc

1
f ÞÞkLqðK0Þ

a kAkLlðRN ÞkRjðwLc
1
f ÞkLqð ~KKÞ þ kRiðw ~KK cAijRjððwLc

1
f ÞÞkLqðK0Þ
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We now apply the Cauchy-Schwarz inequality to obtain

kRjðwLc
1
f ÞkLqð ~KKÞ ¼

Z
K0

Z
RNnL1

f ðyÞ xj � yj

jx� yjNþ1
dy

�����
�����
q

dx

 !1
q

a

�Z
K0

k f kq

L2ðRN Þ

�Z
RNnL1

1

jx� yj2N
dy
�q=2

dx
�1

q

aCjK0j1=qk f kL2ðRN Þ

�Z l

c

1

t2N
tN�1 dt

�1
2

aCK0;L1;qk f kL2ðRN Þ;

where we have used the disjointness of K0 and Lc
1 (in particular that distðK0;L

c
1Þ ¼

c > 0). A similar argument shows that

kRiðw ~KK cAijRjððwLc
1
f ÞÞkLqðK0Þ aC ~KK;L1;q

kAijRjððwLc
1
f ÞÞkL2ðRN Þ;

and so using the boundedness of the Riesz transform on L2ðRNÞ, we conclude
that

kRiðw ~KK cAijRjððwLc
1
f ÞÞkLqðK0Þ aC ~KK ;K0;q

kAkLlðRN Þk f kL2ðRN Þ:

It thus remains to estimate II . Let us begin by observing that the commu-
tator estimates with a Lipschitz continuous function (see Proposition 2.3) imply
that

II ¼ kCðh;TÞ½wL1
f �kLqðRN Þ

aChðkI1jwL1
f j�kLqðRN Þ þ kI1jAijRjðwL1

f Þj kLqðRN ÞÞ:

In particular, q > 2 implies that Nq=ðN þ qÞ > 1 and so I1 : L
Nq=ðNþqÞðRNÞ !

LqðRNÞ is bounded. Moreover, Rj : L
rðRNÞ ! LrðRNÞ is bounded for 1 < r <

þl, which combined with the fact that A a LlðRN ;RN�NÞ (recall that Nb 2)
implies that

II aCk f kLNq=ðNþqÞðL1Þ:

If we let L0 :¼ W1, then our estimates show that

k f kLq0 ðL0Þ aCðkTð f ÞkLq0 ðK0Þ þ k f kL2ðRN Þ þ k f kLq1 ðL1ÞÞ

for qi :¼ Nq=ðN þ iqÞ. Now, if q1 a 2 then an application of Hölder’s inequality
implies the desired result. Otherwise we iterate the previous argument by finding

K0 HHL1 HHK1 HHL2 HH � � �Ki HHLiþ1 HHW2
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to obtain the estimate

k f kLqi ðLiÞ aCðkTð f ÞkLqi ðKiÞ þ k f kL2ðRN Þ þ k f kLqiþ1 ðLiþ1ÞÞ;

provided qiþ1 > 1 (in order that I1 : L
qiþ1ðRNÞ ! LqiðRNÞ). However, qi > 2 im-

plies qiþ1 > 1, and so we continue the iteration a finite number of times until we
obtain that qj a 2 for some j a N. Then collecting the terms our estimate reads

k f kLqðW1Þ aC
�Xj�1

i¼0

kTð f ÞkLqi ðKiÞ þ k f kL2ðRN Þ þ k f kLqj ðLjÞ

�
;

from which the inequality (2.2) is a simple consequence of Hölder’s inequality,
and thus the proposition is established. r

Finally, we require the following result.

Proposition 2.4. Let WHRN be open and bounded, s a ½0;NÞ, and 2a p <
þl. Assume that for all j a Cl

c ðWÞ,Z
f ð�DÞ

s
2j ¼

Z
hð�DÞ

s
2j:

Then for W1 HHW, there exists a constant C ¼ CðW1Þ such that

k f kL pðW1Þ aCðkhkL pðRN Þ þ k f kL2ðRN ÞÞ:

Proof. Let W1 HHW2 HHW and j a Cl
c ðW2Þ be such that

k f kL pðW1Þ a 2

Z
f j

and kjkL p 0 ðRN Þ a 1.
We argue by first reducing to the case where the support of j is a ball. We can

accomplish this by covering W2 with finitely many balls Bðxj; rjÞ of controlled
overlap such that Bðxj ; 4rjÞHHW, where the number of balls can be taken to
depends only on the distance of W1 to Wc. Then by subordinating a partition of
unity to balls Bðxj; rjÞ we can write

j ¼
Xl

j¼1

jj

with supp jj HBðxj; rjÞ for each j and jjjja jjj. Then for j fixed we haveZ
f jj ¼ 2

Z
f ð�DÞ

s
2Isjj

¼ 2

Z
f ð�DÞ

s
2ðhjIsjÞ þ 2

Z
f ð�DÞ

s
2ðð1� hjÞIsjjÞ
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¼ 2

Z
hð�DÞ

s
2ðhjIsjjÞ þ 2

Z
f ð�DÞ

s
2ðð1� hjÞIsjjÞ

a 2ðkhkL pðRN Þkð�DÞ
s
2ðhjIsjÞkL p 0 ðRN Þ

þ k f kL2ðRN Þkð�DÞ
s
2ðð1� hjÞIsjÞkL2ðRN ÞÞ;

where hj a Cl
c ðWÞ with hC 1 on Bðxj; 4rjÞ. Then if we can establish the estimates

kð�DÞ
s
2ðhjIsjÞkL p 0 ðRN Þ aCkjjkL p 0 ðRN Þð2:3Þ

kð�DÞ
s
2ðð1� hjÞIsjÞkL2ðRN Þ aCkjjkL p 0 ðRN Þ;ð2:4Þ

the result will follow by summing in j and using the pointwise inequality
jjjja jjj.

Let us therefore first examine (2.3), and to save notation we drop the depen-
dence in j. If we take the three term commutator Hs introduced by Da Lio
and Rivière [4]

Hsðh; IsjÞ :¼ ð�DÞ
s
2ðhIsjÞ � ð�DÞ

s
2hIsj� hj;

we can use

kHsðh; IsjÞkL p 0 ðRN Þ aCkjkL p 0 ðRN Þ:

This estimate follows via the Littlewood-Paley decomposition in [4] or using the
pointwise estimates in [12] (see [5, Theorem 1.2] for a precise version that can be
applied here and also [1, 3] for various extensions). Thus, it su‰ces to show that

kð�DÞ
s
2hIsjkL p 0 ðRN Þ þ khjkL p 0 ðRN Þ aCkjkL p 0 ðRN Þ:

The second term can be estimated in terms of the right hand side trivially since
jhja 1, while for the first term one applies Hölder’s inequality with exponent
Np 0=ðN � sp 0Þ and its Hölder conjugate r when N � sp 0 > 0 (Note that from
h a Cl

c ðRnÞ we know that ð�DÞ
s
2h a LrðRnÞ for any r a ð1;lÞ, e.g. by interpo-

lation.), which yields

kð�DÞ
s
2hIsjkL p 0 ðRN Þ a kð�DÞ

s
2hkLrðRN ÞkIsjkLNp 0=ðN�sp 0 ÞðRN Þ

aCkjkL p 0 ðRN Þ:

If N � sp 0 < 0, then

kð�DÞ
s
2hIsjkL p 0 ðRN Þ a kð�DÞ

s
2hkL p 0 ðRN ÞkIsjkLlðRN Þ

aCkjkL p 0 ðRN Þ

follows from the fact that j has compact support. When N � sp 0 ¼ 0, we take
~pp 0 < p 0 and set 1

~rr :¼ 1
p 0 � 1

~pp 0 , then
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kð�DÞ
s
2hIsjkL p 0 ðRN Þ a kð�DÞ

s
2hkL~rrðRN ÞkIsjkLN ~pp 0=ðN�s ~pp 0 ÞðRN Þ

aCkjkL ~pp 0 ðRN Þ:

The estimate follows again in this case by the fact that j has compact support.
Finally, to establish (2.4) we write

ð1� hÞ ¼
Xl
k¼2

yA
2kr
;

where each yA
2kr

is supported on an annulus of width 2kr. Then disjoint support
arguments (see, for example, Lemma 3.7 in [11]) imply the estimate

kð�DÞ
s
2ðyA

2kr
IsjÞkL2ðRN Þ aCð2krÞ�N=2

rN=pkjkL p 0 ðRN Þ;

from which we obtain

kð�DÞ
s
2ðð1� hÞIsjÞkL2ðRN Þ a

Xl
k¼2

kð�DÞ
s
2ðyA

2kr
IsjÞkL2ðRN Þ

a

�
C
Xl
k¼2

ð2krÞ�N=2
rN=p

�
kjkL p 0 ðRN Þ:

As the series is summable we have established the desired inequality and therefore
the theorem is proved. r

We are now ready to prove the main result.

Proof of Theorem 1.2. Suppose G a LpðRN ;RNÞ and u a HsðRNÞ satisfies
the equation (1.4). The claim of this theorem is that for any K HHW, one has
the estimate

kDsukL pðK;RN Þ aCðkGkL pðRN ;RN Þ þ kð�DÞ
s
2ukL2ðRN ÞÞ:

We will see that the result is a consequence of a combination of Propositions
2.2 and 2.4, and we argue as follows. Define g :¼ R�G ¼ �

PN
j¼1 RjGj, so that

g a LpðRNÞ and u satisfiesZ
W

Tð�DÞ
s
2uð�DÞ

s
2j ¼

Z
gð�DÞ

s
2j Ej a Cl

c ðWÞ;

where T is as in Theorem 2.1. Moreover, a cuto¤ argument similar to those
previously employed implies that if K HHW1, then one has

kDsukL pðK ;RN Þ ¼ kRð�DÞ
s
2ukL pðK ;RN Þ

aCðkð�DÞ
s
2ukL pðW1Þ þ kð�DÞ

s
2ukL2ðRN ÞÞ;
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and so this and boundedness of the Riesz transforms (to obtain bounds on g in
terms of G in Lp) imply that it su‰ces to show the estimate

kð�DÞ
s
2ukL pðW1Þ aCðkgkL pðRN Þ þ kð�DÞ

s
2ukL2ðRN ÞÞ:

for W1 HHW.
We first apply Proposition 2.2 with f ¼ ð�DÞ

s
2u and for W1 HHW2 HHW

yielding

kð�DÞ
s
2ukL pðW1Þ aCðkTð�DÞ

s
2ukL pðW2Þ þ kð�DÞ

s
2ukL2ðRN ÞÞ:

Now Proposition 2.4 and boundedness of T : L2ðRNÞ ! L2ðRNÞ gives

kTð�DÞ
s
2ukL pðW2Þ aCðkgkL pðRN Þ þ kTð�DÞ

s
2ukL2ðRN ÞÞ

aCðkgkL pðRN Þ þ kð�DÞ
s
2ukL2ðRN ÞÞ:

Therefore, we find

kð�DÞ
s
2ukL pðW1Þ aCðkgkL pðRN Þ þ kð�DÞ

s
2ukL2ðRN ÞÞ;

which is the thesis. r
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