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Calculus of Variations — Regularity results for non-autonomous variational inte-
grals with discontinuous coefficients, by ANTONIA PASSARELLI DI NAPOLI, com-
municated on 11 June 2015.1

ABSTRACT. — We investigate the regularity properties of local minimizers of non autonomous
convex integral functionals of the type

T (u; Q) ::/Qf(x,Du) dx,

with p-growth into the gradient variable and discontinuous dependence on the x variable. We prove
a higher differentiability result for local minimizers of the functional Z (u; Q) assuming that the
function that measures the oscillation of the integrand with respect to the x variable belongs to a
suitable Sobolev space.
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MATHEMATICS SUBJECT CLASSIFICATION: 49N15, 49N60, 49N99

1. INTRODUCTION

Classical multidimensional variational problems are related to the study of inte-
gral functionals of the type

(1.1) F (u; Q) ::/Qf(x,Du)dx,

where Q is a bounded open set in R”, u : Q@ — R", the integrand f : Q x RV
— R is such that ¢ — f(-,¢) is a strictly convex function of class C'(R™") for
almost every x € Q and satisfies the so called standard growth conditions, i.e.

(F1) TP < fe ) LA+, p>1.

!This paper is related to a talk given by the author at “XXV Convegno Nazionale di Calcolo
delle Variazioni”—Levico, 2—6 February 2015. This work has been partially supported by INAAM-
GNAMPA Project—*“Regolaritd di minimi di funzionali anisotropi non uniformemente convessi”
(2015) and by the Project “Metodi matematici per la modellizzazione di problemi di localizzazione
e di trasporto ottimo (Legge 5/2008 Regione Campania).
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It is well known that 7 (u; Q) is lower semicontinuous and coercive on the Sobolev
space W17(Q; R"™") and therefore admits a minimizer u ¢ W7 (Q; R™V).

The regularity properties of minimizers of integral functionals of the type (1.1)
under standard growth conditions has been widely investigated in case the inte-
grand f(x, &) depends on the x-variable through a Holder continuous function.
Actually, the Hélder continuity of f'(x, &) with respect to x leads to the C! partial
regularity of the minimizers with a quantitative modulus of continuity that can
be determined in dependence on the modulus on continuity of the coefficients
([1, 2, 10, 16, 20, 26]). For an exhaustive treatment, we refer the interested reader
to [19, 23] and the references therein.

It is worth pointing out that partial regularity results are a common feature
when treating vectorial minimizers. Actually, in the vectorial setting everywhere
regularity cannot be proven as it is shown by the counterexample due to De
Giorgi and those due to Sverak and Yan ([12, 33, 34]).

In the last few years, the study of the regularity has been successfully carried
out under weaker assumptions on the function that measures the continuity of
the integrand f'(x,&) with respect to the x-variable. In particular, in [15] (see
also [10, 14]), a C%* partial regularity result has been established relaxing the
Holder continuity with respect to x in a continuity assumption.

Further, the C%* partial regularity result of [15] has been extended in [5]
and in [17] to operators that have discontinuous dependence on the x-variable,
through a VMO coefficient and a Sobolev coefficient respectively (we refer to
[25] for the regularity of the gradient of solutions of linear elliptic equations
with MO coefficients).

Our aim here is to investigate the regularity properties of the minimizers of
integral functionals of the type (1.1), allowing a discontinuous dependence for
the integrand f(x,&) with respect to x-variable through a suitable Sobolev
function.

More precisely, we shall assume that there exist constants 7, L,v > 0 and an
exponent 2 < p < n such that f(x, ¢) satisfies the following assumptions:

(F1) T < f(08) < L(1+1417);

(F2) IDef (x,8) = Def (x,m)| < (1€ = |1+ 1€ + Inf>)'=
(F3) (1418 + ) TIE = 1l < <Def (6,€) = Def (esm), & = ).

for every &, € R and for almost every x € Q. Concerning the dependence
on the x-variable, we shall assume that there exists a function k € L{ (€; RM),
1 < g < n, such that

(F4)  |Def(x,8) = Def (&) < (Jk(x)| + [k(2)])]x = ¥(1+1¢["7),

for every & € R™¥ and for almost every x, y € Q.

By virtue of a characterization of the Sobolev functions due to Hajlasz ([24]),
the function k(x) plays the role of the derivative of the function x — D f(x, &).
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So the assumption (F4) describes the continuity of the operator D:f(x, &) with
respect to the x-variable. Obviously, this is a weak form of continuity since the
function k£ may blow up at some points.

The model case we have in mind is

G(u, Q) :/Qa(x)g(Du) dx,

where ¢ : R™Y — R is a C' function for which there exist constants L, L», L3,
v > 0 and an exponent 2 < p < n such that

(G1) Lilmf’ <g(&) < Li(1 +187);
(G2) 1D:g(€) — Deg(n)| < Lalé — (1 + €12 + [n))'7;
(G3) (14 1 + ) T = nl? < <D2g(€) — Deg(n), € — 0,

for every &, € R™Y. The coefficient a(x), appearing in the integrand of the
functional %(u; Q), belongs to the space WIL’C" NL*(Q), 1 <o <n and is such
that

(1.2) L a(x) < Ls,
L;

for a positive constant Ls.

Actually, a(x) belongs to the Sobolev space Wlé‘:(Q), l <o < 4o, if and
only if there exists a non negative function K € L{ (€) such that the following
inequality

(1.3) la(x) —a(y)| < c(n)(K(x) + K(y))|x = yl.

holds a.e. (see Theorem 1 in [24]). Therefore, one can easily check that assump-
tions (G1)—(G3) together with (1.2) and (1.3) imply (F1)—(F4).

In our previous papers ([30], [31], [18]) we investigated the regularity proper-
ties of solutions of elliptic systems as well as of local minimizers of integral func-
tionals of the type (1.1) under the assumptions (F1)—(F4) in case k € L] (Q).
Actually we have shown that the W!" assumption on the x-variable is sufficient
to prove a higher differentiability result for the gradient. Namely, we established
the following

THEOREM 1.1 ([30]). Let f be an integrand such that & — f(-,&) is of class
CY(R™N) for almost every x € Q, satisfying the assumptions (F1)—(F4), for an
exponent 2 < p < n and for a function k € L] (Q). If u € WIL’CP(Q, RY) is a local
minimizer of the functional 7, then

(1+ [Du|®) ¥ Du e W20 R™N),

loc
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Moreover there exists a radius Ry = Ro(n,N,/,v, L, p) such that

_ 1
ID((1 + |Du|2)¥Du)|2dx < % (/ |k|"dx)"/ |Dul|? dx,
R Bor Bor

Br

for every R such that By < Bg,.

The case p = n > 2 has been faced in [21], in case of degenerate elliptic sys-
tems, while the critical growth p = n = 2 needs a different study. Indeed, in this
case (see Example 1 in [31]) we can not show that the second derivatives of u
belongs to L? (which would be the analogous result of the case 2 < p < n). How-
ever, we were able to prove that they belong to L9, for every g < 2. In fact, we
have proven the following

THEOREM 1.2 ([31]). Let f be an integrand such that & — f(-,&) is of class
CY(R¥N) for almost every x € Q, satisfying the assumptions (F1)—(F4), with
p =n=2and for a function k € L}, (Q). If u e Wli’cz (Q,RY) is a local minimizer
of the functional F , then

Due WhI(Q: RPN, vg < 2.

loc

Moreover there exists a radius Ry = Ro(N,/,v, L, p) such that

C 1
|D*u|"dx < — (/ |k|2dx>2/ |Dul? dx,
Bg R Brr Brg

for every R such that Bogr < Bg,.

In two forthcoming papers ([22], [9]), we will study the regularity properties of
the local minimizers of the functional # (u; Q) under weaker assumptions on the
summability of the function k(x) appearing in assumption (F4). More precisely in
[9], we prove a higher differentiability result analogous to Theorem 1.1, assuming
that k(x) belongs to a fractional order Sobolev space of the type W%"/? with
0<O<1.

Here we report a particular case of a result that will appear in the forthcom-
ing paper ([22]) in which we are able to prove that the higher differentiability of
Theorem 1.1 persists for locally bounded minimizers of the functional 7 (u;Q),
under a weaker assumption on the summability of the function k(x) in the scale
of Lebesgue spaces.

More precisely, in this paper, we give the result only for scalar minimizers,
i.e. for N = 1, assuming that k € L?*? where p is the exponent appearing in the
assumptions (F1)—(F4). Obviously, this is a weaker assumption on k with respect
to the one in Theorem 1.1, only if 2 < p < n — 2 that clearly excludes the critical
growth case p = n = 2. More precisely, we establish the following

THEOREM 1.3. Let f be an integrand such that & — f(-,&) is of class C'(R") for
almost every x € Q, satisfying the assumptions (F1)—(F4), for an exponent 2 < p <
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n — 2 and for a function k € Lf:gz(Q). Ifue Whl)’cp (Q) is a local minimizer of the
functional 7, then

(1 + |Dul>) " Du e WL2(Q;R").

loc

Moreover

(1.4) (1 + |Dul®)= | D) dx
Brya

<= (14 |Du|2)§dx
P
By

+ﬁ(][ ) ([ 1+ ko) a)

for every ball B € Q.

The proof of Theorem 1.3 is achieved combining a suitable a priori estimate
for the second derivative of the local minimizers, obtained by the use of the dif-
ference quotient method, with a suitable approximation argument.

Our main idea in order to establish the a priori estimate is to treat the
regularity of local solutions of systems with discontinuous coefficients with the
tools needed to deal with functionals satisfying (p, ¢) growth conditions. Func-
tionals with (p,q) growth conditions have been widely investigated both in the
scalar and in the vectorial setting (see for example [3, 4, 6, 7, 8, 13, 27, 28,
29, 32]).

We take advantage from the assumption N =1, since, by virtue of a well
known result due to De Giorgi, we have that the minimizers of the functionals
F (u; Q) are locally bounded in Q. The local boundedness allows us to use an
interpolation inequality that gives L?*? integrability of the gradient of the mini-
mizers. Such higher integrability for p < n — 2 is better than the one given by the
Sobolev imbedding Theorem and is the key tool in order to weaken the assump-
tion on k.

2. PRELIMINARIES

We shall adopt the usual convention and denote by ¢ a general constant that may
vary on different occasions, even within the same line of estimates. Relevant de-
pendencies on parameters and special constants will be suitably emphasized using
parentheses or subscripts. The norm we use on R” will be the standard euclidean
one and denoted by | - |. In particular, for &, e R" we write (&, n) for the usual
inner product of ¢ and 5, and |&| := (¢, é)z for the corresponding euclidean
norm. When «¢ € R” and b € R" we write a ® b € R for the tensor product
defined as the matrix that has the element a,b; in its r-th row and s-th column.
Observe that (¢ ® b)x = (b - x)a for x € R”, and |a ® b| = |a| |b|.
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For a C! function F : R" — R, we write

DF(E)y) =2

& F(E+1m)

=0

for &, n e RV,
We shall denote by B,(x) the ball centered at x, with radius r and by

(u)xU L= f u(x) dx,
7 B:(x0)

the integral mean of u over the ball B,(x)). We shall omit the dependence on the
center when no confusion arises.
Let us recall the definition of local minimizer.

DEFINITION 2.1. A function u € Wlf)’f(Q, R™) is a local minimizer of # if

/ f(x,Du)dx < S (x,Du+ D) dx,
supp ¢ supp ¢

for any g € W,L7(Q, RY) with suppp € Q.

To shorten the notations, we shall use the following auxiliary function defined for
EeR”

V(E) = (1+]eP)7e.

We recall some useful properties of the function V' that can be easily checked.
More precisely, we shall use that

(2.1) |V ()] is a non-decreasing function of |£[;
(22) V(E+n)] <cp)(IV+ 1V (n));
23) (e +1e) < VP < Cp)(IEP +187) i p=2;

Next Lemma has been proven in [20].

LEMMA 2.2. Let 2 < p < oo. There exists a constant ¢ = c¢(n, p) > 0 such that

2 _ V() - V)P

=
U [EP + )7 < g <c(1+ [+ In?)

for every &, € R".

For a C? function ¢, it is a routine matter to check that there exists a positive
constant C(p) such that

p—=2
2

p=2
(24)  C'ID*gP(1+|Dgl*)= <|D(V(Dg))|* < CID*g|*(1 + |Dgl*)
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Next Lemma finds an important application in the so called hole-filling method.
Its proof can be found for example in [23, Lemma 6.1] .

LEMMA 2.3. Let h:[p,Ro| — R be a non-negative bounded function and 0 <
9<1,A4,B>0andp > 0. Assume that

h(r) < Sh(d) +

+ B,
d—r)

forall p <r<d<Ry Then

cA
hp) < —4— +B,
(Ro — p)f

where ¢ = ¢(9,[) > 0.
2.1. Difference quotient

In order to get a suitable Caccioppoli type inequality for local minimizers of the
functional # (u, Q), we shall use the difference quotient method. To this aim, let
us briefly recall the definition and the basic properties of the finite difference
operator.

DEFINITION 2.4. For every vector valued function F : R” — R the finite dif-
ference operator is defined by

1 (x) = F(x + hey) — F(x)
where i € R, e, is the unit vector in the x, direction and s € {1,...,n}.

The following proposition describes some elementary properties of the finite dif-
ference operator and can be found, for example, in [23].

PROPOSITION 2.5. Let F and G be two functions such that F,G € W' (Q;R"),
with p > 1, and let us consider the set

Q= {x € Q: dist(x,0Q) > |hl}.
Then
(d1) 73, F € WhP(Q) and
Dj(ts 4 F) = 15 4(D:F).

(d2) If at least one of the functions F or G has support contained in Qy, then

/F‘L'S’;,dez—/ Gt _,F dx.
Q Q
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(d3) We have
7, 1 (FG)(x) = F(x + hey)t5 1 G(x) + G(X) 15 1 F (x).

The next result about finite difference operator is a kind of integral version of
Lagrange Theorem.

LEMMA 2.6. If0<p <R, |h|<®2, 1< p<+oo,se{l,...,n} and F,D,F €
L?(BgR) then

[ o< bl? [ b)) ax
B, Br

Moreover

/ |F(x + hey)|” dx < ¢(n,p) | |F(x)|? dx.
B,

Br

Now, we recall the fundamental Sobolev embedding property.

LEMMA 2.7. Let F:R" — R", Fe L?(Bg) with 1 < p < +co. Suppose that
there exist p € (0, R) and M > 0 such that

Z/B |20 F (x)|” dx < MP|h|?,
s=1 P

for every h with |h| < *52. Then F € W'(B,; R") mL%(Bp; RY). Moreover
IDF| 5, <M
and
71, < M+ 1F ey

with ¢ = ¢(n, N, p).

For the proof see, for example, [23, Lemma 8.2].
2.2. A higher integrability result

In this section, we combine a fundamental result of De Giorgi [11], that gives the
local boundedness of minimizers with the existence of the second derivatives to
deduce a higher integrability result for the gradient of the minimizers. More pre-
cisely, we recall the following

THEOREM 2.8. Let u € WIL’C’?(Q) be a local minimizer of the functional (1.1),
under the assumption (F1). Then u is locally bounded in Q. Moreover the following
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estimate holds

2.5) swwsrﬂiﬂéywﬁ

B, R—p)r
for every B, c BR € Q.
For the proof we refer to [23], Theorem 7.5.
The following interpolation type inequality has been proven in Lemma 10 in

[6], in a slightly different form (see also [18, 30]). We report it here for the sake of
completeness.

LEMMA 2.9. Let ne CH(Q) be such that n >0 and let u e C*(Q). For every
p = 2 there exists a positive constant ¢ = c(p) such that

(2.6) /;72(1+|Du|2)§|pu|2dx
Q
2 2\ 222 2
< C(p)||u|Lx(supp;1)/Qi72(1 + |DM| ) 2 |D2M| dx

2 2 2 2,2
bl gy [ (1 + V)1 |Duf)
PRrOOF. Integration by parts yields

(2.7) / (1 + | Dul®) 8| Duf dx
Q

= / (1 + |Du|2)§Du,Du>dx
Q

L
2

- —/D[;yzDu(l + 10U - udx
Q

SC(p)/anluKl + | Dul?)?|D?u| dx

+ 2/ plul [Vl (1 + | Dul®)¥ Dul dx
Q
=1+ b.

We estimate /; by using the Young’s inequality as follows

1
(2.8) I < Z/0112(1 + |Du2)§|Du|2dx+c/Q;72(1 + |Du?)?

+C(p)/ P2l (1 + |Du?) T | D% dx.
Q
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Similarly, we have
29) bL< }‘/9772(1 +|Du|2)§|Du|2dx+c/Q|u|2|v;7|2(1 + |Dul?)* dx.
Hence, inserting (2.8) and (2.9) in (2.7), we get
[P+ D) ul? ax
< %/9772(1 +|Du|2)§|Du|2dx+c(p)/g;y2|u|2(1 + |Du?)™ | D) dx
e [ W0+ a1+ 10w

Reabsorbing the first integral in the right hand side by the left hand side in
previous estimate and using the local boundedness of the function u, we have
that

/;72(1+|Du|2)§|pu|2dxsc(p)/;72|u|2(1+Du|2)¥|1)2u|2dx
Q Q
+e / W27 + Va1 (1 + [ Duf?)? dx
Q
P2
< el anpr /Q 721+ |Du®) 7 D% dx

2 2 2\2
el [ 07 A7)0+ 1D

1.e. the conclusion. O

Combining Theorem 2.8 with Lemma 2.9 we have the following higher inte-
grability result.

THEOREM 2.10. Let u e W,"?(Q) be a local minimizer of the functional F (u)

loc
under the asumption (F1), such that (1 + |Du|2)pTD2u € L} (Q). Then Due

p+2 . . loc
L; “(Q) and the following estimate

loc
r 2, p—2
/(1+|Du|2)7|Du|2dx§c(][ |u|P)f/ (1+ [Dul®)= | D) dx
B Bor Br

+7(Rc(_p;)2 (fB |u|1’)%/BR(1 + D)) dx

holds for every balls B, = Br = Bop © Q.
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ProoF. Fix balls B, c B €Q and let # € C;°(Br) be a cut off function be-
tween B, and Bg,i.e. 0 <n < 1,7 =1o0n B, and |Vy| < 3. With such a choice
of 5, the interpolation inequality at (2.6) becomes

e

(2.10) /(1—|—|Du\2)g|Du2dx£c||u]|ix(BR)/ (14 [Du?)= | D2 dx
C

2 22
+—||u||7 / 1 + |Du|")? dx.
(R—p)2” 2= (Br) BR( |Dul”)

Theorem 2.8, applied for concentric balls Bg < Bapg, yields

(2.11) sup |u| Sc(f |u|”dx)’_)
B

R Bor

Therefore, inserting (2.11) in (2.10), we get the conclusion. O

3. PrROOF OF THEOREM 1.3

This section is devoted to the proof of our main result. It will be divided in two
steps: in the first one, we will establish the a priori estimate, while in the second
one we will conclude through an approximation argument.

PROOF. Step 1. The a priori estimate -
Suppose that the local minimizer u is such that (1 4 |Du|*)® Du € W,52(Q; R).
Recall that local minimizers of the functional (1.1) are solutions of the corre-

sponding Euler Lagrange equation

(3.1) /Q {D¢f(x,Du)Dp)dx = 0.

Let us fix a ball B €Q and arbitrary radii £ <r<s<1<Ar<R, with
1 <4< 2 and consider a cut off function p € C;°(B;) such that p =1 on B,
|Vp| < 5. Using ¢ = 1, _;(pPzs,u) as a test function in the equation (3.1), we
get

<fo.(x7 DM), DTS, —h(pp‘[&,hu)> dx = 07
B,

which, by virtue of (d2) of Proposition 2.5, is equivalent to the following

(3.2) / (s nDef (x, Du), D(pPt pu)» dx = 0.

B

We write the left hand side of (3.2) as follows
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(33) <Ts,hDif(x7 Du)uD(pst,hu)>dx

B

= / {Def(x + sh, Du(x + sh)) — Def(x, Du(x)), D(p?ts pu) > dx
B,

- / (Def(x+ sh, Du(x + sh)) — Def (x + sh, Du(x)), D(p"z, jut)> dx
B;

+ {Def(x + sh, Du(x)) — D¢ f (x, Du(x)), D(pPy pu) ) dx
B,

= [ {Def(x + sh, Du(x + sh)) — Def(x + sh, Du(x)), p? D(z yu)» dx
B

+P/ (D¢ f(x + sh, Du(x + sh))
B,
— ngf(x + sh, Du(x)),pp_1VpTS7hu> dx

+ / {Def(x + sh, Du(x)) — D¢ f(x, Du(x)), p? D(ts, yu) y dx
B

+p/ (D¢ f(x + sh, Du(x)) — Def (x, Du(x)), p?~'Vpr, yu)d dx.

B

Combining (3.3) with (3.2), we have

(3.4) / pP{Def(x + sh, Du(x + sh)) — D¢ f(x + sh, Du(x)), D(zy pu) ) dx

B,

= —p/ {Def (x4 sh, Du(x + sh))
B,
— Def (x + sh, Du(x)), p?~'Vpr, juy dx

= [ {Def(x+ sh, Du(x)) = Def (x, Du(x)), p” D(ts pu) » dx
B,

—p | LD:f(x + sh, Du(x)) — Def(x, Du(x)), pP "' Vpz, jud dx.
B,

The left hand side of (3.4) can be estimated by the monotonicity assumption (F3)
as follows

(3.5) / pP{D¢ef(x + sh, Du(x + sh)) — D¢ f(x + sh, Du(x)), D(ty pu) ) dx

B

p—2
> v [P+ 1Dutx+ s+ D)) 7D (e

B



REGULARITY RESULTS FOR NON-AUTONOMOUS VARIATIONAL INTEGRALS 487

Inserting (3.5) in (3.4) and using the properties of p, we get

(3.6) v/ p?(1 + |Du(x + sh)|> + [Du(x) %)= | D(z jus)|> dx

B,

4
<

T t—ys

/ |De f(x + sh, Du(x + sh))
B\ By
— D¢ f(x + sh, Du(x))| |z, pu| dx
+ / PP Def (x + sh, Du(x)) — Def (x, Du(x))| [D(zs yu1)| dx
B,

e [ D+ 5 Du) — D f (. Du) el
— 2 JB\B;

=1+ 1I+1I.

In order to estimate /, we use the assumption (F2), Young’s and Hélder’s in-
equalities as follows

4 P22
(37) I< f( )S/ (1 + [Du(x + sh)|> + | Du(x)|*) 7 | D (g ptt)]| |75, 5| dx
- B,\BS

< c(¢) /B LD P ¢ 1Du()[2) =D (g ) dx

c(?)
(t=s)°

2
/ (14 |Du(x + 5h)* + | Du(x) ) = ro sl dx
B\ By

< C(/)/\ (14 [Du(x + sh)|* + [ Du(x)*) T |D(z, o) dx
B/\B,

(tcffs))2 (/B (14 1Du(x + sh)l” + |D”(X)2)§dx>pl_}2( 5 \Ts,hulpdx)%

< c(¢) /B D+ )% + | Du(x)?) =Dy ) dx

+ (lc|_h|:)2 (/g.(l + |Du(x)|2)§dx>p'_j2</3 |Du|pdx>'%

< () / (14 |Du(x + sh) |2 + | Du(x)2) Z|D(xy pn) |2 dx
B,\BX

clh|?
T2
(t—s)

(] a+ipuefa),
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where we also used Lemma 2.6. In order to estimate I/, we use the assump-
tion (F4), the fact that k(x) € L?*%(Q), Young’s and Holder’s inequalities thus
obtaining

1< Ihl/B/)”(Ik(X+Sh)|+Ik(X)I)(1+|Du(X)I)”IID(Ts,hu)Idx
< g/ p?(1+ |Du(x)|? + [Dux + sh)*) =Dz )| dx
+ CIhlz/ PP (x4 sh)| + [k (x)) (1 + | Du(x)*) dx
B,

< 2/ p? (14 |Du(x)” + |Dulx + sh)|) T 1Dz, ) dx
B,

+ c|h|2(/3 PPk (x)| 72 dx)m(/g p?(1 + |Du(x))™ dx)m

t

The interpolation inequality of Lemma 2.9, used with p? in place of 7, yields
that

II< ;vl/ pP(1+ |Du(x)|* + [ Du(x + 5h) %) T D(z, )| dx
B,

el ([ G 172 ) (Il 5 [ 1Dup) = 0% &)

t

2 2 )
|h|* P2 1\ ”””L‘(Bf)/ 22 . \77
+ c|h| (/BR | (x)] dx) ( s B,(l +|Dul?) dx)

< 2/3 p?(1+ |Du(x)|? + [DuCx + sh)[*) = [D(xy 0)|* dx

2 - -
Tl / ()| 72 dx ) 2(/3(1+|Du|2)T|D2u|2dx>p

+c|h|2” ”M ( | Ik )|p+2dx>piz</3(l+|Du|2)gdx>piz.

(l — S)”+2 '

Therefore, by the use of Young’s inequality with exponents 212 and pT+2 in
the last two integrals of the right hand side of previous estimate, we conclude
that
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(38) 1< 2/ PP (1 + |Du(x)|? + | DuCx + 5h)|?) =D (o )| dx
B,

+clhf? “ ”L T / le(x)|7* dx + clhl* | (1+ |Duf?)? dx

B,
+8|h|2/ (1 + | Dul®) =D dx,
B,

where 3 € (0, 1) is a constant that will be chosen later.
Using again assumption (F4) and Holder’s inequality, we estimate III as
follows

ar < —Ihl PP (kx5 + [k (x) ) (1 + [ Du(x)) ™" e ] dx

p—1

zfcs i (/B PP (K + sh)| + [l(x)])77(1 + IDu(x)|)de)T

IA

1

X 7, qu|? dx ’
(/e
e Pl " ) .
([ (e s+ k()7
B,
1
X Du|” dx )"
(1, e
¢ h2 k % % 2 1 D p+2d
([ oY ( [ 200 D) )
1
X Du|? dx)"
(1, 1o e
p(p+2) % p%
<il([ K@) ( [ o0+ a2 )
Br B,

¢ 2
—|h Du|? dx.
7 S),,||/Bh| ul? dx

Similarly to the estimation of /I, we use the interpolation inequality (2.6) and
Young’s inequality, thus getting

¢ 2 bN:
el /B}(1+|Du| ) dx
/ e EEY7 ([ (1 10wy 0% )

p—1

(1+ |Du(x)])” dx)T

IA

—1

A
i

3.9) II<

+clhf?lu |
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|| ||p+"/2 *2) 27 P L
2 L*(B,) P2 PN 2
+c LB k(x ’U / 1 + |Dul")zdx

(l‘ — S)p+2

< ﬁmﬁ/%u + |Du|2)§dx+c|h|2||(b;”_£$/&e ()| T
+ 9k [+ \Du?)" | D?uf* dx.
Inserting (3.7), (3.8) and (3.9) in (3.6), we obtain
v/Bp"’(l—i-|Du(x—|—Sh)|2+Du( )2 D (e, )| d

< E/B p?(1+ [Du(x)|* + [ Du(x + sh)[*) 7| D(z )| dx

n c/ (14 [Du(x + sh)|* + | Du(x)|?) T |D(zy )| * dx
B\B

+(l ,,|h| / (1 + |Du*)?dx + |h|2H(|L7S)B,§/BR(1+|k(x)|)"”dx

v 28|h|2/ (1 + [Dul?)= | Du|? dx.
B,

Reabsorbing the first integral in the right hand side of the previous estimate by
the left hand side and using the properties of p we get

/ (14 [Du(x + sh)> + |Du(x)|?) 7 |D(zs jur)|> dx

s

SC(V,/)/\ (14 |DuCx + sh) + |Du(x)2) =D (g )| dx
B\B

_|_

ol .
nf? / (1 + Dl dx + el W/BR(1+|k(x)|)f’ dx

(t2

4 2.9|h|2/ (1+ | Dul®)= D2 dx.
B,

Since previous inequality is valid for all radii » < s < ¢t < Ar, filling the hole, by
the iteration Lemma 2.3, we deduce that
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/ (14 |Dux + sh)> + |Du(x)2) =D (g )| dx
B,

ull7 5
7;1 (1+|Du)®)2d h27 1+ |k(x)))P2d
< gy [ o P o [ ) as
+29|h2/ (1+ | Dul®) = D) dx
B;,
and so, by virtue of Lemma 2.2,

(3.10) /B 2, 4 (V(Du)| dx

¢ 2 2\
< /B‘.(1+|Du| 2 dx

|h|2% / (1+ k()" dx

+ 29|h|2/ (1+ [Dul?)= | D?u|? dx.
B,
By the use of Lemma 2.7, estimate (3.10) yields that

(3.11) /B \D(V(Du)[ dx

< rﬁ(i_l)p/g (1 + |Dul?)t dx

ir

lull - 5

—l-cm/ (1 + k(x))"*2 dx
é(p,n,v, ) 8/ + | Dul?) g2 |D2u|2dx.
The elementary inequality (2.4) yields that
(3.12) /B(l+|Du|2)pTz|D2u|2dx£E(p,n,v,/)S/B (1 + |Du®)= | D) dx

c

2
+rp()b_1),,/3”(1+|1)u| ) dx

luall 7.

o [ (k) ax
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Since previous estimate is valid for every 4 € (1,2), choosing 3 = 2%: we can use
again the iteration Lemma 2.3 thus obtaining

(3.13) / (1 + | D)= | D2 dx
Bgr)»

L 2\5 L p p+2
< g5, 0P gl g [0 )

By virtue of Theorem 2.8, we conclude with
(3.14) / (1 + [Du|?) = | D) dx
By

c
R? Jp,

g (f, wra) ([ 0 weonray)

R

<

(14 |Du?)* dx

for a constant ¢ = ¢(n, p,v,/, L).

Step 2. The approximation
Fix a compact set Q' € Q, and for a smooth kernel ¢ € C*(B;(0)) with ¢ >0

and ¢ =1, let us consider the corresponding family of mollifiers (¢,),., and
Bi(0)
put
ky :=kx¢,
and
(3.15) Je(x,8) = f(x, ) xd. = | Plo)f(x+ew, &) do
By

on Q' for each positive ¢ < dist(Q', Q). Note that
Defe(x,8) = Def(x, ) ¥ ¢ = [ @) Def (x + e, &) do.
B
One can easily check that the assumptions (F1)—(F3) imply

(A1) TP < fin8) < L0+ |217)

(A2) IDefo(,€) = Deflxm)| < /1€ = nl(1+ | + [n])
(A3)  (Defilx.&) = Deflxon). € = nd 2 v+ &7 + ) T n — &I,

p=2
2
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Moreover, by virtue of assumption (F4), we have that

(Ad)  [Defi(x.&) = Defil2: &) < (Jholo)] + [ka(w)])x = pI(1 4+ [E[77).

for almost every x, y € Q and for all &, € R". For further needs we record that,
since k € L% (Q)

loc >

(3.16) k, — k strongly in e L'T*(Q)

loc
P
and, since D¢ f;(x, Du) € L! [(Q'), that
A
(3.17) D¢ fo(x,Du) — D¢ f(x, Du) strongly in € L] (Q").

Let u be a local minimizer of the functional (1.1) and let fix a ball Bx € Q. Let us
denote by u, € W17 (Bg) the unique minimizer of the functional

F(v,Br) := [ fo(x, Dv)dx
Br
under the boundary condition
v=u on 0Bg.
Using ¢ = u, — u as test function in the Euler Lagrange equation of the func-

tionals % (v, Br) and 7 (v, Q), we have

(3.18) {D¢fe(x, Du,), Du — Du,y dx = {D¢f(x,Du), Du— Du,ydx = 0.
Br Br

Inequality (A3) yields

(3.19) v/ (1 + | Dul® + | Duy )= | Du — Duy|? dx
Br

< {D¢fe(x, Du,) — Def.(x, Du), Du — Du,y dx
Bp

= {Def(x,Du) — D¢ fo(x, Du), Du — Du,y dx

Bp

< ( ’ |D:f(x, Du) — D¢ fy(x, Du)lﬁdxy% (/B | Du — D“ﬁ"pdx)%’

where we used the equality (3.18) and Holder’s inequality. Since p > 2, by well
known means, from estimate (3.19) we deduce

|Du — Du;|"dx < ¢ / \Def (x, Du) — D fy(x, Du)| 77 dx.
Br

Bg
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Taking the limit as ¢ — 0 in previous inequality and recalling (3.17), we deduce
that u, converges strongly to u in W'?(Bg) and therefore a.e. in Bg for a not
relabeled subsequence. o

It is well known that (1 + [Du,|*) * D?u, € L2 (Bg) and, since f; satisfies con-

ditions (F1)—(F4), we are legitimate to apply estimate (3.14) to get

(3.20) / (14 |Duy )™ | D%, dx
Br/4
< i/ (1+ | Du,?)s d
re B,/

#a(f, i an) () e opa).

for every ball B, € Bg. The strong convergence of u, to u in W7 (Bg) allows us
to pass to the limit in (3.20) and by virtue of the Fatou’s Lemma and by (3.16),
we get

p—2 D
/ (1 + |Du>) = |D2u? dx < i/ (1 + |Du)? dx
B»‘/4 re Br/Z

.+ (fB l” dx) (/Br/z(l + k)2 ),

1.e. the conclusion. O
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