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Partial Di¤erential Equations — Quasi-filling fractal layers, by Raffaela
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Abstract. — We consider second order transmission problems across Koch-type curves formu-

lated as boundary value problems for elliptic operators in a quasi-filling geometry for the fibers.
We use a variational approach and the M-convergence methods. We prove that the solution of the

transmission problem across a Koch-type curve is the limit of the solutions of suitable second order
transmission problems across polygonal curves.
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1. Introduction

In this note, we investigate second order transmission problems across quasi-
filling dynamical layers, from the variational point of view of the homogenization
theory for elliptic operators in Euclidean domains.

More precisely, the fractal inclusion Ka divides the domain W in two adjacent
subdomains W j

a, j ¼ 1; 2, and the second order transmission problem across the
curve Ka is formally stated as follows

�divð‘uÞ ¼ f in WnKa

u1 ¼ u2 on Ka;�
qu
qn

�
¼ LKa

u on Ka

u ¼ 0 on qW

uðPÞ ¼ 0 on qKa:

8>>>>><
>>>>>:

ð1:1Þ

We denote by u j, j ¼ 1; 2; the restriction of the function u to the domains W j
a and

by
�
qu
qn

�
the jump of the normal derivative across Ka: Here LKa

is the self-adjoint
operator defined by the intrinsic energy form on Ka in the space L2ðKa; mKa

Þ,
where mKa

is the dH -Hausdor¤ measure on Ka (see (2.3)).
The interaction between the interior operator and the layer operator, both of

second order, captures the main global dynamical features of the problem at
hand. Moreover, the dimensional relationship between the domain and the layer
is unusual when the layer’s geometry is fractal. We have an open two-dimensional
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Euclidean domain W in R2 with a layer, Ka, which has a Hausdor¤ dimension
dH that is any number (1 < dH < 2) close to 2, as we wish, and which fills a
two-dimensional open subset of W up to an arbitrarily small set.

In this note, we state that the variational solution of problem (1.1) is the limit
of the solutions of suitable second order transmission problems across approxi-
mating polygonal curves. More precisely, we construct a sequence of energy
forms that are sums of bulk energies in a bounded open domain W of the plane
and layer energies on polygonal curves Kn

a : The coe‰cient matrices anId of
the bulk energies are adjusted to the geometry of a system of open thin fibers
Sn
en

and Sn
2en
, which is moved in W as n ! þl by the iterated action of the

contractive self-similarities of the fractal inclusion Ka in W. The external fibers
have increasingly low conductivity. Under appropriate scaling assumptions, we
prove that energy forms (sums of bulk energies in W and layer energies on the
polygonal curves Kn

a ) converge to the energy form sum of the Dirichlet integral
in W and layer energy on the Koch curve Ka, as n ! þl.

The second order transmission problems across the equilateral Koch curve,
that is Ka for a ¼ 3; has been studied in [7], [8] and [13]. More precisely in [8]
it is proved that the variational solution to problem (1.1) is the strong limit in
H 1

0 ðWÞ of the solutions to the second order transmission problems across polygo-
nal curves with the same bulk energy as the limit problem. On the other hand,
in the framework of the singular homogenization, in [13], it is proved that the
variational solution to problem (1.1) is the strong limit in H 1

0 ðWÞ of the solutions
to minimum problems for functionals of bulk energy alone. An extension theo-
rem, which is rooted in the geometrical properties of the equilateral Koch curve
(see [3]), plays a crucial role in both these results. By contrast, in the present
paper the quasi-filling geometry of our dynamical layers only allows us to prove
the weak convergence in H 1

locðWnKaÞ: For the proofs we refer to the forthcoming
paper [2].

2. The geometry

By W of R2 we denote the open rectangle with vertices D ¼ ð0;�1Þ, E ¼ ð1;�1Þ,
F ¼ ð1; 1Þ and G ¼ ð0; 1Þ: The domain W contains the segment of end points
A ¼ ð0; 0Þ and B ¼ ð1; 0Þ: The fractal inclusion Ka is the invariant (self-similar)
compact set of R2 associated with the family C ¼ fc1; . . . ;c4g of 4 similarities
in R2, which are contraction maps in R2 with a common contraction factor a�1,
a a ð2; 4Þ:

c1ðzÞ ¼ z
a
; c2ðzÞ ¼ z

a
eiQ þ 1

a
;

c3ðzÞ ¼ z
a
e�iQ þ 1

2 þ i sin Q
a

; c4ðzÞ ¼ zþa�1
a

;

(
ð2:1Þ

where

Q ¼ arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a� a2

4

r
a
�
0;
p

2

�
ð2:2Þ
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and z ¼ xþ iy a C. The set of the essential fixed points of this family is G ¼
fA;Bg and we set qKa ¼ G:

The invariant (self-similar) regular Borel measure in R2 supported on Ka,
associated with C, is given by

m ¼ mKa
:¼ 1Ka

Hd

HdðKaÞ
;ð2:3Þ

where

d ¼ dH ¼ ln 4=ln að2:4Þ

is the Hausdor¤ dimension of Ka and Hd is the Hausdor¤ measure of dimension
d in R2. In particular,

mðcijnðKaÞÞ ¼
1

Nn
mðKaÞ ¼

1

4n
ð2:5Þ

where cijn ¼ ci1
� ci2

� � � � � cin
if n > 0. For these properties, and for the related

theory of so-called nested fractals associated with similarity maps like the one
considered here, we refer to Hutchinson [5], and Lindstrøm [9].

In the domain W, we introduce a reference two-layer fiber. This fiber is made
of two co-axial thin hexagons

S0
e HS0

2e

whose largest transversal size is e > 0 and 2e, respectively. The common axis
of the fibers is the segment connecting points A ¼ ð0; 0Þ and B ¼ ð1; 0Þ: We put
e0 ¼ h0=2; h0 ¼ tanðQ�Þ

Q� ¼ minfp=2� Q; Q=2gð2:6Þ

where Q is the rotation angle of the similarities that generate the Koch curve Ka

(see (2.2)).
For every 0 < ea e0, we define the thin fiber S0

2e to be the hexagon with
vertices, listed clockwise, A, Q1ðeÞ, Q2ðeÞ, B, Q3ðeÞ, Q4ðeÞ, where Q1ðeÞ ¼
ðe=h0; eÞ, Q2ðeÞ ¼ ð1� e=h0; eÞ, Q3ðeÞ ¼ ð1� e=h0;�eÞ, Q4ðeÞ ¼ ðe=h0;�eÞ: The

perimeter of hexagon S0
2e gives the external profile of our two-layer fiber. Inside

hexagon S0
2e, we now insert a smaller hexagon S0

e . We define the thin fiber S0
e

to be the hexagon with vertices, listed clockwise A, P1ðeÞ, P2ðeÞ, B, P3ðeÞ, P4ðeÞ,
where P1ðeÞ ¼ ðe=h0; e=2Þ, P2ðeÞ ¼ ð1� e=h0; e=2Þ, P3ðeÞ ¼ ð1� e=h0;�e=2Þ, P4ðeÞ
¼ ðe=h0;�e=2Þ:

We now iteratively transform the arrays S0
e into increasingly fine arrays, by

the action, for each integer n > 0 of the maps cijn ¼ ci1
� ci2

� � � � � cin
associated

with arbitrary n-tuples of indices i j n ¼ ði1; i2; . . . ; inÞ a f1; . . . ; 4gn. If n ¼ 0, we
define cijn to be the identity map in R2. For every set OJR2, we define
O ijn ¼ cijnðOÞ, and, occasionally, we call i j n the n-address of the set O ijn. With
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this notation, for every e and every nb 0, we then define the arrays of co-axial
fibers Sn

2e and Sn
e by setting

Sn
2e ¼

[
ijn

S
ijn
2e ; S

ijn
2e ¼ cijnðS0

2eÞ;ð2:7Þ

Sn
e ¼

[
ijn

S ijn
e ; S ijn

e ¼ cijnðS0
e Þ:ð2:8Þ

Let K 0 be the line segment of unit length whose endpoints are A ¼ ð0; 0Þ and
B ¼ ð1; 0Þ: We set, for each n in N,

K 1
a ¼

[4
i¼1

ciðK 0Þ; Kn
a ¼

[
ijn

K ijn
a ; K ijn

a ¼ cijnðK 0Þ;ð2:9Þ

Kn
a is the so-called n-th pre-fractal curve. We recall that the curves Kn

a converge
to the curve Ka in the Hausdor¤ metric [5].

3. Main result

Before stating our results, we recall some definitions and properties that refer to
the fractal Ka. The fractal Ka is the closure in R2 of the set Vl ¼

Sþl
n¼0 V n where

for every nb 0

V n ¼
[
ijn

cijnðGÞ:ð3:1Þ

The fractal energy E½u� ¼ EKa
½u� is the limit of the increasing sequence

E½u� ¼ lim
n!þl

En½u�;ð3:2Þ

with

En½u� ¼ 4n
X
ijn

ðuðcijnðAÞÞ � uðcijnðBÞÞÞ
2;ð3:3Þ

on the domain

D½E� ¼ D½EKa
� ¼ u a CðKaÞ j sup

nb0

En½ujV n � < þl

� �
:ð3:4Þ

D½E�HC bðKaÞ and the estimate

juðPÞ � uðQÞjaCH

ffiffiffiffiffiffiffiffiffi
E½u�

p
jP�Qjbð3:5Þ
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with b ¼ ln 4
2 ln a

holds for every P;Q a Ka. For these Hölder estimates, we refer to

Kozlov [6] (see also [12], where Kozlov’s result is interpreted as an intrinsic
Morrey’s imbedding).

The Dirichlet operator LKa
on Ka is the self-adjoint operator LKa

defined by
the identity

EKa
ðu; vÞ ¼

Z
Ka

LKa
uv dm Eu a D½LKa

�; v a D0½E�ð3:6Þ

where the domain D0½E� ¼ fu a D½E� : uðPÞ ¼ 0 EP a Gg is dense in L2ðKa; mÞ.
We define the functional F : L2ðWÞ 7! ð�l;þl�; by

F½u� ¼

Z
W

j‘uj2 dx dyþ EKa
ðujKa

; ujKa
Þ if u a D0½F�

þl if u a L2ðWÞnD0½F�

8><
>:ð3:7Þ

where D0½F� ¼ fu a H 1
0 ðWÞ; ujKa

a D0½E�g: We note that the domain D0½F� is a
Hilbert space with respect to the norm

kukD0½F� ¼
Z
W

j‘uj2 dx dyþ E½u�
� �1

2

:ð3:8Þ

For any given f a L2ðWÞ, the function u that minimizes on D0½F� the energy
functional

F½u� � 2

Z
W

fu dx dy

formally solves the following boundary value problem

�divð‘uÞ ¼ f in WnKa

u1 ¼ u2 on Ka;�
qu
qn

�
¼ LKa

on Ka

u ¼ 0 on qW

uðPÞ ¼ 0 on G.

8>>>>><
>>>>>:

ð3:9Þ

The fractal inclusion Ka divides the domain W into two adjacent subdomains
W j

a, j ¼ 1; 2 (where W1
a is the domain above the curve Ka), and we denote by

u j the restriction of u to the subdomain uj
W

j
a

, j ¼ 1; 2. By
�
qu
qn

�
¼ qu1

qn1
þ qu2

qn2
, we

denote the jump of the normal derivative (inward to W1
a ) across Ka, and LKa

is the self-adjoint operator defined in (3.6). As this strong formulation of the
boundary value problem only serves an illustrative purpose in this paper, we
do not go into the regularity and geometrical details that would be needed to
rigorously formulate all the preceding equations and boundary conditions.

We prove that the variational solution to problem (3.9) is the limit of the
solutions to suitable second order transmission problems across approximating

469quasi-filling fractal layers



polygonal curves. Our approach to asymptotic convergence is of variational
nature and is based on the tools developed in [10] and [11]. More precisely, in W
we now introduce a sequence of energy functionals.

For each given n, we introduce in W the fibers Sn
e and Sn

2e described in Section
2, by now choosing e ¼ en. For every n; we define the functional Fn : L2ðWÞ 7!
ð�l;þl� by

Fn½u� ¼

Z
W

anðx; yÞj‘uj2 dx dyþsn

Z
K n

a

j‘tuj2 ds if u aD0½Fn�

þl if u a L2ðWÞnD0½Fn�

8><
>:ð3:10Þ

where the coe‰cient matrix anId is defined at every ðx; yÞ a W by

anðx; yÞId ¼ 1WnSn
2en
ðx; yÞId þ wn1Sn

2en
nSn

en
ðx; yÞId þ 1Sn

en
ðx; yÞId;ð3:11Þ

with sn > 0, ‘tu is the tangential derivative of u along the polygonal curve Kn
a .

The domain D0½Fn� ¼ fu a H 1
0 ðWÞ : ujK n

a
a H 1

0 ðKn
a Þg is a Hilbert space with

respect to the norm

kukD0½Fn� ¼
Z
W

anj‘uj2 dx dyþ sn

Z
K n
a

j‘tuj2 ds
( )1

2

:ð3:12Þ

Here H 1
0 ðWÞ and H 1

0 ðKn
a Þ denote the Sobolev spaces on the domain W and on

the polygonal curve Kn
a , and we refer to [1] for definitions and properties. In this

description, the important parameters are the positive real numbers en > 0 and
wn > 0, which will be specified later on, both converging to zero as n ! þl.
The coe‰cients anðx; yÞ present discontinuities across the fibers Sn

en
and Sn

2en
:

The external fiber Sn
2en
nSn

en
is a region of increasingly low conductivity as

n ! þl:
For any given f a L2ðWÞ, the function u that minimizes on D0½Fn� the energy

functional

Fn½u� � 2

Z
W

fu dx dy

formally solves the following boundary value problem

�divð‘uÞ ¼ f in WnSn
2en

�wn divð‘uÞ ¼ f in Sn
2en
nSn

en

�divð‘uÞ ¼ f in Sn
en
nKn

a

u1 ¼ u2 on Kn
a ;�

qu
qn

�
¼ sn � 4tu on Kn

a

u ¼ 0 on qW

uðPÞ ¼ 0 on G

natural transmission conditions on qðSn
2en
nSn

en
Þ:

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð3:13Þ
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The polygonal curve Kn
a divides the domain W into two adjacent subdomains

Wn; j
a , j ¼ 1; 2 (where Wn;1

a is the domain above the curve Kn
a ). Here by u j we

denote the restriction of u to the subdomain Wn; j
a , j ¼ 1; 2: By

�
qu
qn

�
¼ qu1

qn1
þ qu2

qn2

we denote the jump of the normal derivative across Kn
a ; by n j the inward nor-

mal vector to the boundary of Wn; j
a and by 4tu the tangential Laplacian of u

along the polygonal curve Kn
a . As this strong formulation of the boundary value

problem only serves an illustrative purpose in this paper, here we do not go into
the regularity and geometrical details that would be needed to rigorously formu-
late all the preceding equations and boundary conditions.

Assume

sn ¼
� 4

a

�n
;ð3:14Þ

wn
en

! 0ð3:15Þ

and

wn
ð4nen � a�2nÞq bC0ð3:16Þ

as n ! þl, with C0 > 0 and q a
�
0; 12

	
. We note that the total area of the fibers

Sn
2en

behaves like 4nen � a�2n as n tends to þl:

Remark 3.1. A possible choice of coe‰cients satisfying assumptions (3.15),
(3.16) is:

e ¼ en ¼ 4�s1n; wn ¼
4�s1n

ln n
;ð3:17Þ

where 0 < s1 < 2 ln a=ln 4� 1.

Our main result is the following

Theorem 3.1. We assume conditions (3.14), (3.15) and (3.16). Let u be the varia-
tional solution of the fractal transmission problem (3.9). For every integer nb 1, let
un be the variational solution to the transmission problem (3.13). Then

un * u weakly in H 1
locðWnKaÞ;ð3:18Þ

un * u weakly in W 1;pðWÞ; p ¼ 2

qþ 1
;ð3:19Þ

ðunÞjKa
! ujKa

strongly in B2;2
s ðKaÞ; s < d=2� qð3:20Þ

3sn4tun; fIn4ðH�1ðK n
a Þ;H 1

0
ðK n

a ÞÞ ! 3LKa
u; f4ððD0½E�Þ 0;D0½E�Þ Ef a D0½F�;ð3:21Þ

as n ! þl.
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By fIn we denote the function continuous on Kn
a and a‰ne on each side of Kn

a

obtained by interpolating the values of f at the vertices of Kn
a : Here d ¼ ln 4=ln a

is the Hausdor¤ dimension of Ka: For the definition of the Besov spaces B2;2
s ðKaÞ

we refer to [4].
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