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ABSTRACT. — In this work, we investigate a mixed problem with boundary condition of third type
for a nonlinear diffusion equation having nonlocal term. Existence and uniqueness of a solution
of the posed problem are proved under fairly general conditions. Moreover, we obtain some re-
sults on the behaviour of the solution and the existence of an absorbing set for the problem under
consideration.
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1. INTRODUCTION

We consider the problem

ou

(1.1) 57~ Autglx, tu) +e(x, lfull o) (1) = hlx, 1),
(x,0) e Qr=Qx (0,7T)
(1.2) u(x,0) =uy, xeQcR" n>3

=op(x',1), (X, 1)eZr=0Qx0,T], T>0
Zr

(1.3) (Z—Z +a(x’, t)u)

Here Q = R", n > 3, is a bounded domain with sufficiently smooth bour%d-

ary 0Q; A denotes the Laplace operator with n-dimension (A =3/ l(u £5;
g:0r xR' - R' e: 07 - R'and a: £ — R' and uy are given functions; 4, ¢
are given generahzed functions.

In this article we investigate nonhomogenous nonlinear diffusion type
equation (1.1) with initial value (1.2) and nonhomogenous third type boundary
(Robin boundary) value (1.3).

Equation (1.1) has a usually nonlinear mapping ¢ in general form and a non-
local nonlinear term e(x, 7)|[ul| ) (7) considering function e is different from
zero.

! This research is supported by 110T558-project of TUBITAK.
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Above model generally arises from many areas like nuclear sciences, popula-
tion dynamics and biological sciences. According to the model of a physical
or chemical reaction events, term of g(x,#,u) can represent the growth of a
quantity like growth of temperature or growth of a certain cell while the other
nonlinear term represents the effect of a material put into the system (see for
instance [6]). As it is noted in [5]: “In ecological context, there is no real justi-
fication for assuming that the interactions are local. There are many (hypothet-
ical) examples where such an assumption is clearly untenable, such as: (a) a
population in which individua complete for a shared rapidly equilibrated (e.g.
by convection) resource; (b) a population in which individua communicate either
visually or by chemical means. For example, the total biomass should play a
role in a model that incorporates group defense or visual communication, which
if the single-species model is a large-diffusion approximation of a system, aver-
ages appear naturally.”

In [4], we investigate the existence and uniqueness of such type problem with-
out of nonlocal term and when the initial date is zero. But here we study problem
(1.1)—(1.3) that is more general than mentioned before. We should also note that
in this paper non-local nonlinear term e(x, 1)[|ul|;,(q)(7) added some difficulties
for investigation of posed problem. For instance, this nonlinearity is independent
from the local nonlinearity which makes difficulties and diversities for the studies
of the questions on uniqueness and on behavior of the solution.

It should be noted that equation (1.1) has been studied mostly in homoge-
neous form by taking mapping ¢ in special cases and taking e as zero function
with Dirichlet or Neumann boundary conditions, see for instance [1], [2], [8],
[12], [15], [16].

More similarly to equation (1.1), we could see the following studies: M. Jazar
and R. Kiwan [7] consider

u Py Py
E—Au—\m |Q|/]u| dx =

W. Gao and Y. Han [6] consider

0 1
a—L;— Au — |u|”1u—|—|Q|/Q ul” udx =0

and C. P. Niculescu, I. Roventa [13] consider

ou
S = )+ [ Sy

equations with homogenous Neumann condition and they investigated the be-
haviour of the solutions.

As a different from the previous studies, we investigate nonhomogenous
equation as taking mapping ¢g in general form and having another globally
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nonlinear term with nonhomogenous third type boundary (Robin boudary) value
condition.

Here we proved the solvability and uniqueness theorems, moreover we ob-
tained some results about the behaviour of the solution in corresponding spaces
for posed problem (1.1)—(1.3).

2. FORMULATION AND THE MAIN CONDITIONS OF PROBLEM (1.1)—(1.3)

For problem (1.1)~(1.3), we assume /e L,(0, T; (W (Q)") + L,(Or), ¢€

Ly(0,T; W, *(0Q)) and ug € W) (Q) N Ly 1(Q). We consider the following
conditions:

(1) g: Or x R' — R!is a Caratheodory function and there exist a number o > 0
and functions ¢; € Ly, (0, T; L, (Q)), ¢o € L, (0, T; L,,(Q)) such that g satis-
fies the following inequality for a.e. (x, ) € Qr and for any & € R':

l9(x, 2, &) < er(x, D)€" + o, 1)

(r1,7r2,51,52 > 1 will be defined later according to «).
(2) ae L,(0,T;L, 1(0Q)) {

L 40, a<l1
(3) €€ LCL‘(O? T; LQ(Q))a q:=

atl oy > ]

o )
Here, po := -2, qo := (po)’ and o is coming from condition (1).

We understand the solution of considered problem in the following sense: Let
Po = Lp(0, T3 W3 (Q)) 0 Lyt (Qr) 0 W (0, T; (W5 ())") 0 {u = u(x,0) = uo}.

DErFINITION 2.1. A function u € Py is called generalized solution of problem
(1.1)—(1.3) if it satisfies the equality

T
—/ /u@dde—/u(x, T)v(x, T)dx—/u(x,O)v(x,O)dx
o Jo 0t Q Q
T T
—i—/ /Du.Dvdxdt+/ /g(x, t,u)vdxdt
0o Jo 0o Jo
T T
—|—/ /e(x, t)HuHLZ(Q)vdxdt—i-/ / a(x', t)uv dx' dt
0o Jo 0 J

T T
:/ /hvdxdt+/ / ovdx' dt
0o Ja 0 Jea

for all v € Ly(0, T; W5 (Q)) N Ly 1(Q7) 0 WA (0, T; (W5H(Q)) ™).

Since different sufficient conditions are obtained for the solvability according
to the values of « in condition (1), we investigate problem (1.1)—(1.3) in three
different sections: Solvability in case of & < 1, « =1 and o > 1.
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3. SOLVABILITY IN CASE OF o < 1

Let 0 <o < 1. This case is the sublinear case for mapping g and since L, (0,
T; W (Q)) = L,11(Qr), then Py = Ly(0,T; W (Q)) n W0, T; (W (Q)") n
{u: u(x,0) = uy}. Consider the following conditions:

(1) Condition (1) is satisfied with 0 < o < 1 and parameters:

. 2 . _Poqo /
S1 =15, 1= 52 1= 2, ry = qo, where po =25, qo := (po)".

Po—214
(4) There exists a nuomboer ag > 0 such that a(x’, 1) > ap for a.e. (x',1) € Xr.
(5) llellz., (o, TiLy (@) < (Oc , here 0y < min{by, ap} where 0 « by < 1
(¢, is constant? [19]; ¢; and ¢g are constants® [1], here and in the following, ¢,
are constants generally coming from of Imbedding inequalities of Sobolev

type.)

THEOREM 3.1 (Existence Theorem). Let conditions (1), (2), (3), (4) and (5) be
fulfilled. Then problem (1].1)7(1.3) is solvable in Py for any (h,¢) e Ly(0,T;

(WA(Q)") x Lr(0, T; W, *(0Q)) and uy € W5 (Q).

For the proof of this theorem, we make use a general result [17] that is given
below:

THEOREM 3.2. Let X and Y be Banach spaces with duals X * and Y* respectively,
Y be a reflexive Banach space, .#y = X be a weakly complete “reflexive” pn-
space, Xo < My 'Y be a separable vector topological space. Let the following con-
ditions be fulfilled:

(i) f:Py— Ly0,T;Y) is a weakly compact (weakly continuous) mapping,
where

Py = L,y(0,T;.40) AW, (0,T; Y) n{x(z) | x(0) = 0},

1l <max{q,q'} < p< o, q *‘ T

(i) there is a linear continuous operalor A Wi(0,T; Xg) — Wy (0,T; Y*),
§>0, m>1 such that A commutes wzlh . and the conjugate operator A*
has ker(A*) = {0},

(i) operators [ and A generate, in generalized sense, a coercive pair on space
L,(0,T; Xy), ie. there exist a number r >0 and a function ¥ : R, — R
such that ¥ (t)/t /" as tv / o and for any x e L,(0,T;X,) under
(X]1, () = 1 following inequality holds:

T
/0 Pt x(0)), Ax(D)y di = W, ()

2
CzlluHLzm rowp@) < UDullzy o + lulZe,)

*[ullz, 0, 7 Ly @) = asllull iy, 7 W, (@) llull @) < C6Hu||L,,0(Q)
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(iv) there exist some constants Cy > 0, C1, Co = 0, v > 1| such that the inequalities

T
A CEW), Ay dt = ColEll} 0. 1py — Co

t
/ <@,Ax(r)> drv > C||x||y(t) — Ca, ae.t€[0,T]
0 dr
hold for any x € Wp1 (0,T; Xo) and & € L, (0, T; Xp).
Assume that conditions (1)—(iv) are fulfilled. Then the Cauchy problem

THSEAD) =0, veLOT V) x0)=0

is solvable in Py in the following sense

d
/0<d’;+f(zx( >dt /<y ()>dt, Vy* e Ly(0,T;Y"),

Sforany y € L,(0,T;Y) satisfying the inequality
1 T
sup / (1), Ax(t)ydt|x € L,(0,T; Xp) p < o0.
(x] (0,T; 440

PrROOF OF THEOREM 3.1. As we see in Theorem 3.2, for being able to apply
it to our problem, firstly the initial condition should be zero. Therefore we can
rewrite problem (1.1)—(1.3) as the following using the transformation #(x, t) :=

u(x,t) — up(x):
o(tt + up)

3.1 Q) Ay ) 4 g+ ) + el )+ 0] (0) = .
(3.2) i(x,0) =0
(3.3) (a(ﬁT:uo) +a(x' 1) (u+ uo)) . = o(x', 1)

Now let define corresponding mappings and acting spaces for problem (3.1)—
(3.3):

£ ={fi s} 1 Py — La(0, T5 (WAQ))") x La(0, T Wy (602))
such that
(34)  fi(@) = — A+ uo) + g(x, £, + o) + e(x, )] + wol] ) (1):

(3.5) folit) o= L)

oy Al w):
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A: P() — Po
(3.6) A=1d

To see that the conditions of Theorem 3.2 are satisfied, we shall give the
following lemmas: O

Lemma 3.3, f is weakly continuous from Py to Ly (0, T; (W(Q))") x
Ly(0,T; W,2(0Q)).

PRrROOF. Using condition (1) and Holder inequality, we obtain that

lg(x, 1,8+ uo) || 1,0, TiLy (@) = vo(lls +woll 1,0, T;L,,O(Q)))a

where

vollla +uoll 0, 7.1, (@))

= é()[”Cl

1
3

2 ~ 2 2
L, (0, T;L,.I(Q))Hu + ”0||LZ(0, T: Ly, () + ||CO||L2(O, T;Ly, (Q))]‘a

Cy is a positive constant. This means, g is a bounded mapping from P, to
L>(0, T; Ly, (), since Py = L (0, T; W1 (Q)) = Ly(0, T; L, (Q)).

Since linear parts of f are obviously bounded, they are already weakly con-
tinuous. It is enough to investigate the nonlinear part of /. Let {u,,} = Py and
Uy — in Py. Then u,, — &1 in Ly(0, T; L, (Q)). Since

(3.7) Ly(0, T; W3 (Q) 0 W5 (0, T; (W (Q))*) O La(Qr)

then 3{u,, } < {uy} such that u,, — @ almost everywhere in Q7.
Using condition (1)’ we can say that

g(x,t,0) : R = R!

is a continuous function. Then according to a general result (1. Chapter, 1. Para-
graph, Lemma 1.3 of [9]), 3{u,, } = {u,} such that

X, b Uy, +Uug) — g(x, 1, u+ ugp).
g( o byt 0) L>(0,T; Ly, (Q)) g( i 0)

Thus g is a weakly continuous mapping from Py to Ly(0, T; (W5 (Q))"). Now let
g1(x, 1,1+ uo) := e(x, 1)||#t + uo|| () (2). Using the fact (3.7), we have

e(x; 1) [t + ol 1,0 (1) e(x, )i + uol| 1, (1)-

Ly(0,T; Ly, (Q))

Therefore, g; is a weakly continuous mapping from Py to L,(0, T; (W5 (Q))").
O

LemmMmA 3.4. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.
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PROOF. Since 4 is an identity mapping, it is obvious that condition (ii) is
satisfied. Furthermore, for any # € W, (0, T; W, (Q)) the following inequalities
are satisfied:

T T
/0 <ﬁ,ﬂ>gdf—/0 2217, dt > 06||ﬁ||iz(o,r;(w;<g>)*)

"Jou 1, . I .
/o <a’u>gd7 = EHuHLz(Q)(t) = §C6Hu||(W21(Q))*(t)7

a.e te|0,T] (cg > 0 is constant* [1].) This means condition (iv) is also satisfied.
It is enough to see that mapping f is coercive on L,(0, T; W, (Q)) for condition
(iii), since A is an identity mapping:
Using conditions (1)’, (2), (3), (4) and (5) we obtain,
@), wp o, = Y(llall 0, 7w (@))
- 12
T(””HQ(O, T, W;(Q))) = Z1(0oc2 — C6C3||e||Loo(0, 5Ly (Q) — 8>H“||L2(o, ;W Q) ~ 2z,

where 6y < min{l;v(), ap} with by < 1, Z; is a positive constant,

Z) = Z2(||CO||L52(0, TiL, Q) 1 ||L,vl (0,T; L, (Q))> HeHLw(O,T;LqO(Q))? lallr. 0,71, 1)

||”0HL2(0, T3 Ly, (Q)) ||“0HL2(0, T Lyy2(0Q)) HDMOHLZ(QT))
n—2

and ¢ is small enough. Hence, \Pﬁ%”) /oo as [[ull 1,0, 7, w)(@) /- O

CONTINUATION OF THE PROOF OF THEOREM 3.1. We can apply Theorem 3.2
to problem (3.1)—(3.3) by virtue Lemma 3.3 and Lemma 3.4. Hence we obtain
that problem (3.1)-(3.3) is solvable in Py for any (h, ¢) € Lo(0, T; (W5 (Q))") x
Ly(0,T; W, *(0Q)) satisfying the following inequality

T
sup{l / Ch g+ {p. Wysqdt - 7 € Ly(0, T WJ(Q))} < .
(@) V0

[0 7o
If we consider the norm definition of (h,¢) in Ly(0,T; (WH(Q)") x
L(0,T; W, *(0Q)), we see that problem 1(3.1)—(3.3) is solvable in P, for any

(hyp) € Ly(0, T; (W1(Q))") x Ly(0, T; W, *(0Q)) and ug € W, (Q). This means
(1.1)—(1.3) is also solvable. O

4. SOLVABILITY IN CASE OF o0 = 1

Let o =1 for condition (1). In this case, Py = L,(0,T; W, (Q))n W, (0,T;
(W) ) n{u : u(x,0) = uy}. We consider the following conditions:

2 2
4C6||14H(W21(Q))* < lullz, 0
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(1)" Condition (1) is satisfied with parameters: s1 := 0, r| := 5, 52 := 2, 13 := qo.
(6) One of the following conditions be satisfied:
I. There exists a number @y > 0 such that a(x’, 7) > ay for a.e. (x',1) € Zr
and

0ic2

cellell ., o, TiL,(@) T letllz, o, TiLy@) = o

where 0, < min{b,ay} with by < 1.
II. There exist some numbers ko > 0 and k; € R! such that

g(x, 1, )¢ = kolé]” — ke
for a.e. (x,7) € Or, for any ¢ € R! and

esllallL, o, 7;1,, 00 + ¢3¢ellell L, o, TiL, (@) = )

where 0, < min{b, ko} with 0 < by < 1.
(2, ¢3, cg are like in Theorem 3.1 and c¢s is constant® [1].)

THEOREM 4.1 (Existence Theorem). Let conditions (1)”, (2), (3) and (6) be

fulfilled. Then problem (1.1)—(1.3) is solvable in Py for any (h,p) e L,(0,T;
|

(W3(Q))") x Ly (0, T; W, *(0Q)) and uy € W, (Q).

PrROOF. To prove this theorem we again make use of Theorem 3.2. We define
corresponding mappings as (3.4), (3.5), (3.6) for problem (3.1)—(3.3). O

LEMMA 4.2. f is weakly continuous from Py to Ly(0, T; (W) (Q))").
PrROOF. It is enough to show that g : Py = L,(0,T; L, (Q)) — L»(0, T; Ly, (Q))

is a bounded mapping for o = 1: Using condition (1)” we obtain,

||£1||L2(0,T;qu(g)> < 71Nl 1,0, T;LFO(Q)))v
nilla+uollzy0. 7.1, @)

~ 2 _ 2 2 1
= C1[||C1||LX1 0, T:L,AI(Q))Hu+ uol| 7,0, i1, @) T HCOHLZ(O,T;L(/O(Q))]Zv

C) is a positive constant. The rest of this proof is similar with the proof of
Lemma 3.3. O

LemMma 4.3, Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.

PrOOE. This proof is similar with the proof of Lemma 3.4. As a different part,
we show that f is coercive on Ly (0, T; W, (Q)):

2 2
Nl Z, 0,75 1y 520 < €sllttll 20, 7. w20
n—2 -
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If we consider conditions (1)”, (2), (3) and (6)-I, we obtain,

@), uy o, =Yl 107wy @) YUl 0, 7. w2 02)))

1= Z3(01c2 — C3||Cl||LI (0,7: Ly(@)) — CGC3||6HL%(0, T;L, (Q) ~ €)

0

~2
X ||”||L2(o, TwhQ) — Zy,
where 0; < min{l;o, ap} with b~0 < 1, Z5 is a positive constant,

Zs:= Za(lleoll ., 0.7: 1, @) €1l 0,72, @y €l 0.7, @) Nl .. 0.7: 1, 002))

”uOHLz(O,T:L ||“0||L2 0,T; Ly, 2(0Q)) ||D140||L2 (0r) )

n=2

and ¢ is small enough.
If we consider condition (6)-1I, we obtain,

<f(ﬁ)7 [I>QT = lIl(HaHLZ(O T; W;(Q)))ﬂ lP(”I’NlHLz(O T; Wzl(Q)))

= Zs(0, — C5”a||LI(O, T;L, 1(6Q)) — C6C3He||Lm(0, T:L, (Q) — €)

90

12
X ||“||L3(0, ;W (Q) — Zs,

where 0, < min{go, ko} with 5:) < 1, Zs is a positive constant,

a0 ))aHaHLm(O,T;Ln,I(aQ))?

||“0||L2(0, T;L, (Q)) ||“0||L2(o, T Ly »(0Q))> HDMOHLZ(QT)v ki, T, mes Q)
n—2

Z6 = Z6(||CO||L32(O~, T§L"2(Q))’ HC] ||L,\1 (07 T;L"l (Q)>’ ||eHL7’<O"T;L (Q

and ¢ is small enough

Hence, MH /o0 as il 1,0, 7, w(Q) /. -

CONTINUATION OF THE PROOF OF THEOREM 4.1. We can apply Theorem 3.2
to problem (3.1)—(3.3) by virtue Lemma 4.2 and Lemma 4.3. Hence we obtain
that problem (3.1)-(3.3) is solvable in Py for any (h,¢) € Lo(0, T; (W5 (Q2))") x
Ly(0, T; W, *(0Q) and uy € W, (Q). Therefore (1.1)—(1.3) is also solvable. O

5. SOLVABILITY IN CASE OF o0 > 1

Let oo > 1. This case is super linear case for mapping g and

Py = Ly(0,T; W, (Q)) N Lyt (Or)
A [WL0, T; (W5(Q)) + Hl(o T; Le1(Q))]
N {ucu(x,0) = up}.

We consider the following conditions:
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(1)” Condition (1) is satisfied with parameters: s| := 00, rj 1= 00, s := 21,

Fy = x+1
(7) There ex1st some numbers ko > 0 and k; € R' such that

g(x, 1,E)E = kolé|"™ —

for a.e. (x,7) € Qr, for any & € R,
(8) There ex1sts a number ap > 0 such that a(x',7) > —ao for a.e. (x',7) € Zr

and ay < & o 2 where 05 < mln{bo, ko} with 0 « bo < land 0 « ko < ky.
(cs is constant® [1].)

THEOREM 5.1 (Existence Theorem). Let conditions (1), (2), (3), (7) and (8) be
fulfilled. Then problem (1.1)—(1.3) is solvable in Py for any (h,p) € [Ly(0,T;

(WHQ)") + L.a(Qr)] x La(0, T3 W, (GQ)) and uy € W (Q) N Ly1(0r).
PRrROOE. To prove this theorem let recall (3.4), (3.5), (3.6). O
LEMMA 5.2. f is weakly continuous from Py to Ly(0, T; (W) (Q))") + L%(QT).
PrOOF. Using condition (1)” and Hélder inequality, we obtain that

lgCx, .2+ o)1, 0p) = 72(llit + w0l 01)

where

o+1

a4l
nla+ull,, o)) = [IIClllL opllE+ullL, o, + ool 0r

o
]1+]'

This means, ¢ is a bounded mapping from Py = Ly41(Qr) to Laai(Qr).

Since linear parts of f are obviously bounded, they are already weakly con-
tinuous. It is enough to investigate the nonlinear part of /. Let {u,,} = Py and
uy, — u in Py. Then u,, — @ in L,+;(Qr). From (3.7), 3{uy, } < {u,} such that
Uy, — @ almost everywhere in Q7.

Recalling condition (1)” we can say that

g(x,t,0) : R = R!

is a continuous function. Then according to a general result in [8], I{w, } < {um}
such that
L Uy, S EE—— ,tu .
g(x, t, tp, + up) 0.7 Ly () g(x, t, i+ up)
Thus ¢ is a weakly continuous mapping from Py to Ly (0, T; (W} (Q))") +
L.i(Qr). Now let gi(x, 2,1+ uo) := e(x, 1)|[it + uo|| 1, () (?). Using the fact (3.7),
we have

e(x, 1) |t + to]l () (2) Lo e(x, )|a + uol () (1)

2 2
6||14HL2(2,) < callullzy0, 7 W, (@)
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Therefore, g; is a weakly continuous mapping from Py to L, (0, T; (W, (Q))") +
La(Qr). O

LeEmMMA 5.3. Conditions (ii), (iii), (iv) of Theorem 3.2 are satisfied.
PROOF. Since 4 is an identity mapping, it is obvious that condition (ii) is satis-

fied. Furthermore, for any u# € W2l 0, T; W21 (Q)) the following inequalities are
satisfied:

T T
~ o~ ~12 ~12
/O <“a”>9d’:/0 [4llz0) dt = csll@ll L0, (w @) ) +Lia(0r)

"Jou 1. . 1 s
/0' <E7u>QdT = §Hu||L2<Q>(t) > §C6Hu||(W21(Q>)*([)7

a.e.te[0,T] (c > 0 constant” [1])

This means condition (iv) is also satisfied. Now let see that mapping f is
coercive on L, (0, T; W, (Q)) n L,41(Qr) for condition (iii), since 4 is an identity
mapping: If we consider conditions (1), (2), (3), (7) and (8) we obtain,

@), w0, =Y (|[ull 1,0, 7. w1 @)L (01))

N 12
\P(HMHLZ(O,T; W;(Q))mLM(QT)) 1= Z7(03 — apcs — 6>||“||L2(0.T; WHQ) AL (0r) — Zs,

where 05 < min{l;z),la)} with l;:) < 1 and l};) < ko; Z7 is a positive constant,

Zy = ZS(HCOHL (0,T;L,, HCIHL (0,73 L, ) llellz, o, T; Ly( ol o, 7.0, )
lluol| L, (0r) H”OHL2 0,73 Lo 2 (6Q)) ||D“0||L (0r)» kl, T',mes Q)
and ¢ is small enough. O
P (||a _
Hence, () /" o0 as ||“||L2(0, T; W, (Q)) ALyt (Or) /" 0.

CONTINUATION OF THE PROOF OF THEOREM 5.1. We can apply Theorem 3.2
to problem (1.1)—(1.3) from Lemma 5.2 and Lemma 5.3. Hence we obtain that
problem (3.1)—(3.3) is solvable in Py for any (h,p) € [L2(0, T; (W (Q))") +
L (Qr)] x Ly(0, T W, %(0Q)) satisfying the following inequality

1
sup{ | / Chyg + {p, udsg di -

|u||L2(0,T; W Q) ALy 1 (Or)

ue Ly0,T; W, (Q)) mLm(QT)} < .

2 2
76‘6||14H(W21(Q))* < lullz, 0
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If we consider the norm definition of (h,¢) in [L2(0, T; (WHQ)") + L2 (0r)]
x L(0, T; W, *(0Q)), we see that problem (3.1)~(3.3) is solvable in Py for any
(h,9) € [L2(0, T3 (WH(Q))") + Lua(0r)] x La(0, T; W5 (09)) and wy & W} (@)
N Lyy1(Q). Therefore (1.1)—(1.3) is also solvable. O

6. UNIQUENESS THEOREM FOR PROBLEM (1.1)—(1.3)

THEOREM 6.1. Let existence theorems in sections 3, 4 and 5 be fulfilled and
moreover assume the following conditions:

(3)" e € L (0,T;L2(Q))
(9) Let g(x,t,C) is differentiable with respect to ¢ and g: € Lo, (0, T; Ly(Q)),
moreover there exists a positive number gy such that g:(x,t,&) > —go for a.e.

(x,1) € Qr and for all £ € R.
Then the solution of (1.1)—(1.3) in Py is unique.

ProOF. Let define w := u; — uy assuming that u; and u, are two different solu-
tions of (1.1)—(1.3). Then we can obtain the following problem:

(6.1) % —Aw+ [g(x, t,u1) — g(x, t,u2)] + e(x, ) ([[ur]] 1) — 112l 1)) (1) = O
(6.2) w(x,0) =0
(6.3) (g—:Jra(x/,t)w) =0

After multiplying (6.1) by w under the integral of Q, if we use the conditions of
Theorem 6.1 and make some calculations, we get
4
dt

2 2
Wiy < (90 + llellz, o, 7; 1.@)) T 90¢a) W1, 0)-

N —

By solving the last inequality,

2 2
(6.4) WLy (1) < [WO)IZ, ) exp{2[90 + llellL, (0. 7 1,()) + @oca]t}

is obtained. Since w(0) = 0, the solution is unique. O

7. BEHAVIOR OF SOLUTION FOR PROBLEM (1.1)—(1.3)

We investigate the behavior of solution for problem (1.1)—(1.3) in two subsections
as homogenous case and nonhomogenous, autonomous case.
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7.1. Homogenous Case (h(x,t) = 0,p(x',1) =0). Let h(x,t) =0,¢p(x,7) =0 for
problem (1.1)—(1.3) and assume the following conditions:

(dy) ae L,(0,T; L, 1(0Q)), e € L,(0,T; Ly (Q)).

(dy) Condition (1) is satisfied with s := 00, r| := 00, 5 ::%, ry =%l and
o> 1.

(d3) Condition (7) is satisfied with k; = 0.

(d4) There exists a number ay > 0 such that a(x’,7) > qo for a.e. (x', 1) € Z7.

THEOREM 7.1. Let (d))—(d4) be fulfilled. Then the solution in Py satisfies the
following inequalities for all t > 0:

a u 2 0 < 2H”0||Z2(n) : K £0
L,(Q)

[2"7 exp{ 152K, z}+%HHoIIZ§<Im ({128 ’}71)]ﬁ

[luo |
(0) flullpyo)(0) < —p——2° , K1 =0

1
R (- a)KzrnuoHLz T

Here Ky = Ki(||e(x, )|, (0. 7. 1,(0))» €2+ @0) is a constant and K, = Kz(ko,C7) is
a negative constant (¢, and ¢7 are constants coming from the inequalities® [19], [1]).

Proor. Conditions of Theorem 7.1 provide that (1.1)—(1.3) has a solution in

Py. Let make use of Lyapunov functional E(u(7)) := 1 / u” dx. If we write the
Q

equality E'(f) = {u,u,yq for the solution, then we obtain the following Cauchy
problem by using conditions of the theorem and making some calculations:

(7.1) V' —Kiy < Kyt
Lo
(7.2) »(0) = 3 ol 7,0

where y := E(t), Ky := 2([lel|; (0, 7; 1)) — Goc2) and K> := —217“k0c7‘1.
From here follows as the solution of (7.1)—(7.2) inequality (a) under assuming
K; # 0 and inequality (b) under assuming K; = 0. O

COROLLARY 7.2. If uy = 0, then the solution is zero regardless of the sign of K.
Moreover if |uo|| ) is bounded then |[u(1)]|,, ) bounded for all t > 0.

COROLLARY 7.3. If K1 >0 then ||u||L (1) < M as t — oo, where Mg =

2(— ?)“ I. Moreover, ||u||L2 (1) < Mg when ||uo||L2 < M for all t > 0.

COROLLARY 7.4. IfK; <0, ||u||L2(Q)(t) < ||u0\|L2(Q) is satisfied for all t > 0.

COROLLARY 7.5. If K| <0, the solution goes to zero as t — oo regardless of
initial function uy.

2
CZ”“HWI(Q) (HD“”LZ + ullz,00)s Null @) < erllull,, @
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7.2. Nonhomogenous and Autonomous Case. Let consider problem (1.1)—(1.3) in
autonomous case with /2 and ¢ are different from zero as the following:

ou

(13) W At (s, ) + )l (1) = )
(7.4) u(x,0) = u
(15) (G +ateu)|, = o),

We can rewrite the conditions to provide that (7.3)—(7.5) has a unique solition:

g(x, E)E > ko)™ —

fora.e. x e Q and for all £ € R.
(80) There ex1sts a number ag > 0 such that a(x',7) > —ao for a.e. x" € 0Q and

0O<ay<® o s Where 04 < mm{bo,ko} with 0 < by < 1 and 0 < ko < ko.
(¢4 is constant® [1].)
(90) Condition (9) is satisfies with g: € Ls(Q).

THEOREM 7.6. Let conditions (1y), (20), (30), (70), (80) and (9¢) be fulfilled and let

1

he (W Q)" + L:n(Q), p € W, 2(0Q). Then for all bounded set B = W, (Q) N
L, 1(Q ) and for any fixed number p > 0, there exists a ty = ty(B, p) > 0 such that
S(t)B = B when t > ty. Here
1
By = {u € Ly(Q) : [|ull L) (1) < (M1 + p)?,
M, = Ml(Hh”> H(p”v ||€||, k17 kOa do, €4, C7, €, MES Q)}

That means, there exists an absorbing set in Ly(Q) for {S(t)},. (¢ is con-
stant™®, ¢4 and ¢7 are constants'* [1].)

PrOOEF. This proof is similarly with the proof of Theorem 7.1 as making use
of Lypunov functional E(u(r)) ::%/ u?dx and equality E'(f) = {u,u;>q. By
Q

using conditions of the theorem and making some calculations, we obtain the
following Cauchy problem:

2 2
el o) < callullivy @)
i 2
lull 1 <||u||1°f++1 )+ [1Dullz, ) + ¢

" Hu”L2 Q) = C4||“HW21 (©)> ||“||L2(Q) < C7||“HL,AA1(Q)
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dy .

—+ My < M

dr + Moy < Mj

2

y(0) = ||u0||L2(Q)
here y := E(t), with 0 < M, < 2(0 — agcs — ¢) for 0 := min{l, I:O} and sufficiently
small ¢ and 0 < Ms(||4|], ||ell, lell, k1, 01, ¢, ¢7, mes Q). Solving this problem,

2 2
[ull 0 (1) < [0l L, ) exp{—Mat} + M1,

is obtained where M, := M (||A]|, ||¢|l, llell, k1, 6, ¢, ¢c7, mes Q, M>).
Then there exists set

1
By = {u € Ly(Q) : [lul 1,0 (1) < Mj,
My = Mi(||A]], [, [lell, k1, ko, a0, ¢4, ¢7, ¢, mes ) }

when t — 0.
If we search the values of ¢ which satisfies

(7.6) uoll7, ) exP{—Mat} < p,

u 2
then we find that (7.6) is satisfied Vz > 0, 1y := MLZ ln(“UH+®). That means
1
[S(Duollz, @) < (p+ Mi1)>, Vi1

Hence, B) := {u € L»,(Q) : [ull £, < (M1 +p)%} is an absorbing set in L, (Q)
for {S(1)},=0- O

From previous results we obtain that for all uy e W) (Q)n L, (Q) and
T > 0 there exists a continuous mapping uy — u(¢) that determine the solution
of the problem in Pj. Denoting this mapping by S(¢) we get, that problem
(7.3)—(7.5) defines a semiflow {S(¢)},., with S(f)up = u(f). Now we will show
that under some complementary conditions on the dates of the posed problem
if its solutions from Py possess some smoothness then this semiflow will act on
W(Q) N L, 1(Q) and possess an absorbing set in W, (Q) N L,11(Q).

THEOREM 7.7. Let (1o), (20), (30), (70), (90) and the following conditions be satis-
fied for problem (7.3)—(7.5):

(A1) There exists a number ay > 0 such that a(x') > ay > 0 for a.e. x' € 0Q.
(A2)

0<(x+1)G(x,7) <g(x,7)7, 7€ R—-{0}

u

is satisfied for G(x,u) := / g(x, ) d3 with g(x,0) = 0.
0
(As) (h,9) € Lr(Q) x L2(09Q)
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Then, if the solution such that u, € L,(0,T; Wz1 (Q)) N L,+1(Q), then there
exists an absorbing set in W} (Q) N L, 1(Q) for {S(6)},2: for all bounded
set B< W, (Q) N L,1(Q) and for any fixed number p > 0, there exists a ty =
(B, p) > 0 such that S(t)B = B} when t > t,. .

Here By :={ue W, (Q) 0 Ly (Q) « ullyyq)nr,. @ (1) < Mi}

(M) = M (M, p, ks, ka,c2) with constants kz >0, k3 € R'; moreover ¢, is
coming from the inequality** [1])

PROOF. As considering that u is a smooth function enough, let multiply 7.3 with
u; under the integral Q.

|u,||i2(g)—/Qu[Auder/Qg(x,u)u,der||u||L2(Q)(Z)/Qe(x)u,dx:/Qh(x)utdx.

Using integration by parts with (7.5), Hoélder inequality and (A,), we obtain the
following inequality:

) 1 d 1d N2 g d/
il +5 51Dl + 5 55 [l + 5 [ G a

d
= s = 5 [ o uds’ < el ol

Here let denote

d . ld 1d Ny, d
EZF(I). ||D ||L7 2dl/ma(x Yu” dx —|—dt/QG(x,u)

d d , ,
dt/gh(x)udxdtlg(p(x Judx'.

Now if we consider Theorem 7.6 after applying Young inequality to the right
hand side of the last inequality, we get that there exists a #y(p) > 0 such that for
all t > 1y

(1—81)|luzlliz<g)+%(F(l))< cen)lellz, ) (M1 + p).

Choosing ¢ positive number is less than 1, we obtain that < (F(7)) is bounded
for all 1 > ¢.

On the other hand, as multiplying (7.3) with « under the integral Q and using
integration by parts, Holder inequality and (4,), we obtain

2 2 2
12CZH“HW;(Q) < (I1Dull1y0) + 1l 2, 00))
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L e + DUl +/ a( N dx' + (o + 1)/ G(x, u) dx
24" @) LOT g Q ’

—/Qh(x)udx—/m(p(x’)udx’g —||u||L2(Q)(Z)/Qe(x)udx.

Now considering the proof of Theorem 7.6 we have:

1d
F@swmwmjmwww+—4w@m

2 dt

< (My + p)llell iy + Ma] + M5,

Then we obtain that
(7.7) F(t)<L

where L := (M +p)lllell ) + Ma] + M; for all t > 1.

So we obtain that 4 F(t ) and F (1) are bounded by some numbers that are in-
dependent at ¢ if t > to deﬁned in previous result. Consequently F(¢) is a bounded
function for ¢ > 7). Now if we use condition (4;) and define 6 := min{1,ay — &}
with 0 < & < aop, then the following inequality is obtained from (7.7) for all
t> 1

0"2||”||%4/;(Q)(l)+2/ G(x,u) dx
- Q
< 2L+ c(&2)|I9ll7,00) + &3(M1 + p) + c(&3) 117 0

Since we have the fact from (4) that G(x,u) > ka|u|*™" — k3 for some num-
bers kr > 0, k3 € R',

Ocs|ull 3 0 (1) + 2ka Jull 11 ) (1) — 2k3 mes
< 2L+ c(&2) 19117 a0y + &3 (M1 + p) + c(&) |kl 1, ) = fo
is satisfied from the last inequality. Then we get,

~ 1
(7.8) [l (@)L, @) < Mi =10

where M1<M1,p, kg, kz, CQ).
(7.8) says that there exists an absorbing set in W, () N L,+1(Q) for {S(1)},-,-
|
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