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Abstract. — In this work, we investigate a mixed problem with boundary condition of third type

for a nonlinear di¤usion equation having nonlocal term. Existence and uniqueness of a solution
of the posed problem are proved under fairly general conditions. Moreover, we obtain some re-

sults on the behaviour of the solution and the existence of an absorbing set for the problem under
consideration.
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1. Introduction

We consider the problem

qu

qt
� Duþ gðx; t; uÞ þ eðx; tÞkukL2ðWÞðtÞ ¼ hðx; tÞ;ð1:1Þ

ðx; tÞ a QT CW� ð0;TÞ

uðx; 0Þ ¼ u0; x a WHRn; nb 3ð1:2Þ
qu

qh
þ aðx 0; tÞu

� �����
ST

¼ jðx 0; tÞ; ðx 0; tÞ a ST C qW� ½0;T �; T > 0ð1:3Þ

Here WHRn, nb 3, is a bounded domain with su‰ciently smooth bound-
ary qW; D denotes the Laplace operator with n-dimension (D ¼

Pn
i¼1

q2

qx2
i

);

g : QT � R1 ! R1, e : QT ! R1 and a : ST ! R1 and u0 are given functions; h, j
are given generalized functions.

In this article we investigate nonhomogenous nonlinear di¤usion type
equation (1.1) with initial value (1.2) and nonhomogenous third type boundary
(Robin boundary) value (1.3).

Equation (1.1) has a usually nonlinear mapping g in general form and a non-
local nonlinear term eðx; tÞkukL2ðWÞðtÞ considering function e is di¤erent from
zero.
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Above model generally arises from many areas like nuclear sciences, popula-
tion dynamics and biological sciences. According to the model of a physical
or chemical reaction events, term of gðx; t; uÞ can represent the growth of a
quantity like growth of temperature or growth of a certain cell while the other
nonlinear term represents the e¤ect of a material put into the system (see for
instance [6]). As it is noted in [5]: ‘‘In ecological context, there is no real justi-
fication for assuming that the interactions are local. There are many (hypothet-
ical) examples where such an assumption is clearly untenable, such as: (a) a
population in which individua complete for a shared rapidly equilibrated (e.g.
by convection) resource; (b) a population in which individua communicate either
visually or by chemical means. For example, the total biomass should play a
role in a model that incorporates group defense or visual communication, which
if the single-species model is a large-di¤usion approximation of a system, aver-
ages appear naturally.’’

In [4], we investigate the existence and uniqueness of such type problem with-
out of nonlocal term and when the initial date is zero. But here we study problem
(1.1)–(1.3) that is more general than mentioned before. We should also note that
in this paper non-local nonlinear term eðx; tÞkukL2ðWÞðtÞ added some di‰culties
for investigation of posed problem. For instance, this nonlinearity is independent
from the local nonlinearity which makes di‰culties and diversities for the studies
of the questions on uniqueness and on behavior of the solution.

It should be noted that equation (1.1) has been studied mostly in homoge-
neous form by taking mapping g in special cases and taking e as zero function
with Dirichlet or Neumann boundary conditions, see for instance [1], [2], [8],
[12], [15], [16].

More similarly to equation (1.1), we could see the following studies: M. Jazar
and R. Kiwan [7] consider

qu

qt
� Du� juj p þ 1

jWj

Z
W

juj p dx ¼ 0;

W. Gao and Y. Han [6] consider

qu

qt
� Du� juj p�1

uþ 1

jWj

Z
W

juj p�1
u dx ¼ 0

and C. P. Niculescu, I. Roventa [13] consider

qu

qt
� Du� f ðjujÞ þ 1

jWj

Z
W

f ðjujÞ dx ¼ 0

equations with homogenous Neumann condition and they investigated the be-
haviour of the solutions.

As a di¤erent from the previous studies, we investigate nonhomogenous
equation as taking mapping g in general form and having another globally
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nonlinear term with nonhomogenous third type boundary (Robin boudary) value
condition.

Here we proved the solvability and uniqueness theorems, moreover we ob-
tained some results about the behaviour of the solution in corresponding spaces
for posed problem (1.1)–(1.3).

2. Formulation and the main conditions of problem (1.1)–(1.3)

For problem (1.1)–(1.3), we assume h a L2ð0;T ; ðW 1
2 ðWÞÞ�Þ þ LqðQTÞ, j a

L2ð0;T ;W
�1

2

2 ðqWÞÞ and u0 a W 1
2 ðWÞBLaþ1ðWÞ. We consider the following

conditions:

(1) g : QT � R1 ! R1 is a Caratheodory function and there exist a number ab 0
and functions c1 a Ls1ð0;T ;Lr1ðWÞÞ, c0 a Ls2ð0;T ;Lr2ðWÞÞ such that g satis-
fies the following inequality for a.e. ðx; tÞ a QT and for any x a R1:

jgðx; t; xÞja c1ðx; tÞjxja þ c0ðx; tÞ

(r1; r2; s1; s2 > 1 will be defined later according to a).
(2) a a Llð0;T ;Ln�1ðqWÞÞ
(3) e a Llð0;T ;L~qqðWÞÞ, ~qq :¼

q0; aa 1
aþ1
a
; a > 1

�
Here, p0 :¼ 2n

n�2 , q0 :¼ ðp0Þ0 and a is coming from condition (1).

We understand the solution of considered problem in the following sense: Let
P0 :¼ L2ð0;T ;W 1

2 ðWÞÞBLaþ1ðQTÞBW 1
2 ð0;T ; ðW 1

2 ðWÞÞ�ÞB fu : uðx; 0Þ ¼ u0g.

Definition 2.1. A function u a P0 is called generalized solution of problem
(1.1)–(1.3) if it satisfies the equality

�
Z T

0

Z
W

u
qv

qt
dx dtþ

Z
W

uðx;TÞvðx;TÞ dx�
Z
W

uðx; 0Þvðx; 0Þ dx

þ
Z T

0

Z
W

Du:Dvdx dtþ
Z T

0

Z
W

gðx; t; uÞv dx dt

þ
Z T

0

Z
W

eðx; tÞkukL2ðWÞv dx dtþ
Z T

0

Z
qW

aðx 0; tÞuv dx 0 dt

¼
Z T

0

Z
W

hv dx dtþ
Z T

0

Z
qW

jv dx 0 dt

for all v a L2ð0;T ;W 1
2 ðWÞÞBLaþ1ðQTÞBW 1

2 ð0;T ; ðW 1
2 ðWÞÞ�Þ.

Since di¤erent su‰cient conditions are obtained for the solvability according
to the values of a in condition (1), we investigate problem (1.1)–(1.3) in three
di¤erent sections: Solvability in case of a < 1, a ¼ 1 and a > 1.
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3. Solvability in case of a < 1

Let 0a a < 1. This case is the sublinear case for mapping g and since L2ð0;
T ;W 1

2 ðWÞÞHLaþ1ðQTÞ, then P0CL2ð0;T ;W 1
2 ðWÞÞBW 1

2 ð0;T ; ðW 1
2 ðWÞÞ�ÞB

fu : uðx; 0Þ ¼ u0g: Consider the following conditions:

(1) 0 Condition (1) is satisfied with 0a a < 1 and parameters:
s1 :¼ 2

1�a
, r1 :¼ p0q0

p0�aq0
, s2 :¼ 2, r2 :¼ q0, where p0 :¼ 2n

n�2 , q0 :¼ ðp0Þ0.
(4) There exists a number a0 > 0 such that aðx 0; tÞb a0 for a.e. ðx 0; tÞ a ST .
(5) kekLlð0;T ;Lq0

ðWÞÞ a
y0c2
c3c6

, here y0 < minf eb0b0; a0g where 0f eb0b0 < 1

(c2 is constant2 [19]; c3 and c6 are constants3 [1], here and in the following, ci
are constants generally coming from of Imbedding inequalities of Sobolev
type.)

Theorem 3.1 (Existence Theorem). Let conditions (1) 0, (2), (3), (4) and (5) be
fulfilled. Then problem (1.1)–(1.3) is solvable in P0 for any ðh; jÞ a L2ð0;T ;

ðW 1
2 ðWÞÞ�Þ � L2ð0;T ;W

�1
2

2 ðqWÞÞ and u0 a W 1
2 ðWÞ.

For the proof of this theorem, we make use a general result [17] that is given
below:

Theorem 3.2. Let X and Y be Banach spaces with duals X � and Y � respectively,
Y be a reflexive Banach space, M0 JX be a weakly complete ‘‘reflexive’’ pn-
space, X0 JM0BY be a separable vector topological space. Let the following con-
ditions be fulfilled:

(i) f : P0 ! Lqð0;T ;YÞ is a weakly compact (weakly continuous) mapping,
where

P0CLpð0;T ;M0ÞBW 1
q ð0;T ;Y ÞB fxðtÞ j xð0Þ ¼ 0g;

1 < maxfq; q 0ga p < l, q 0 ¼ q

q�1 ;
(ii) there is a linear continuous operator A : Ws

mð0;T ;X0Þ ! Ws
mð0;T ;Y �Þ,

sb 0, mb 1 such that A commutes with q
qt

and the conjugate operator A�

has kerðA�Þ ¼ f0g;
(iii) operators f and A generate, in generalized sense, a coercive pair on space

Lpð0;T ;X0Þ, i.e. there exist a number r > 0 and a function C : R1
þ ! R1

þ
such that CðtÞ=t % l as t % l and for any x a Lpð0;T ;X0Þ under
½x�LpðM0Þ b r following inequality holds:Z T

0

3 f ðt; xðtÞÞ;AxðtÞ4 dtbCð½x�LpðM0ÞÞ;

2c2kuk2L2ð0;T ;W 1
2
ðWÞÞ a ðkDuk2L2ðQT Þ þ kuk2L2ðST ÞÞ

3kuk2L2ð0;T ;Lp0
ðWÞÞ a c3kuk2L2ð0;T ;W 1

2
ðWÞÞ; kukL2ðWÞ a c6kukLp0

ðWÞ
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(iv) there exist some constants C0 > 0, C1;C2 b 0, n > 1 such that the inequalitiesZ T

0

3xðtÞ;AxðtÞ4 dtbC0kxkn
Lqð0;T ;YÞ � C2;Z t

0

dx

dt
;AxðtÞ

� �
dtbC1kxkn

Y ðtÞ � C2; a:e: t a ½0;T �

hold for any x a W 1
p ð0;T ;X0Þ and x a Lpð0;T ;X0Þ.

Assume that conditions (i)–(iv) are fulfilled. Then the Cauchy problem

dx

dt
þ f ðt; xðtÞÞ ¼ yðtÞ; y a Lqð0;T ;Y Þ; xð0Þ ¼ 0

is solvable in P0 in the following senseZ T

0

dx

dt
þ f ðt; xðtÞÞ; y�ðtÞ

� �
dt ¼

Z T

0

3yðtÞ; y�ðtÞ4 dt; Ey� a Lq0ð0;T ;Y �Þ;

for any y a Lqð0;T ;Y Þ satisfying the inequality

sup
1

½x�Lpð0;T ;M0Þ

Z T

0

3yðtÞ;AxðtÞ4 dt j x a Lpð0;T ;X0Þ
( )

< l:

Proof of Theorem 3.1. As we see in Theorem 3.2, for being able to apply
it to our problem, firstly the initial condition should be zero. Therefore we can
rewrite problem (1.1)–(1.3) as the following using the transformation ~uuðx; tÞ :¼
uðx; tÞ � u0ðxÞ:

qð~uuþ u0Þ
qt

� Dð~uuþ u0Þ þ gðx; t; ~uuþ u0Þ þ eðx; tÞk~uuþ u0kL2ðWÞðtÞ ¼ hðx; tÞð3:1Þ

~uuðx; 0Þ ¼ 0ð3:2Þ � qð~uuþ u0Þ
qh

þ aðx 0; tÞð~uuþ u0Þ
����

ST

¼ jðx 0; tÞð3:3Þ

Now let define corresponding mappings and acting spaces for problem (3.1)–
(3.3):

f ¼ f f1; f2g : P0 ! L2ð0;T ; ðW 1
2 ðWÞÞ�Þ � L2ð0;T ;W

�1
2

2 ðqWÞÞ

such that

f1ð~uuÞ :¼ �Dð~uuþ u0Þ þ gðx; t; ~uuþ u0Þ þ eðx; tÞk~uuþ u0kL2ðWÞðtÞ;ð3:4Þ

f2ð~uuÞ :¼
qð~uuþ u0Þ

qh
þ aðx 0; tÞð~uuþ u0Þ;ð3:5Þ
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A : P0 ! P0

AC Idð3:6Þ

To see that the conditions of Theorem 3.2 are satisfied, we shall give the
following lemmas: r

Lemma 3.3. f is weakly continuous from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þ�

L2ð0;T ;W
�1

2

2 ðqWÞÞ.

Proof. Using condition (1) 0 and Hölder inequality, we obtain that

kgðx; t; ~uuþ u0ÞkL2ð0;T ;Lq0
ðWÞÞ a g0ðk~uuþ u0kL2ð0;T ;Lp0

ðWÞÞÞ;

where

g0ðk~uuþ u0kL2ð0;T ;Lp0
ðWÞÞÞ

:¼ ~CC0½kc1k2Ls1
ð0;T ;Lr1ðWÞÞk~uuþ u0k2aL2ð0;T ;Lp0

ðWÞÞ þ kc0k2L2ð0;T ;Lq0
ðWÞÞ�

1
2;

~CC0 is a positive constant. This means, g is a bounded mapping from P0 to
L2ð0;T ;Lq0ðWÞÞ, since P0 HL2ð0;T ;W 1

2 ðWÞÞHL2ð0;T ;Lp0ðWÞÞ.
Since linear parts of f are obviously bounded, they are already weakly con-

tinuous. It is enough to investigate the nonlinear part of f . Let fumgHP0 and
um * u in P0. Then um * u in L2ð0;T ;Lp0ðWÞÞ. Since

L2ð0;T ;W 1
2 ðWÞÞBW 1

2 ð0;T ; ðW 1
2 ðWÞÞ�Þ m L2ðQTÞð3:7Þ

then bfuml
gH fumg such that uml

! u almost everywhere in QT .
Using condition (1) 0 we can say that

gðx; t; �Þ : R1 ! R1

is a continuous function. Then according to a general result (1. Chapter, 1. Para-
graph, Lemma 1.3 of [9]), bfumj

gH fumg such that

gðx; t; umj
þ u0Þ *

L2ð0;T ;Lq0
ðWÞÞ

gðx; t; uþ u0Þ:

Thus g is a weakly continuous mapping from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þ. Now let

g1ðx; t; ~uuþ u0Þ :¼ eðx; tÞk~uuþ u0kL2ðWÞðtÞ. Using the fact (3.7), we have

eðx; tÞkumk
þ u0kL2ðWÞðtÞ 								!

L2ð0;T ;Lq0
ðWÞÞ

eðx; tÞkuþ u0kL2ðWÞðtÞ:

Therefore, g1 is a weakly continuous mapping from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þ.

r

Lemma 3.4. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.
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Proof. Since A is an identity mapping, it is obvious that condition (ii) is
satisfied. Furthermore, for any ~uu a W 1

2 ð0;T ;W 1
2 ðWÞÞ the following inequalities

are satisfied: Z T

0

3~uu; ~uu4W dt ¼
Z T

0

k~uuk2L2ðWÞ dtb c6k~uuk2L2ð0;T ; ðW 1
2
ðWÞÞ�ÞZ t

0

q~uu

qt
; ~uu

� �
W

dt ¼ 1

2
k~uuk2L2ðWÞðtÞb

1

2
c6k~uuk2ðW 1

2
ðWÞÞ�ðtÞ;

a.e. t a ½0;T � (c6 > 0 is constant4 [1].) This means condition (iv) is also satisfied.

It is enough to see that mapping f is coercive on L2ð0;T ;W 1
2 ðWÞÞ for condition

(iii), since A is an identity mapping:
Using conditions (1) 0, (2), (3), (4) and (5) we obtain,

3 f ð~uuÞ; ~uu4QT
bCðk~uukL2ð0;T ;W 1

2
ðWÞÞÞ;

Cðk~uukL2ð0;T ;W 1
2
ðWÞÞÞ :¼ Z1ðy0c2 � c6c3kekLlð0;T ;Lq0

ðWÞÞ � eÞk~uuk2L2ð0;T ;W 1
2
ðWÞÞ � Z2;

where y0 < minf eb0b0; a0g with eb0b0 < 1, Z1 is a positive constant,

Z2 :¼ Z2ðkc0kLs2
ð0;T ;Lr2

ðWÞÞ; kc1kLs1
ð0;T ;Lr1

ðWÞÞ; kekLlð0;T ;Lq0
ðWÞÞ; kakLlð0;T ;Ln�1ðqWÞÞ;

ku0kL2ð0;T ;Lp0
ðWÞÞ; ku0kL2ð0;T ;L2n�2

n�2
ðqWÞÞ; kDu0kL2ðQT ÞÞ

and e is small enough. Hence,
Cðk~uukÞ
k~uuk % l as k~uukL2ð0;T ;W 1

2
ðWÞÞ % l. r

Continuation of the Proof of Theorem 3.1. We can apply Theorem 3.2
to problem (3.1)–(3.3) by virtue Lemma 3.3 and Lemma 3.4. Hence we obtain
that problem (3.1)–(3.3) is solvable in P0 for any ðh; jÞ a L2ð0;T ; ðW 1

2 ðWÞÞ�Þ�
L2ð0;T ;W

�1
2

2 ðqWÞÞ satisfying the following inequality

sup
1

k~uukL2ð0;T ;W 1
2
ðWÞÞ

Z T

0

3h; ~uu4W þ 3j; ~uu4qW dt : ~uu a L2ð0;T ;W 1
2 ðWÞÞ

( )
< l:

If we consider the norm definition of ðh; jÞ in L2ð0;T ; ðW 1
2 ðWÞÞ�Þ�

L2ð0;T ;W
�1

2

2 ðqWÞÞ, we see that problem (3.1)–(3.3) is solvable in P0 for any

ðh; jÞ a L2ð0;T ; ðW 1
2 ðWÞÞ�Þ � L2ð0;T ;W

�1
2

2 ðqWÞÞ and u0 a W 1
2 ðWÞ. This means

(1.1)–(1.3) is also solvable. r

4. Solvability in case of a ¼ 1

Let a ¼ 1 for condition (1). In this case, P0CL2ð0;T ;W 1
2 ðWÞÞBW 1

2 ð0;T ;
ðW 1

2 ðWÞÞ�ÞB fu : uðx; 0Þ ¼ u0g: We consider the following conditions:

4c6kuk2ðW 1
2
ðWÞÞ � a kuk2L2ðWÞ
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(1) 00 Condition (1) is satisfied with parameters: s1 :¼ l, r1 :¼ n
2 , s2 :¼ 2, r2 :¼ q0.

(6) One of the following conditions be satisfied:
I. There exists a number a0 > 0 such that aðx 0; tÞb a0 for a.e. ðx 0; tÞ a ST

and

c6kekLlð0;T ;Lq0
ðWÞÞ þ kc1kLlð0;T ;Ln

2
ðWÞÞ a

y1c2

c3

where y1 < minf eb0b0; a0g with eb0b0 < 1.
II. There exist some numbers k0 > 0 and k1 a R1 such that

gðx; t; xÞxb k0jxj2 � k1

for a.e. ðx; tÞ a QT , for any x a R1 and

c5kakLlð0;T ;Ln�1ðqWÞÞ þ c3c6kekLlð0;T ;Lq0
ðWÞÞ a y2

where y2 < minf eb0b0; k0g with 0f eb0b0 < 1.
(c2, c3, c6 are like in Theorem 3.1 and c5 is constant5 [1].)

Theorem 4.1 (Existence Theorem). Let conditions (1) 00, (2), (3) and (6) be
fulfilled. Then problem (1.1)–(1.3) is solvable in P0 for any ðh; jÞ a L2ð0;T ;

ðW 1
2 ðWÞÞ�Þ � L2ð0;T ;W

�1
2

2 ðqWÞÞ and u0 a W 1
2 ðWÞ.

Proof. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.4), (3.5), (3.6) for problem (3.1)–(3.3). r

Lemma 4.2. f is weakly continuous from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þ.

Proof. It is enough to show that g : P0 HL2ð0;T ;Lp0ðWÞÞ ! L2ð0;T ;Lq0ðWÞÞ
is a bounded mapping for a ¼ 1: Using condition (1) 00 we obtain,

kgkL2ð0;T ;Lq0
ðWÞÞ a g1ðkukL2ð0;T ;Lp0

ðWÞÞÞ;
g1ðk~uuþ u0kL2ð0;T ;Lp0

ðWÞÞÞ

:¼ ~CC1½kc1k2Ls1
ð0;T ;Lr1ðWÞÞk~uuþ u0k2L2ð0;T ;Lp0

ðWÞÞ þ kc0k2L2ð0;T ;Lq0
ðWÞÞ�

1
2;

~CC1 is a positive constant. The rest of this proof is similar with the proof of
Lemma 3.3. r

Lemma 4.3. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.

Proof. This proof is similar with the proof of Lemma 3.4. As a di¤erent part,
we show that f is coercive on L2ð0;T ;W 1

2 ðWÞÞ:

5kuk2L2ð0;T ;L2n�2
n�2

ðqWÞÞ a c5kuk2L2ð0;T ;W 1
2
ðWÞÞ
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If we consider conditions (1) 00, (2), (3) and (6)-I, we obtain,

3 f ð~uuÞ; ~uu4QT
bCðk~uukL2ð0;T ;W 1

2
ðWÞÞÞ;Cðk~uukL2ð0;T ;W 1

2
ðWÞÞÞ

:¼ Z3ðy1c2 � c3kc1kLlð0;T ;Ln
2
ðWÞÞ � c6c3kekLlð0;T ;Lq0

ðWÞÞ � eÞ

� k~uuk2L2ð0;T ;W 1
2
ðWÞÞ � Z4;

where y1 < minf eb0b0; a0g with eb0b0 < 1, Z3 is a positive constant,

Z4 :¼ Z4ðkc0kLs2
ð0;T ;Lr2

ðWÞÞ; kc1kLs1
ð0;T ;Lr1

ðWÞÞ; kekLlð0;T ;Lq0
ðWÞÞ; kakLlð0;T ;Ln�1ðqWÞÞ;

ku0kL2ð0;T ;Lp0
ðWÞÞ; ku0kL2ð0;T ;L2n�2

n�2
ðqWÞÞ; kDu0kL2ðQT ÞÞ

and e is small enough.
If we consider condition (6)-II, we obtain,

3 f ð~uuÞ; ~uu4QT
bCðk~uukL2ð0;T ;W 1

2
ðWÞÞÞ;Cðk~uukL2ð0;T ;W 1

2
ðWÞÞÞ

:¼ Z5ðy2 � c5kakLlð0;T ;Ln�1ðqWÞÞ � c6c3kekLlð0;T ;Lq0
ðWÞÞ � eÞ

� k~uuk2L2ð0;T ;W 1
2
ðWÞÞ � Z6;

where y2 < minf eb0b0; k0g with eb0b0 < 1, Z5 is a positive constant,

Z6 :¼ Z6ðkc0kLs2
ð0;T ;Lr2

ðWÞÞ; kc1kLs1
ð0;T ;Lr1

ðWÞÞ; kekLlð0;T ;Lq0
ðWÞÞ; kakLlð0;T ;Ln�1ðqWÞÞ;

ku0kL2ð0;T ;Lp0
ðWÞÞ; ku0kL2ð0;T ;L2n�2

n�2
ðqWÞÞ; kDu0kL2ðQT Þ; k1;T ;mesWÞ

and e is small enough.

Hence,
Cðk~uukÞ
k~uuk % l as k~uukL2ð0;T ;W 1

2
ðWÞÞ % l. r

Continuation of the Proof of Theorem 4.1. We can apply Theorem 3.2
to problem (3.1)–(3.3) by virtue Lemma 4.2 and Lemma 4.3. Hence we obtain
that problem (3.1)–(3.3) is solvable in P0 for any ðh; jÞ a L2ð0;T ; ðW 1

2 ðWÞÞ�Þ�
L2ð0;T ;W

�1
2

2 ðqWÞ and u0 a W 1
2 ðWÞ. Therefore (1.1)–(1.3) is also solvable. r

5. Solvability in case of a > 1

Let a > 1. This case is super linear case for mapping g and

P0 ¼ L2ð0;T ;W 1
2 ðWÞÞBLaþ1ðQTÞ

B ½W 1
2 ð0;T ; ðW 1

2 ðWÞÞ�Þ þW 1
aþ1
a

ð0;T ;Laþ1
a
ðWÞÞ�

B fu : uðx; 0Þ ¼ u0g:

We consider the following conditions:
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(1) 000 Condition (1) is satisfied with parameters: s1 :¼ l, r1 :¼ l, s2 :¼ aþ1
a
,

r2 :¼ aþ1
a
.

(7) There exist some numbers k0 > 0 and k1 a R1 such that

gðx; t; xÞxb k0jxjaþ1 � k1

for a.e. ðx; tÞ a QT , for any x a R1.
(8) There exists a number a0 > 0 such that aðx 0; tÞb�a0 for a.e. ðx 0; tÞ a ST

and a0 <
y3
c4
where y3 < minf eb0b0; ek0k0g with 0f eb0b0 < 1 and 0f ek0k0 < k0.

(c4 is constant6 [1].)

Theorem 5.1 (Existence Theorem). Let conditions (1) 000, (2), (3), (7) and (8) be
fulfilled. Then problem (1.1)–(1.3) is solvable in P0 for any ðh; jÞ a ½L2ð0;T ;

ðW 1
2 ðWÞÞ�Þ þ L aþ1

a
ðQTÞ� � L2ð0;T ;W

�1
2

2 ðqWÞÞ and u0 a W 1
2 ðWÞBLaþ1ðQTÞ.

Proof. To prove this theorem let recall (3.4), (3.5), (3.6). r

Lemma 5.2. f is weakly continuous from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þ þ Laþ1

a
ðQTÞ.

Proof. Using condition (1) 000 and Hölder inequality, we obtain that

kgðx; t; ~uuþ u0ÞkLaþ1
a
ðQT Þ a g2ðk~uuþ u0kLaþ1ðQT ÞÞ

where

g2ðk~uuþ u0kLaþ1ðQT ÞÞ :¼ 2½kc1k
aþ1
a

LlðQT Þk~uuþ u0kaþ1
Laþ1ðQT Þ þ kc0k

aþ1
a

L aþ1
a
ðQT Þ�

a
aþ1:

This means, g is a bounded mapping from P0 HLaþ1ðQTÞ to Laþ1
a
ðQTÞ.

Since linear parts of f are obviously bounded, they are already weakly con-
tinuous. It is enough to investigate the nonlinear part of f . Let fumgHP0 and
um * u in P0. Then um * u in Laþ1ðQTÞ: From (3.7), bfuml

gH fumg such that
uml

! u almost everywhere in QT .
Recalling condition (1) 000 we can say that

gðx; t; �Þ : R1 ! R1

is a continuous function. Then according to a general result in [8], bfumj
gH fumg

such that

gðx; t; umj
þ u0Þ *

L2ð0;T ;Lq0
ðWÞÞ

gðx; t; uþ u0Þ:

Thus g is a weakly continuous mapping from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þþ

Laþ1
a
ðQTÞ. Now let g1ðx; t; ~uuþ u0Þ :¼ eðx; tÞk~uuþ u0kL2ðWÞðtÞ. Using the fact (3.7),

we have

eðx; tÞkumk
þ u0kL2ðWÞðtÞ 				!

Laþ1
a
ðQT Þ

eðx; tÞkuþ u0kL2ðWÞðtÞ:

6kuk2L2ðST Þ a c4kuk2L2ð0;T ;W 1
2
ðWÞÞ
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Therefore, g1 is a weakly continuous mapping from P0 to L2ð0;T ; ðW 1
2 ðWÞÞ�Þþ

Laþ1
a
ðQTÞ. r

Lemma 5.3. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.

Proof. Since A is an identity mapping, it is obvious that condition (ii) is satis-
fied. Furthermore, for any ~uu a W 1

2 ð0;T ;W 1
2 ðWÞÞ the following inequalities are

satisfied: Z T

0

3~uu; ~uu4W dt ¼
Z T

0

k~uuk2L2ðWÞ dtb c6k~uuk2L2ð0;T ; ðW 1
2
ðWÞÞ�ÞþLaþ1

a
ðQT ÞZ t

0

q~uu

qt
; ~uu

� �
W

dt ¼ 1

2
k~uuk2L2ðWÞðtÞb

1

2
c6k~uuk2ðW 1

2
ðWÞÞ�ðtÞ;

a:e: t a ½0;T � (c6 > 0 constant7 [1])
This means condition (iv) is also satisfied. Now let see that mapping f is

coercive on L2ð0;T ;W 1
2 ðWÞÞBLaþ1ðQTÞ for condition (iii), since A is an identity

mapping: If we consider conditions (1) 000, (2), (3), (7) and (8) we obtain,

3 f ð~uuÞ; ~uu4QT
bCðk~uukL2ð0;T ;W 1

2
ðWÞÞBLaþ1ðQT ÞÞ;

Cðk~uukL2ð0;T ;W 1
2
ðWÞÞBLaþ1ðQT ÞÞ :¼ Z7ðy3 � a0c4 � eÞk~uuk2L2ð0;T ;W 1

2
ðWÞÞBLaþ1ðQT Þ � Z8;

where y3 < minf eb0b0; ek0k0g with eb0b0 < 1 and ek0k0 < k0; Z7 is a positive constant,

Z8 :¼ Z8ðkc0kLs2
ð0;T ;Lr2

ðWÞÞ; kc1kLs1
ð0;T ;Lr1

ðWÞÞ; kekLlð0;T ;L~qqðWÞÞ; kakLlð0;T ;Ln�1ðqWÞÞ;

ku0kLaþ1ðQT Þ; ku0kL2ð0;T ;L2n�2
n�2

ðqWÞÞ; kDu0kL2ðQT Þ; k1;T ;mesWÞ

and e is small enough. r

Hence,
Cðk~uukÞ
k~uuk % l as k~uukL2ð0;T ;W 1

2
ðWÞÞBLaþ1ðQT Þ % l.

Continuation of the Proof of Theorem 5.1. We can apply Theorem 3.2
to problem (1.1)–(1.3) from Lemma 5.2 and Lemma 5.3. Hence we obtain that
problem (3.1)–(3.3) is solvable in P0 for any ðh; jÞ a ½L2ð0;T ; ðW 1

2 ðWÞÞ�Þþ
Laþ1

a
ðQTÞ� � L2ð0;T ;W

�1
2

2 ðqWÞÞ satisfying the following inequality

sup

(
1

kukL2ð0;T ;W 1
2
ðWÞÞBLaþ1ðQT Þ

Z T

0

3h; u4W þ 3j; u4qW dt :

u a L2ð0;T ;W 1
2 ðWÞÞBLaþ1ðQTÞ

)
< l:

7c6kuk2ðW 1
2
ðWÞÞ � a kuk2L2ðWÞ
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If we consider the norm definition of ðh; jÞ in ½L2ð0;T ; ðW 1
2 ðWÞÞ�Þ þ Laþ1

a
ðQTÞ�

�L2ð0;T ;W
�1

2

2 ðqWÞÞ, we see that problem (3.1)–(3.3) is solvable in P0 for any

ðh; jÞ a ½L2ð0;T ; ðW 1
2 ðWÞÞ�Þ þ Laþ1

a
ðQTÞ� � L2ð0;T ;W

�1
2

2 ðqWÞÞ and u0 a W 1
2 ðWÞ

BLaþ1ðWÞ. Therefore (1.1)–(1.3) is also solvable. r

6. Uniqueness theorem for problem (1.1)–(1.3)

Theorem 6.1. Let existence theorems in sections 3, 4 and 5 be fulfilled and
moreover assume the following conditions:

(3) 0 e a Llð0;T ;L2ðWÞÞ
(9) Let gðx; t; xÞ is di¤erentiable with respect to x and gx a Llð0;T ;Ln

2
ðWÞÞ,

moreover there exists a positive number g0 such that gxðx; t; xÞb�g0 for a.e.
ðx; tÞ a QT and for all x a R.

Then the solution of (1.1)–(1.3) in P0 is unique.

Proof. Let define w :¼ u1 � u2 assuming that u1 and u2 are two di¤erent solu-
tions of (1.1)–(1.3). Then we can obtain the following problem:

qw

qt
� Dwþ ½gðx; t; u1Þ � gðx; t; u2Þ� þ eðx; tÞðku1kL2ðWÞ � ku2kL2ðWÞÞðtÞ ¼ 0ð6:1Þ

wðx; 0Þ ¼ 0ð6:2Þ � qw

qh
þ aðx 0; tÞw

����
ST

¼ 0ð6:3Þ

After multiplying (6.1) by w under the integral of W, if we use the conditions of
Theorem 6.1 and make some calculations, we get

1

2

d

dt
kwk2L2ðWÞ a ðg0 þ kekLlð0;T ;L2ðWÞÞ þ a0c4Þkwk2L2ðWÞ:

By solving the last inequality,

kwk2L2ðWÞðtÞa kwð0Þk2L2ðWÞ expf2½g0 þ kekLlð0;T ;L2ðWÞÞ þ a0c4�tgð6:4Þ

is obtained. Since wð0Þ ¼ 0, the solution is unique. r

7. Behavior of solution for problem (1.1)–(1.3)

We investigate the behavior of solution for problem (1.1)–(1.3) in two subsections
as homogenous case and nonhomogenous, autonomous case.
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7.1. Homogenous Case ðhðx; tÞ ¼ 0; jðx 0; tÞ ¼ 0Þ. Let hðx; tÞ ¼ 0; jðx 0; tÞ ¼ 0 for
problem (1.1)–(1.3) and assume the following conditions:

(d1) a a Llð0;T ;Ln�1ðqWÞÞ, e a Llð0;T ;L2ðWÞÞ.
(d2) Condition (1) is satisfied with s1 :¼ l, r1 :¼ l, s2 :¼ aþ1

a
, r2 :¼ aþ1

a
and

a > 1.
(d3) Condition (7) is satisfied with k1 ¼ 0.
(d4) There exists a number a0 > 0 such that aðx 0; tÞb a0 for a.e. ðx 0; tÞ a ST .

Theorem 7.1. Let (d1)–(d4) be fulfilled. Then the solution in P0 satisfies the
following inequalities for all tb 0:

(a) kuk2L2ðWÞðtÞa
2ku0k2

L2ðWÞ

2
a�1
2 exp

�
1�a
2
K1t

�
þK2

K1
ku0ka�1

L2ðWÞ


exp

�
1�a
2
K1t

�
�1
�� 2

a�1

, K1A 0

(b) kukL2ðWÞðtÞa
ku0kL2ðWÞ

½2�
1þa
2 ð1�aÞK2tku0ka�1

L2ðWÞþ1�
1

a�1

, K1 ¼ 0

Here K1 ¼ K1ðkeðx; tÞkLlð0;T ;L2ðWÞÞ; c2; a0Þ is a constant and K2 ¼ K2ðk0; c7Þ is
a negative constant (c2 and c7 are constants coming from the inequalities8 [19], [1]).

Proof. Conditions of Theorem 7.1 provide that (1.1)–(1.3) has a solution in

P0. Let make use of Lyapunov functional EðuðtÞÞ :¼ 1
2

Z
W

u2 dx. If we write the

equality E 0ðtÞ ¼ 3u; ut4W for the solution, then we obtain the following Cauchy
problem by using conditions of the theorem and making some calculations:

y 0 � K1yaK2y
aþ1
2ð7:1Þ

yð0Þ ¼ 1

2
ku0k2L2ðWÞð7:2Þ

where y :¼ EðtÞ, K1 :¼ 2ðkekLlð0;T ;L2ðWÞÞ � y0c2Þ and K2 :¼ �2
aþ1
2 k0c

�1
7 .

From here follows as the solution of (7.1)–(7.2) inequality (a) under assuming
K1A 0 and inequality (b) under assuming K1 ¼ 0. r

Corollary 7.2. If u0 ¼ 0, then the solution is zero regardless of the sign of K1.
Moreover if ku0kL2ðWÞ is bounded then kuðtÞkL2ðWÞ bounded for all t > 0.

Corollary 7.3. If K1 > 0 then kuk2L2ðWÞðtÞaM 2
0 as t ! l, where M 2

0 ¼
2

� K1

K2

� 2
a�1. Moreover, kuk2L2ðWÞðtÞaM 2

0 when ku0k2L2ðWÞ aM 2
0 for all t > 0.

Corollary 7.4. If K1 < 0, kuk2L2ðWÞðtÞa ku0k2L2ðWÞ is satisfied for all t > 0.

Corollary 7.5. If K1 a 0, the solution goes to zero as t ! l regardless of
initial function u0.

8c2kuk2W 1
2
ðWÞ a ðkDuk2L2ðWÞ þ kuk2L2ðqWÞÞ; kukL2ðWÞ a c7kukLaþ1ðWÞ
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7.2. Nonhomogenous and Autonomous Case. Let consider problem (1.1)–(1.3) in
autonomous case with h and j are di¤erent from zero as the following:

qu

qt
� Duþ gðx; uÞ þ eðxÞkukL2ðWÞðtÞ ¼ hðxÞð7:3Þ

uðx; 0Þ ¼ u0ð7:4Þ � qu

qh
þ aðx 0Þu

����
ST

¼ jðx 0Þ;ð7:5Þ

We can rewrite the conditions to provide that (7.3)–(7.5) has a unique solition:

(10) gðx; uÞ satisfies (1) 000 with c1 a Lr1ðWÞ and c0 a Lr2ðWÞ.
(20) a a Ln�1ðqWÞ
(30) e a L2ðWÞ
(70) There exist some numbers k0 > 0, k1 a R1 such that

gðx; xÞxb k0jxjaþ1 � k1

for a.e. x a W and for all x a R.
(80) There exists a number a0 > 0 such that aðx 0; tÞb�a0 for a.e. x 0 a qW and

0 < a0 a
y4
c4
where y4 < minf eb0b0; ek0k0g with 0f eb0b0 < 1 and 0f ek0k0 < k0.

(c4 is constant9 [1].)
(90) Condition (9) is satisfies with gx a Ln

2
ðWÞ.

Theorem 7.6. Let conditions (10), (20), (30), (70), (80) and (90) be fulfilled and let

h a ðW 1
2 ðWÞÞ� þ Laþ1

a
ðWÞ, j a W

�1
2

2 ðqWÞ. Then for all bounded set BHW 1
2 ðWÞB

Laþ1ðWÞ and for any fixed number r > 0, there exists a t0 ¼ t0ðB; rÞ > 0 such that
SðtÞBHB

r
0 when tb t0. Here

B
r
0 :¼ fu a L2ðWÞ : kukL2ðWÞðtÞa ðM1 þ rÞ

1
2;

M1 ¼ M1ðkhk; kjk; kek; k1; k0; a0; c4; c7; c;mesWÞg:

That means, there exists an absorbing set in L2ðWÞ for fSðtÞgtb0. (c is con-
stant10, c4 and c7 are constants11 [1].)

Proof. This proof is similarly with the proof of Theorem 7.1 as making use

of Lypunov functional EðuðtÞÞ :¼ 1
2

Z
W

u2 dx and equality E 0ðtÞ ¼ 3u; ut4W. By

using conditions of the theorem and making some calculations, we obtain the
following Cauchy problem:

9kuk2L2ðqWÞ a c4kuk2W 1
2
ðWÞ

10kuk2W 1
2
ðWÞ a kukaþ1

Laþ1ðWÞ þ kDuk2L2ðWÞ þ c

11kuk2L2ðqWÞ a c4kuk2W 1
2
ðWÞ; kukL2ðWÞ a c7kukLaþ1ðWÞ
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dy

dt
þM2ya ~MM3

yð0Þ ¼ ku0k2L2ðWÞ

here y :¼ EðtÞ, with 0 < M2 a 2ðy� a0c4 � eÞ for y :¼ minf1; ek0k0g and su‰ciently
small e and 0 < ~MM3ðkhk; kjk; kek; k1; y1; c; c7;mesWÞ. Solving this problem,

kuk2L2ðWÞðtÞa ku0k2L2ðWÞ expf�M2tg þM1;

is obtained where M1 :¼ M1ðkhk; kjk; kek; k1; y; c; c7;mesW;M2Þ.
Then there exists set

B0 :¼ fu a L2ðWÞ : kukL2ðWÞðtÞaM
1
2

1;

M1 ¼ M1ðkhk; kjk; kek; k1; k0; a0; c4; c7; c;mesWÞg

when t ! l.
If we search the values of t which satisfies

ku0k2L2ðWÞ expf�M2tga r;ð7:6Þ

then we find that (7.6) is satisfied Etb t0, t0 :¼ 1
M2

ln
 ku0k2L2ðWÞ

r

�
. That means

kSðtÞu0kL2ðWÞ a ðrþM1Þ
1
2; Etb t0:

Hence, Br
0 :¼ fu a L2ðWÞ : kukL2ðWÞ a ðM1 þ rÞ

1
2g is an absorbing set in L2ðWÞ

for fSðtÞgtb0. r

From previous results we obtain that for all u0 a W 1
2 ðWÞBLaþ1ðWÞ and

T > 0 there exists a continuous mapping u0 ! uðtÞ that determine the solution
of the problem in P0. Denoting this mapping by SðtÞ we get, that problem
(7.3)–(7.5) defines a semiflow fSðtÞgtb0 with SðtÞu0 ¼ uðtÞ. Now we will show
that under some complementary conditions on the dates of the posed problem
if its solutions from P0 possess some smoothness then this semiflow will act on
W 1

2 ðWÞBLaþ1ðWÞ and possess an absorbing set in W 1
2 ðWÞBLaþ1ðWÞ.

Theorem 7.7. Let (10), (20), (30), (70), (90) and the following conditions be satis-
fied for problem (7.3)–(7.5):

(A1) There exists a number a0 > 0 such that aðx 0Þb a0 > 0 for a.e. x 0 a qW.
(A2)

0 < ðaþ 1ÞGðx; tÞa gðx; tÞt; t a R� f0g

is satisfied for Gðx; uÞ :¼
Z u

0

gðx; QÞ dQ with gðx; 0Þ ¼ 0.

(A3) ðh; jÞ a L2ðWÞ � L2ðqWÞ
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Then, if the solution such that ut a L2ð0;T ;W 1
2 ðWÞÞBLaþ1ðQÞ, then there

exists an absorbing set in W 1
2 ðWÞBLaþ1ðWÞ for fSðtÞgtb0: for all bounded

set BHW 1
2 ðWÞBLaþ1ðWÞ and for any fixed number r > 0, there exists a t0 ¼

t0ðB; rÞ > 0 such that SðtÞBHB
r
1 when tb t0.

Here B
r
1 :¼ fu a W 1

2 ðWÞBLaþ1ðWÞ : kukW 1
2
ðWÞBLaþ1ðWÞðtÞa ~MM

1
2

1g
( ~MM1 ¼ ~MM1ðM1; r; k3; k2; c2Þ with constants k2 > 0, k3 a R1; moreover c2 is

coming from the inequality12 [1])

Proof. As considering that u is a smooth function enough, let multiply 7.3 with
ut under the integral W.

kutk2L2ðWÞ �
Z
W

utDu dxþ
Z
W

gðx; uÞut dxþ kukL2ðWÞðtÞ
Z
W

eðxÞut dx ¼
Z
W

hðxÞut dx:

Using integration by parts with (7.5), Hölder inequality and ðA2Þ, we obtain the
following inequality:

kutk2L2ðWÞ þ
1

2

d

dt
kDuk2L2ðWÞ þ

1

2

d

dt

Z
qW

aðx 0Þu2 dx 0 þ d

dt

Z
W

Gðx; uÞ dx

� d

dt

Z
W

hðxÞu dx� d

dt

Z
qW

jðx 0Þu dx 0
a kekL2ðWÞkukL2ðWÞkutkL2ðWÞ:

Here let denote

d

dt
F ðtÞ :¼ 1

2

d

dt
kDuk2L2ðWÞ þ

1

2

d

dt

Z
qW

aðx 0Þu2 dx 0 þ d

dt

Z
W

Gðx; uÞ

� d

dt

Z
W

hðxÞu dx� d

dt

Z
qW

jðx 0Þu dx 0:

Now if we consider Theorem 7.6 after applying Young inequality to the right
hand side of the last inequality, we get that there exists a t0ðrÞ > 0 such that for
all tb t0

ð1� e1Þkutk2L2ðWÞ þ
d

dt
ðF ðtÞÞa cðe1Þkek2L2ðWÞðM1 þ rÞ:

Choosing e1 positive number is less than 1, we obtain that d
dt
ðF ðtÞÞ is bounded

for all tb t0.
On the other hand, as multiplying (7.3) with u under the integral W and using

integration by parts, Hölder inequality and ðA2Þ, we obtain

12c2kuk2W 1
2
ðWÞ a ðkDuk2L2ðWÞ þ kuk2L2ðqWÞÞ
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1

2

d

dt
kuk2L2ðWÞ þ kDuk2L2ðWÞ þ

Z
qW

aðx 0Þu2 dx 0 þ ðaþ 1Þ
Z
W

Gðx; uÞ dx

�
Z
W

hðxÞu dx�
Z
qW

jðx 0Þu dx 0
a�kukL2ðWÞðtÞ

Z
W

eðxÞu dx:

Now considering the proof of Theorem 7.6 we have:

FðtÞa kukL2ðWÞðtÞ
Z
W

jeðxÞj juj dxþ 1

2

d

dt
kuk2L2ðWÞ

���� ����
a ðM1 þ rÞ½kekL2ðWÞ þM2� þ ~MM3:

Then we obtain that

F ðtÞaLð7:7Þ

where L :¼ ðM1 þ rÞ½kekL2ðWÞ þM2� þ ~MM3 for all tb t0.
So we obtain that d

dt
F ðtÞ and FðtÞ are bounded by some numbers that are in-

dependent at t if tb t0 defined in previous result. Consequently F ðtÞ is a bounded
function for tb t0. Now if we use condition ðA1Þ and define y :¼ minf1; a0 � e2g
with 0 < e2 < a0, then the following inequality is obtained from (7.7) for all
tb t0:

yc2kuk2W 1
2
ðWÞðtÞ þ 2

Z
W

Gðx; uÞ dx

a 2Lþ cðe2Þkjk2L2ðqWÞ þ e3ðM1 þ rÞ þ cðe3Þkhk2L2ðWÞ:

Since we have the fact from ðA2Þ that Gðx; uÞb k2jujaþ1 � k3 for some num-
bers k2 > 0, k3 a R1,

yc2kuk2W 1
2
ðWÞðtÞ þ 2k2kukaþ1

Laþ1ðWÞðtÞ � 2k3 mesW

a 2Lþ cðe2Þkjk2L2ðqWÞ þ e3ðM1 þ rÞ þ cðe3Þkhk2L2ðWÞ; tb t0

is satisfied from the last inequality. Then we get,

kukW 1
2
ðWÞBLaþ1ðWÞðtÞa ~MM

1
2

1 tb t0ð7:8Þ

where ~MM1ðM1; r; k3; k2; c2Þ.
(7.8) says that there exists an absorbing set in W 1

2 ðWÞBLaþ1ðWÞ for fSðtÞgtb0.
r
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