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Partial Differential Equations — Existence of entire solutions to a fractional
Liouville equation in R", by AL1 HYDER, communicated on 13 November 2015.1

ABSTRACT. — We study the existence of solutions to the problem

(—A)%u =Qe™ mR", V.= / e"™dx < oo,
where Q = (n—1)! or Q = —(n— 1)!. Extending the works of Wei-Ye and Hyder-Martinazzi to
arbitrary odd dimension n >3 we show that to a certain extent the asymptotic behavior of u
and the constant ¥ can be prescribed simultaneously. Furthermore if Q = —(n — 1)! then V' can
be chosen to be any positive number. This is in contrast to the case n =3, Q = 2, where Jin—

Maalaoui—Martinazzi-Xiong showed that necessarily 7 < |S?3|, and to the case n = 4, Q = 6, where
C-S. Lin showed that V' < |S*|.

KEY worDs:  Q-curvature, fractional Laplacian, Liouville equation, variational methods

MATHEMATICS SUBJECT CLASSIFICATION: 35J35, 35R11, 53A30, 35G20

1. INTRODUCTION TO THE PROBLEM
In this paper we consider the equation
(1) (=A)u= (n—1)le™ inR",

where n > 1 and
(2) V ::/ e™dx < 0.

The operator (—A)? can be defined as follows. For s > 0 we set

(ZA)’p(¢) = [E%4(&), for g e F(RY),

where

L (R") :== {u e C*(R") : sup |x|"|D*u(x)| < oo forall N € N and « € N”}

xeR"

! Presented by S. Spagnolo. The author is supported by the Swiss National Science Foundation,
project no. PPOOP2-144669.
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is the Schwartz space. We recall the space (see [15])

(3) LJRH:—{ve[ﬁARﬂ:/)imQLhdx<co}

R 1+ |x|
Then we have the following definition:

DEFINITION 1.1. Let f e L'(R"). A function u € L:(R") is said to be a solu-
tion of ’

(=A)u=f inR",
if

(4) / u(—A)%g)dx = / fodx, forevery p e S (R"),
n Rn

where the integral on the left-hand side of (4) is well-defined thanks to Proposi-
tion A.2 in the appendix.

Geometrically if u is a smooth solution of (1)—(2) then the conformal metric
gu = e™|dx|* on R" (|dx|* is the Euclidean metric on R") has constant
Q-curvature equal to (n — 1)!. Moreover the volume and the total Q-curvature
of the metric g, are V" and (n — 1)!V respectively.

It is well-known that

24

(5) um,Xo(x) : logl +/12|x_x0|27

is a solution of (1)—(2) with V' = |S”| for every 4 > 0 and xo € R". Any such u,_,,
is called spherical solution, because it can be obtained by pulling back the round
metric of S” onto R” via stereographic projection. When n = 2 W. Chen — C. Li
[5] showed that these are the only solutions to (1)—(2). On the other hand in
higher even dimension non-spherical solutions do exist as shown by A. Chang —
W. Chen [3]:

THEOREM A ([3]). Let n >4 be any even number. Then for every V € (0,|S"|)
there exists at least one solution to (1)—(2).

Moreover J. Wei and D. Ye [17] in dimension 4 and A. Hyder and L. Marti-
nazzi [8] for arbitrary even dimension n > 4 proved the existence of solution to
(1)—(2) with prescribed volume and asymptotic behavior in the following sense:

THEOREM B ([17], [8]). Let n > 4 be even. For a given V € (0,|S"|), and a given
polynomial P such that degree(P) < n — 2 and

(6) x-VP(x) — o0 as|x| — oo,
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there exists a solution u to (1)—(2) having the asymptotic behavior

(7) u(x) = —P(x) — aloglx| + C + o(1),

where o := I%?_I’/’I’ and o(1) — 0 as |x| — oo.

When 7 is odd things are more complex as the operator ( —A)LZ’ is nonlocal. In
a recent work T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong [9] have proven:

TuEOREM C ([9]). For every V € (0,|S3|) there exists at least one smooth solu-
tion to (1)—(2) withn = 3.

Extending the results of [3], [17], [8] and [9] to arbitrary odd dimension n > 3
we prove the following theorem about the existence of solutions to (1)—(2) with
prescribed asymptotic behavior:

THEOREM 1.1. Let n > 3 be an odd integer. For any given V € (0,|S"|) and any
given polynomial P of degree at most n — 1 such that

(8) P(x) — o0 as|x| — oo,

there exists u € C*(R") n L:(R") solution to (1)—(2) having the asymptotic behav-

ior given in (7) with o = é—V‘

ol

Notice that, contrary to the result of Theorem C, in Theorem 1.1 we can now
prescribe both the asymptotic behaviour and the volume, similar to Theorem B,
but in fact in more generality, since the condition (6) has been replaced by the
weaker condition (8). Actually with minor modifications one can prove that the
condition (8) also suffices in even dimension. On the other hand we do not expect
this assumption to be optimal, compare to Theorem D below.

We also remark that the condition 0 < V' < |S”| is necessary for the existence
of non-spherical solution to (1)—(2) in dimension 3 and 4 as shown in [9] and [11]
respectively, but in higher dimension solutions could exist for large V', as shown
for instance in dimension 6 by L. Martinazzi [14].

Also the condition # > 3 in Theorem 1.1 is necessary, since for n =1 any
solution of (1)—(2) is spherical, i.e. as in (5), see F. Da Lio, L. Martinazzi and
T. Riviere [6].

Now we move from the problem of existence to the problem of studying the
most general asymptotic behavior of solutions to (1)—(2).

For n even we have this result due to C. S. Lin for n = 4 and L. Martinazzi
when n > 6:

THEOREM D ([11], [13]). Any solution u of (1)—(2) with n even has the asymptotic
behavior

9) u(x) = —P(x) — alog|x| 4+ o(log|x|)
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1 . . )
where o = 2V olloglv) _, ) 45 |x| — oo and P is a polynomial bounded from below
IS”]> log|x]

and of degree at most n — 2.

Under certain regularity assumptions (precisely, Au € L, (IR ), where the space
LI(R ) is defined in (3)) T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong [9] extended
the above result to dimension 3, and among other things they proved:

THEOREM E ([9)). Letu € W2 (R?) be such that Au e L%([R@) and u satisfies (2).

loc
If u solves (1) in the sense that

/ (—A)u(—A)%(pdx = 2/ eMpdx, for every p € S (R?),
R3 R}

2

S and P is a polynomial

then u has the asymptotic behavior given by (9) with o =
bounded from below and of degree 0 or 2.

In our upcoming paper [7] extending Theorem E we study the asymptotic
behavior of solutions to (1)—(2) in arbitrary odd dimension under much weaker
regularity assumptions:

THEOREM F ([7]). Let n >3 be any odd integer. Let u € Ly(R") be a solution to
(1)—(2) in the sense of Definition 1.1. Then u has the asymptotic behavior given by
(9) with o« = 22 and P a polynomial bounded from below and of degree at most
n—1

IS”

Now we shall discuss the case when the Q-curvature is negative. We consider
the equation

(10) (=A)2u=—(n—1Dle™ inR".

Geometrically a smooth solution of (10) corresponds to a conformally flat
metric g, = ¢2|dx|* on R” which has constant Q-curvature —(n — 1)!.

In even dimension n >4 L. Martinazzi [12] has shown that any solution u
o (10)—(2) has the asymptotic behavior given by (9) with « = —é—’j‘, while for
any ¥V > 0 and any given polynomial P of degree at most n — 2 satisfying (6),
A. Hyder — L. Martinazzi [8] have proven the existence of solutions to (10)—(2)
having the asymptotic behavior given by (7) with « = —%-. As in the positive

. . \S "
case, we shall extend this existence result to arbitrary odd dimension n > 3, again
replacing condition (6) with the weaker condition (8).

THEOREM 1.2. Let n > 3 be an odd integer. For any given V > 0 and any given
polynomial P of degree at most n — 1 satisfying (8) there exists u € C*(R") n
Ly(R") solution to (10)—~(2) having the asymptotic behavior given in (7) with

_ _2r
%= =5

Finally we remark that in dimension 1 and 2 (10)—(2) has no solution
(compare to [12] and [6]).
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2. PROOF OF THEOREM 1.1 AND THEOREM 1.2

The proof of Theorem 1.1 and 1.2 rests on the following theorem:

THEOREM 2.1. Let wy(x) = loglﬁ E and let 7 : S"™\{N} — R" be the stereo-

graphic projection and N = (0,...,0,1) € S" be the North pole. Take any number
a € (—00,0) U (0,2) and consider two functions K,¢p € C*(R") such that

(1) [ oav=r= s,

oK > 0 everywhere in R" and whenever o. < 0 then |K| > de™°™M" for some § > 0,
0 < p < n. If both of Ke™™ and pe ™" can be extended as C*"*' function on
S" via the stereographic projection © then the problem

n , 1 1 ,
(12)  (=A)yw=Ke""") —ap inR", ¢, = —— log(— Ke™ dx),
n p J R

has at least one solution w € C*(R") n Ls(R") (in the sense of Definition 1.1) so
that lim ., w(x) € R.

Now the proof of Theorem 1.1 and Theorem 1.2 follows at once by taking
u:=—P+auyg+w+c,,

where uy € C*(R") is given by Lemma 2.2 with k = 2n + 3, w is the solution in
Theorem 2.1 with ¢ = (—A)2uy which satisfies (11) thanks to Lemma 2.3, and
K :=sign(a)(n — 1)le="P*m=0 Notice that Ke™™ can be extended smoothly on
S" via the stereographic projection 7 where as pe " can be extended as a C>"*+!
function.

LeEMMA 2.2. For every positive integer k there exists uy € C™(R") such that

(13)  up(x) = logﬁ Sor |x| > 1, |D*(—A)%up(x)| <

for any multi-index o € N".

Jor x # 0,

|x|2n+k+\a|

Proor. Inductively we define

X1
vj(x):/ b1 (L) dt, forx—=(x1,%) e Rx R, j=1,2,... .k,
0
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where

Let y € C*(R") be such that

‘ =

We claim that uy =

m
—

;zl

yl(—A) 5'—1,(1;/C is a fundamental solution of (—A)% on

R" and hence for x # 0, (—A)%(—A)T f:k vk(x) = 0. For |x| > 2 using integration
Xy

( «) satisfies (13). It is easy to see that u(x) = 10g|1;| for
A

|x| > 1. By Lemma

by parts we compute

n 1 n—1 ak
(=8fn(x) = (~AH=AT T (o = 00 ()
<f”Wm—wm

= Cn d

/y|<1 x — y|"! g

k ntl 1
=G w00 S A ()
and
o 5 _ o 6k "%1 1
z>eMwuw4zAduwmwwwA»Dwk<A)(Ejﬁm)@

”UkHLl(Bl)

2n+-k+lo| *

|D°‘(—A)%uo(x)| < C|x\

|

LEMMA 2.3. Let uyg € C*(R") be as given by Lemma 2.2 for a given k € N.
Then (—A)2uq satisfies (11), that is,

[ () dx =,

PRrROOE. Letn € C*(R") be such that

) 1 if [x[ <1
X)) =
7 0 if x| > 2.
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We set 77,(x) = 5(%). Then noticing that (—A)%uy € L'(R") one has

/”(—A)guo(x) dx = lim [ (=A)%u(x)n,(x) dx

k—oo Jrn

k— o0

. 1 y
= lim <u0(x) - log—> (—=A)n(x)dx + v,
By |x|

=T

where in the second equality we used the fact that },ilogri‘ is a fundamental
solution of (—A)? and the third equality follows from the locally uniform
convergence of (—A)%y, — 0. O

It remains to prove Theorem 2.1. In order to do that we recall the definition
of H"(S™).

DEFINITION 2.1. Let n >3 be an odd integer. Let {Y," € COO(S”) l<m<
N;,1=0,1,2,...} be a orthonormal basis of L*(S") where Y;" is an eigenfunc-
tion of the Laplace Beltrami operator —A,, (go denotes the round metric on S")
corresponding to the eigenvalue A; = /(/ +n — 2) and N; is the multiplicity of 7,
(see [16, p. 68]). The space H"(S") is defined by

H"(S") = {u e L*(S") : |lull gogsny < 0},

where for any

w N
;2 mym

we set
x N n—1 = 2 2
s o= 300 (it (P50 ) ) T+ k= k= 1))
1=0 m=1 k=0

Notice that the norm u| 7 7r(sn 18 equivalent to the simpler norm ]| -
S0 SN A (i), but has the advantage of taking the form

[[ull rnsmy = 1 Pgyull 25y

where for n odd the Paneitz operator P, can be defined on H"(S") by (see for
instance [4] and the refferences there in)

p;ou_iz(w( DY

=0 m= k

oo

B

L=

(z, +k(n—k— 1)y
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Since the operator Py is positive we can define its square root, namely

n=3
L

P! ) —iZ(ﬂﬁ( ) ) f[ i+ k(n—k— D))y, we HAS),

=0 m= k=

(=]

where the space H3(S") is defined by

N

HA(S") := {u e L*(S") : iz (/1,+ (n; 1>2>%

1=0 m=1

oo

I:1~|

(a4 k(n—k—1)w")? < oo},

T
(=}

endowed with the norm

el 58 5y 3= Nl 225y + el

Hi(smy H3( S")

= N7 sm) + (P ullF2 s

DEFINITION 2.2. Let f € H~3(S") the dual of H3(S"). A function u € H>(S")
1s said to be a weak solution of

Pgu=1,
if

a [ ey

The following estimate of Beckner is crucial in the proof of Theorem 2.1.

NI»—

u(Py)ipdVo = <f,p, forevery p e H¥(S").

THEOREM 2.4 ([1]). For every u € H>(S") one has

1
vy (PPl dve, @i=—— [ udVs.
s —2|S"|n'/ (ol Vo= g [, me70

ox( 155 . ¢

PROOF OF THEOREM 2.1. Let K = K o, ¢; = pe"™ and ¢, = ¢, o n. Define
the functional J on H3(S") by

1 ~ O —
J(w) := /n (§|(P;‘O)%w|2 + a(plw) dvVy ——= 10g</Su |K|e"‘”e*””'”°”dV0).

Using Theorem 2.4 we bound
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(15) 1og( |K|e"we_"w°°”dV0)
Sn

(g f o)

1
|Sn| nw nw dVO)‘I‘lOg(”Ke_HWOOHH )—|—I’IW—|—C
Sn

Slog(
2|S”|n'/ [(P _w| dVy+nw + C.

Since for any ¢ € R J(w+ ¢) = J(c¢) we can assume w = 0. Then from (15) we
have

1
2 ~ 12
e

where 0 < & < 2 is sufficiently small so that 2% — &> 0 and for o < 0 using
|K| > de~?M" one has

log(/ |K|e”we’"”0°”dV0> \S"\/ log(|K|e™°") dV}y + niv + log|S"| = —C.

Thus a minimizing sequence {w;} of J with i, = 0 is bounded in H3(S"). With
the help of Poincaré’s inequality

_ 1 .
W =Wl 2sn) < [1(Py)*Wll12sn),  for every w e H2(S"),

which easily follows from the definition of [|(P} )* WH 12(sm»> We conclude that the
sequence {wy} is bounded in H2(S"). Then up to a subsequence Wik converges
weakly to u for some u € H>(S"). From the compactness of the map v+ e’
from H3(S") to L?(S") for any p € [1, o0) (for a simple proof see Proposition 7
in [9] which holds in higher dimension as well) we have (up to a subsequence)

khm log(/ |I~(|e”“’"ef”w‘]°”dVo) :10g</ \K|e”“c)7”w"°”dVo).
—00 Sn n

Moreover from the weak convergence of wy to u we have

hm owrdVy = / ¢udVy and Hu||H2 sm) ih(sm)’
s S
and from the compact embedding H3(S") — L?(S") we get

D il pagsey = llull 2s0)-
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Thus [|(P2)*ul] (s < Hminfi||(P2)wi]l2ss) Which implies that u is a
minimizer of J and hence u is a weak solution of (in the sense of Definition 2.2)

o AR, = —nw,
Pn U+ OC¢1 _ Vn Ke—mvoonpnu . C()Ke HWOT Ut
f ., Kente—nwo dVo

Since ¢; € C*1(S") and Ke " ¢ C*(S") we have
Pnu_ CKE HWOOTE 1t OC(P €L2<Sn)
and by Lemma 2.5 below u € H"(S") and a repeated use of Lemma 2.6 gives

ue C2n+l (Sn)

VYE:I set w:=uon~! and wy :=uon~! where u; € C*(S") be such that
el (sn (R
Uy, oy u. It is easy to see that (—A)%w (—)> (—=A)?w and Pl ug —— Pju

which easily follows from
P ) pry and (S — CO(s7).
Now using the following identity of T. Branson (see [2])
(=A):(vor ') = e"" (P v) o n ! forevery v e C*(S"),

we get

(—A)ZW _ (—A)%(uoﬂil) _ emvo(c Ké nWOTE i 01(01>
— COKemt _ OC(D — Ke (1‘+Cw> — aw_

Since (—A)%w e Ly(R") n C¥1(R") we have
(~A)Tw = (~A)(~A)w e CH(R"),
and by bootstrap argument we conclude that w € C*(R"). O

The following lemma is probably known. Since we could not find a precise
refference for this, we give a proof.

LEMMA 2.5. Let f € L*(S"). Let u € H3(S") be a weak solution (in the sense of
Definition 2.2) of

Plu=f onS"
Then u e H"(S").
PROOF. Let

o N 0
Z 'Y and f = ZZ/‘,Y,.

1=0 m=1
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Taking the test function ¢ = Y, in (14) we get

oo

n—

m __ n % n % _ n—1\2 % A m
Y _/Sn(Pgn) uepoavo=(u+ (")) J (CRET

—

0

Hence
ot n—1\2 z 2 2
1Ppulsn = 33 (204 (55=) ) TG+ ktn — k= 1))
1=0 m=1 =0
o0 N/
= (fim? < oo,
=0 m=1

and we conclude the proof. O

LEMMA 2.6. Let u e H*(S") and f € H* "' (S") for some s >n and t > 0. If u

solves
Plu=f onS"
then u e H*™'(S").
PrOOF. Let
o0 N/
U= Z )}lm7
=0 m=1
and
S—n w NI
(D)7 =h=>Y "> "hlY/,
i=0 j=1
where for any r > 0
o0 N, 0 N;
:Z Umil Ylm forv—zzvl Yl HZ’ S”)
=0 m=1 =0 m=
Then
(16) (—Ag,)* Plu=h onS".

Multiplying both sides of (16) by in and integrating on S” one has

—n

7

(4 + (5= ) )H (g + k(n— k = 1) A7l = ht.
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Since h € H'(S") we have

ZZ(AH—(

1=0 m=

) )H1,+kn— — 1)) ) < oo,
and hence u € H*'(S™). O

A. APPENDIX

LeEmMMA A.l1 (Fundamental solution). For n > 3 odd integer the function

=H)r 1 1 w1
(D X) = 2— = — —A Tlo _
) 2 x| Vn( ) g|x|

is a fundamental solution of(—A)% in R" in the sense that for all f € L'(R") we
have @ x f € L%(R”) and for all p € & (R")

) [ ok @s npdsi= [ @ p)-atods= [ roax

PROOF. To show @ xf e L%(IR") we bound

D+ f (x)] / 1
18 ———dx < C dv) dx
( ) r" 1 + |x|n+1 | + |x|n+1 ( R" |X |n 1 |f( )l y)

1 1
= C/ / dx)d
I NI " Jdy

dx dx
<cC +/ d
/Rn 70 T R”l—|—|x|n+l) g

< Clf Nl zrwey-

If /e CX(R") then (17) is true by Theorem 5.9 in [10]. For the general case
f € LY(R") choose f; € C(R") such that f; — f in L'(R"). Then using (18)
with f = f; — f one has

/ @ (fi — )] [(-A)p|dx < C |+ (i —fgl(x)l "
R M S

<Clfe = fllp@wy — O

that is

/n(d)*fk)(—A)%wdx — [ (@ f)(~A)pdx.

R"
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Now the proof follows from
/ ((D*ﬁc)(—A)%(ﬂdX:/ fk(ﬂdx—>/ fodx. O
n Rll RH

Proof of the following Proposition can be found in [7].

ProprOSITION A.2. For any s > 0 and ¢ € & (R") we have
, C
[(=A)'p(x)| < — 5
|x]
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