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Partial Di¤erential Equations — Existence of entire solutions to a fractional
Liouville equation in Rn, by Ali Hyder, communicated on 13 November 2015.1

Abstract. — We study the existence of solutions to the problem

ð�DÞ
n
2u ¼ Qenu in Rn; V :¼

Z
R n

enu dx < l;

where Q ¼ ðn� 1Þ! or Q ¼ �ðn� 1Þ!. Extending the works of Wei-Ye and Hyder-Martinazzi to
arbitrary odd dimension nb 3 we show that to a certain extent the asymptotic behavior of u

and the constant V can be prescribed simultaneously. Furthermore if Q ¼ �ðn� 1Þ! then V can
be chosen to be any positive number. This is in contrast to the case n ¼ 3, Q ¼ 2, where Jin–

Maalaoui–Martinazzi–Xiong showed that necessarily V a jS3j, and to the case n ¼ 4, Q ¼ 6, where
C-S. Lin showed that V a jS4j.
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1. Introduction to the problem

In this paper we consider the equation

ð�DÞ
n
2u ¼ ðn� 1Þ!enu in Rn;ð1Þ

where nb 1 and

V :¼
Z
Rn

enu dx < l:ð2Þ

The operator ð�DÞ
n
2 can be defined as follows. For s > 0 we setdð�DÞsjð�DÞsjðxÞ :¼ jxj2sĵjðxÞ; for j a SðRnÞ;

where

SðRnÞ :¼ u a ClðRnÞ : sup
x ARn

jxjN jDauðxÞj < l for all N a N and a a Nn

� �
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is the Schwartz space. We recall the space (see [15])

LsðRnÞ :¼ v a L1
locðRnÞ :

Z
Rn

jvðxÞj
1þ jxjnþ2s

dx < l

( )
:ð3Þ

Then we have the following definition:

Definition 1.1. Let f a L1ðRnÞ. A function u a Ln
2
ðRnÞ is said to be a solu-

tion of

ð�DÞ
n
2u ¼ f in Rn;

if Z
Rn

uð�DÞ
n
2j dx ¼

Z
Rn

f j dx; for every j a SðRnÞ;ð4Þ

where the integral on the left-hand side of (4) is well-defined thanks to Proposi-
tion A.2 in the appendix.

Geometrically if u is a smooth solution of (1)–(2) then the conformal metric
gu :¼ e2ujdxj2 on Rn (jdxj2 is the Euclidean metric on Rn) has constant
Q-curvature equal to ðn� 1Þ!. Moreover the volume and the total Q-curvature
of the metric gu are V and ðn� 1Þ!V respectively.

It is well-known that

ul;x0ðxÞ :¼ log
2l

1þ l2jx� x0j2
;ð5Þ

is a solution of (1)–(2) with V ¼ jSnj for every l > 0 and x0 a Rn. Any such ul;x0
is called spherical solution, because it can be obtained by pulling back the round
metric of Sn onto Rn via stereographic projection. When n ¼ 2 W. Chen – C. Li
[5] showed that these are the only solutions to (1)–(2). On the other hand in
higher even dimension non-spherical solutions do exist as shown by A. Chang –
W. Chen [3]:

Theorem A ([3]). Let nb 4 be any even number. Then for every V a ð0; jSnjÞ
there exists at least one solution to (1)–(2).

Moreover J. Wei and D. Ye [17] in dimension 4 and A. Hyder and L. Marti-
nazzi [8] for arbitrary even dimension nb 4 proved the existence of solution to
(1)–(2) with prescribed volume and asymptotic behavior in the following sense:

Theorem B ([17], [8]). Let nb 4 be even. For a given V a ð0; jSnjÞ, and a given
polynomial P such that degreeðPÞa n� 2 and

x�‘PðxÞ ! l as jxj ! l;ð6Þ
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there exists a solution u to (1)–(2) having the asymptotic behavior

uðxÞ ¼ �PðxÞ � a logjxj þ C þ oð1Þ;ð7Þ

where a :¼ 2V
jS nj , and oð1Þ ! 0 as jxj ! l.

When n is odd things are more complex as the operator ð�DÞ
n
2 is nonlocal. In

a recent work T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong [9] have proven:

Theorem C ([9]). For every V a ð0; jS3jÞ there exists at least one smooth solu-
tion to (1)–(2) with n ¼ 3.

Extending the results of [3], [17], [8] and [9] to arbitrary odd dimension nb 3
we prove the following theorem about the existence of solutions to (1)–(2) with
prescribed asymptotic behavior:

Theorem 1.1. Let nb 3 be an odd integer. For any given V a ð0; jSnjÞ and any
given polynomial P of degree at most n� 1 such that

PðxÞ ! l as jxj ! l;ð8Þ

there exists u a ClðRnÞBLn
2
ðRnÞ solution to (1)–(2) having the asymptotic behav-

ior given in (7) with a ¼ 2V
jSnj .

Notice that, contrary to the result of Theorem C, in Theorem 1.1 we can now
prescribe both the asymptotic behaviour and the volume, similar to Theorem B,
but in fact in more generality, since the condition (6) has been replaced by the
weaker condition (8). Actually with minor modifications one can prove that the
condition (8) also su‰ces in even dimension. On the other hand we do not expect
this assumption to be optimal, compare to Theorem D below.

We also remark that the condition 0 < V < jSnj is necessary for the existence
of non-spherical solution to (1)–(2) in dimension 3 and 4 as shown in [9] and [11]
respectively, but in higher dimension solutions could exist for large V , as shown
for instance in dimension 6 by L. Martinazzi [14].

Also the condition nb 3 in Theorem 1.1 is necessary, since for n ¼ 1 any
solution of (1)–(2) is spherical, i.e. as in (5), see F. Da Lio, L. Martinazzi and
T. Rivière [6].

Now we move from the problem of existence to the problem of studying the
most general asymptotic behavior of solutions to (1)–(2).

For n even we have this result due to C. S. Lin for n ¼ 4 and L. Martinazzi
when nb 6:

Theorem D ([11], [13]). Any solution u of (1)–(2) with n even has the asymptotic
behavior

uðxÞ ¼ �PðxÞ � a logjxj þ oðlogjxjÞð9Þ
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where a ¼ 2V
jS nj ,

oðlogjxjÞ
logjxj ! 0 as jxj ! l and P is a polynomial bounded from below

and of degree at most n� 2.

Under certain regularity assumptions (precisely, Du a L1
2
ðR3Þ, where the space

L1
2
ðR3Þ is defined in (3)) T. Jin, A. Maalaoui, L. Martinazzi, J. Xiong [9] extended

the above result to dimension 3, and among other things they proved:

Theorem E ([9]). Let u a W
2;1
loc ðR3Þ be such that Du a L1

2
ðR3Þ and u satisfies (2).

If u solves (1) in the sense thatZ
R3
ð�DÞuð�DÞ

1
2j dx ¼ 2

Z
R3

e3uj dx; for every j a SðR3Þ;

then u has the asymptotic behavior given by (9) with a ¼ 2V
jS 3j and P is a polynomial

bounded from below and of degree 0 or 2.

In our upcoming paper [7] extending Theorem E we study the asymptotic
behavior of solutions to (1)–(2) in arbitrary odd dimension under much weaker
regularity assumptions:

Theorem F ([7]). Let nb 3 be any odd integer. Let u a Ln
2
ðRnÞ be a solution to

(1)–(2) in the sense of Definition 1.1. Then u has the asymptotic behavior given by
(9) with a ¼ 2V

jS nj and P a polynomial bounded from below and of degree at most
n� 1.

Now we shall discuss the case when the Q-curvature is negative. We consider
the equation

ð�DÞ
n
2u ¼ �ðn� 1Þ!enu in Rn:ð10Þ

Geometrically a smooth solution of (10) corresponds to a conformally flat
metric gu ¼ e2ujdxj2 on Rn which has constant Q-curvature �ðn� 1Þ!.

In even dimension nb 4 L. Martinazzi [12] has shown that any solution u

to (10)–(2) has the asymptotic behavior given by (9) with a ¼ � 2V
jS nj , while for

any V > 0 and any given polynomial P of degree at most n� 2 satisfying (6),
A. Hyder – L. Martinazzi [8] have proven the existence of solutions to (10)–(2)
having the asymptotic behavior given by (7) with a ¼ � 2V

jS nj . As in the positive

case, we shall extend this existence result to arbitrary odd dimension nb 3, again
replacing condition (6) with the weaker condition (8).

Theorem 1.2. Let nb 3 be an odd integer. For any given V > 0 and any given
polynomial P of degree at most n� 1 satisfying (8) there exists u a ClðRnÞB
Ln

2
ðRnÞ solution to (10)–(2) having the asymptotic behavior given in (7) with

a ¼ � 2V
jSnj .

Finally we remark that in dimension 1 and 2 (10)–(2) has no solution
(compare to [12] and [6]).
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2. Proof of Theorem 1.1 and Theorem 1.2

The proof of Theorem 1.1 and 1.2 rests on the following theorem:

Theorem 2.1. Let w0ðxÞ ¼ log 2

1þjxj2
and let p : SnnfNg ! Rn be the stereo-

graphic projection and N ¼ ð0; . . . ; 0; 1Þ a Sn be the North pole. Take any number
a a ð�l; 0ÞA ð0; 2Þ and consider two functions K ; j a ClðRnÞ such thatZ

Rn

j dx ¼ gn :¼
ðn� 1Þ!

2
jSnj;ð11Þ

aK > 0 everywhere in Rn and whenever a < 0 then jKj > de�djxj p for some d > 0,
0 < p < n. If both of Ke�nw0 and je�nw0 can be extended as C2nþ1 function on
Sn via the stereographic projection p then the problem

ð�DÞ
n
2w ¼ KenðwþcwÞ � aj in Rn; cw :¼ � 1

n
log

� 1

agn

Z
Rn

Kenw dx
�
;ð12Þ

has at least one solution w a ClðRnÞBLn
2
ðRnÞ (in the sense of Definition 1.1) so

that limjxj!l wðxÞ a R.

Now the proof of Theorem 1.1 and Theorem 1.2 follows at once by taking

u :¼ �Pþ au0 þ wþ cw;

where u0 a ClðRnÞ is given by Lemma 2.2 with k ¼ 2nþ 3, w is the solution in
Theorem 2.1 with j ¼ ð�DÞ

n
2u0 which satisfies (11) thanks to Lemma 2.3, and

K :¼ signðaÞðn� 1Þ!e�nPþnau0 . Notice that Ke�nw0 can be extended smoothly on
Sn via the stereographic projection p where as je�nw0 can be extended as a C2nþ1

function.

Lemma 2.2. For every positive integer k there exists u0 a ClðRnÞ such that

u0ðxÞ ¼ log
1

jxj for jxjb 1; jDað�DÞ
n
2u0ðxÞja

C

jxj2nþkþjaj for xA 0;ð13Þ

for any multi-index a a Nn.

Proof. Inductively we define

vjðxÞ ¼
Z x1

0

vj�1ððt; xÞÞ dt; for x ¼ ðx1; xÞ a R� Rn�1; j ¼ 1; 2; . . . ; k;
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where

v0ðxÞ ¼ log
1

jxj :

Let w a ClðRnÞ be such that

wðxÞ ¼ 0 for jxja 1
2

1 for jxjb 1:

�
We claim that u0 ¼ qk

qxk
1

ðwvkÞ satisfies (13). It is easy to see that u0ðxÞ ¼ log 1
jxj for

jxjb 1. By Lemma A.1 1
gn
ð�DÞ

n�1
2 qk

qxk
1

vk is a fundamental solution of ð�DÞ
1
2 on

Rn and hence for xA 0, ð�DÞ
1
2ð�DÞ

n�1
2 qk

qxk
1

vkðxÞ ¼ 0. For jxj > 2 using integration

by parts we compute

ð�DÞ
n
2u0ðxÞ ¼ ð�DÞ

1
2ð�DÞ

n�1
2

qk

qxk
1

ðwvk � vkÞðxÞ

¼ Cn

Z
jyj<1

ð�DÞ
n�1
2 qk

qyk
1

ðwvk � vkÞðyÞ

jx� yjnþ1
dy

¼ Cn

Z
jyj<1

ðwvk � vkÞðyÞ
qk

qyk
1

ð�DÞ
n�1
2

� 1

jx� yjnþ1

�
dy;

and

Dað�DÞ
n
2u0ðxÞ ¼ Cn

Z
jyj<1

ðwðyÞvkðyÞ � vkðyÞÞDa
x

qk

qyk
1

ð�DÞ
n�1
2

� 1

jx� yjnþ1

�
dy:

Hence

jDað�DÞ
n
2u0ðxÞjaC

kvkkL1ðB1Þ

jxj2nþkþjaj : r

Lemma 2.3. Let u0 a ClðRnÞ be as given by Lemma 2.2 for a given k a N.
Then ð�DÞ

n
2u0 satisfies (11), that is,Z

Rn

ð�DÞ
n
2u0ðxÞ dx ¼ gn:

Proof. Let h a ClðRnÞ be such that

hðxÞ ¼ 1 if jxja 1

0 if jxjb 2:

�
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We set hkðxÞ ¼ h
�
x
k

�
. Then noticing that ð�DÞ

n
2u0 a L1ðRnÞ one hasZ

Rn

ð�DÞ
n
2u0ðxÞ dx ¼ lim

k!l

Z
Rn

ð�DÞ
n
2u0ðxÞhkðxÞ dx

¼ lim
k!l

Z
B1

�
u0ðxÞ � log

1

jxj

�
ð�DÞ

n
2hkðxÞ dxþ gn

¼ gn;

where in the second equality we used the fact that 1
gn
log 1

jxj is a fundamental

solution of ð�DÞ
n
2 and the third equality follows from the locally uniform

convergence of ð�DÞ
n
2hk ! 0. r

It remains to prove Theorem 2.1. In order to do that we recall the definition
of HnðSnÞ.

Definition 2.1. Let nb 3 be an odd integer. Let fYm
l a ClðSnÞ : 1ama

Nl ; l ¼ 0; 1; 2; . . .g be a orthonormal basis of L2ðSnÞ where Ym
l is an eigenfunc-

tion of the Laplace–Beltrami operator �Dg0 (g0 denotes the round metric on Sn)
corresponding to the eigenvalue ll ¼ lðl þ n� 2Þ and Nl is the multiplicity of ll
(see [16, p. 68]). The space HnðSnÞ is defined by

HnðSnÞ ¼ fu a L2ðSnÞ : kuk _HHnðS nÞ < lg;

where for any

u ¼
Xl
l¼0

XNl

m¼1

um
l Y

m
l

we set

kuk2_HHnðS nÞ :¼
Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�Yn�3
2

k¼0

ðll þ kðn� k � 1ÞÞ2ðum
l Þ

2:

Notice that the norm kuk2_HHnðS nÞ is equivalent to the simpler norm kuk2 :¼Pl
l¼0

PNl

m¼1 l
n
l ðum

l Þ
2, but has the advantage of taking the form

kuk _HHnðS nÞ ¼ kPn
g0
ukL2ðS nÞ;

where for n odd the Paneitz operator Pn
g0

can be defined on HnðSnÞ by (see for
instance [4] and the re¤erences there in)

Pn
g0
u ¼

Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�1
2
Yn�3

2

k¼0

ðll þ kðn� k � 1ÞÞum
l Y

m
l :
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Since the operator Pn
g0
is positive we can define its square root, namely

ðPn
g0
Þ
1
2u :¼

Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�1
4
Yn�3

2

k¼0

ðll þ kðn� k � 1ÞÞ
1
2um

l Y
m
l ; u a H

n
2ðSnÞ;

where the space H
n
2ðSnÞ is defined by

H
n
2ðSnÞ :¼

(
u a L2ðSnÞ :

Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�1
2

�
Yn�3

2

k¼0

ðll þ kðn� k � 1ÞÞðum
l Þ

2 < l

)
;

endowed with the norm

kuk2
H

n
2ðS nÞ :¼ kuk2L2ðS nÞ þ kuk2_HHn

2ðSnÞ

:¼ kuk2L2ðS nÞ þ kðPn
g0
Þ
1
2uk2L2ðS nÞ:

Definition 2.2. Let f a H�n
2ðSnÞ the dual of H

n
2ðSnÞ. A function u a H

n
2ðSnÞ

is said to be a weak solution of

Pn
g0
u ¼ f ;

if Z
S n

ðPn
g0
Þ
1
2uðPn

g0
Þ
1
2j dV0 ¼ 3 f ; j4; for every j a H

n
2ðSnÞ:ð14Þ

The following estimate of Beckner is crucial in the proof of Theorem 2.1.

Theorem 2.4 ([1]). For every u a H
n
2ðSnÞ one has

log
� 1

jSnj

Z
Sn

eu�u dV0

�
a

1

2jSnjn!

Z
S n

jðPn
g0
Þ
1
2uj2 dV0; u :¼ 1

jSnj

Z
Sn

u dV0:

Proof of Theorem 2.1. Let ~KK ¼ K � p, j1 ¼ je�nw0 and ~jj1 ¼ j1 � p. Define
the functional J on H

n
2ðSnÞ by

JðwÞ :¼
Z
S n

� 1

2
jðPn

g0
Þ
1
2wj2 þ a ej1j1w�dV0 �

agn
n

log
�Z

Sn

j ~KK jenwe�nw0�p dV0

�
:

Using Theorem 2.4 we bound
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log
�Z

Sn

j ~KKjenwe�nw0�p dV0

�
ð15Þ

¼
�
log

� 1

jSnj

Z
S n

enw�nwj ~KK je�nw0�p dV0

�
þ nwþ C

�
a log

� 1

jSnj

Z
Sn

enw�nw dV0

�
þ logðk ~KKe�nw0�pkLlÞ þ nwþ C

a
n2

2jSnjn!

Z
Sn

jðPn
g0
Þ
1
2wj2 dV0 þ nwþ C:

Since for any c a R Jðwþ cÞ ¼ JðcÞ we can assume w ¼ 0. Then from (15) we
have

JðwÞbmin

�
1

2
;
� 1

2
� agn

n

n2

2jSnjn!|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
¼ð2�aÞ=4

��
kwk2_HHn

2
� ekwk2_HHn

2
� 1

e
k~jj1k

2
L2 � C;

where 0 < e < 1
2 is su‰ciently small so that 2�a

4 � e > 0 and for a < 0 using
jKj > de�djxj p one has

log
�Z

Sn

j ~KKjenwe�nw0�p dV0

�
b

1

jSnj

Z
Sn

logðj ~KK je�nw0�pÞ dV0 þ nwþ logjSnjb�C:

Thus a minimizing sequence fwkg of J with wk ¼ 0 is bounded in _HH
n
2ðSnÞ. With

the help of Poincaré’s inequality

kw� wkL2ðS nÞ a kðPn
g0
Þ
1
2wkL2ðSnÞ; for every w a H

n
2ðSnÞ;

which easily follows from the definition of kðPn
g0
Þ
1
2wkL2ðS nÞ, we conclude that the

sequence fwkg is bounded in H
n
2ðSnÞ. Then up to a subsequence wk converges

weakly to u for some u a H
n
2ðSnÞ. From the compactness of the map v 7! ev

from H
n
2ðSnÞ to LpðSnÞ for any p a ½1;lÞ (for a simple proof see Proposition 7

in [9] which holds in higher dimension as well) we have (up to a subsequence)

lim
k!l

log
�Z

Sn

j ~KK jenwke�nw0�p dV0

�
¼ log

�Z
S n

j ~KKjenue�nw0�p dV0

�
:

Moreover from the weak convergence of wk to u we have

lim
k!l

Z
S n

~jj1wk dV0 ¼
Z
Sn

~jj1u dV0 and kuk
H

n
2ðSnÞ a lim inf

k!l
kwkkHn

2ðS nÞ;

and from the compact embedding H
n
2ðSnÞ ,! L2ðSnÞ we get

lim
k!l

kwkkL2ðS nÞ ¼ kukL2ðS nÞ:
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Thus kðPn
g0
Þ
1
2ukL2ðS nÞ a lim infk!lkðPn

g0
Þ
1
2wkkL2ðS nÞ which implies that u is a

minimizer of J and hence u is a weak solution of (in the sense of Definition 2.2)

Pn
g0
uþ a ej1j1 ¼ agnR

S n
~KKenue�nw0 dV0

~KKe�nw0�penu ¼: C0
~KKe�nw0�penu:

Since ej1j1 a C2nþ1ðSnÞ and ~KKe�nw0�p a ClðSnÞ we have

Pn
g0
u ¼ C0

~KKe�nw0�penu � a ej1j1 a L2ðSnÞ;

and by Lemma 2.5 below u a HnðSnÞ and a repeated use of Lemma 2.6 gives
u a C2nþ1ðSnÞ.

We set w :¼ u � p�1 and wk :¼ uk � p�1 where uk a ClðSnÞ be such that

uk �����!C 2nþ1ðS nÞ
u. It is easy to see that ð�DÞ

n
2wk ���!C 0ðRnÞ ð�DÞ

n
2w and Pn

g0
uk ���!C 0ðS nÞ

Pn
g0
u

which easily follows from

Pn
g0
uk ����!Hnþ1ðS nÞ

Pn
g0
u and Hnþ1ðSnÞ ,! C0ðSnÞ:

Now using the following identity of T. Branson (see [2])

ð�DÞ
n
2ðv � p�1Þ ¼ enw0ðPn

g0
vÞ � p�1 for every v a ClðSnÞ;

we get

ð�DÞ
n
2w ¼ ð�DÞ

n
2ðu � p�1Þ ¼ enw0ðC0

~KKe�nw0�penu � a ej1j1Þ � p�1

¼ C0Ke
nw � aj ¼ KenðwþcwÞ � aj:

Since ð�DÞ
n
2w a L1

2
ðRnÞBC2nþ1ðRnÞ we have

ð�DÞ
nþ1
2 w ¼ ð�DÞ

1
2ð�DÞ

n
2w a C2nðRnÞ;

and by bootstrap argument we conclude that w a ClðRnÞ. r

The following lemma is probably known. Since we could not find a precise
re¤erence for this, we give a proof.

Lemma 2.5. Let f a L2ðSnÞ. Let u a H
n
2ðSnÞ be a weak solution (in the sense of

Definition 2.2) of

Pn
g0
u ¼ f on Sn:

Then u a HnðSnÞ.

Proof. Let

u ¼
Xl
l¼0

XNl

m¼1

um
l Y

m
l and f ¼

Xl
l¼0

XNl

m¼1

f m
l Y m

l :
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Taking the test function j ¼ Ym
l in (14) we get

f m
l ¼

Z
Sn

ðPn
g0
Þ
1
2uðPn

g0
Þ
1
2j dV0 ¼

�
ll þ

� n� 1

2

�2�1
2
Yn�3

2

k¼0

ðll þ kðn� k � 1ÞÞum
l :

Hence

kPn
g0
ukL2ðS nÞ ¼

Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�Yn�3
2

k¼0

ðll þ kðn� k � 1ÞÞ2ðum
l Þ

2

¼
Xl
l¼0

XNl

m¼1

ð f m
l Þ2 < l;

and we conclude the proof. r

Lemma 2.6. Let u a HsðSnÞ and f a Hs�nþtðSnÞ for some sb n and tb 0. If u
solves

Pn
g0
u ¼ f on Sn;

then u a HsþtðSnÞ.

Proof. Let

u ¼
Xl
l¼0

XNl

m¼1

um
l Y

m
l ;

and

ð�Dg0Þ
s�n
2 f ¼: h ¼

Xl
i¼0

XNi

j¼1

h
j
i Y

j
i ;

where for any r > 0

ð�Dg0Þ
r
v ¼

Xl
l¼0

XNl

m¼1

vml l
r
l Y

m
l for v ¼

Xl
l¼0

XNl

m¼1

vml Y
m
l a H 2rðSnÞ:

Then

ð�Dg0Þ
s�n
2 Pn

g0
u ¼ h on Sn:ð16Þ

Multiplying both sides of (16) by Y i
j and integrating on Sn one has

�
lj þ

� n� 1

2

�2�1
2
Yn�3

2

k¼0

ðlj þ kðn� k � 1ÞÞl
s�n
2
j ui

j ¼ hi
j :

11existence of entire solutions to a fractional liouville equation in Rn



Since h a HtðSnÞ we have

Xl
l¼0

XNl

m¼1

�
ll þ

� n� 1

2

�2�Yn�3
2

k¼0

ðll þ kðn� k � 1ÞÞ2ls�n
l l t

l ðum
l Þ

2 < l;

and hence u a HsþtðSnÞ. r

A. Appendix

Lemma A.1 (Fundamental solution). For nb 3 odd integer the function

FðxÞ :¼
�
n�3
2

�
!

2p
nþ1
2

1

jxjn�1
¼ 1

gn
ð�DÞ

n�1
2 log

1

jxj

is a fundamental solution of ð�DÞ
1
2 in Rn in the sense that for all f a L1ðRnÞ we

have F � f a L1
2
ðRnÞ and for all j a SðRnÞZ

Rn

ð�DÞ
1
2ðF � f Þj dx :¼

Z
Rn

ðF � f Þð�DÞ
1
2j dx ¼

Z
Rn

f j dx:ð17Þ

Proof. To show F � f a L1
2
ðRnÞ we boundZ

Rn

jF � f ðxÞj
1þ jxjnþ1

dxaC

Z
Rn

1

1þ jxjnþ1

�Z
Rn

1

jx� yjn�1
j f ðyÞj dy

�
dxð18Þ

¼ C

Z
Rn

j f ðyÞj
�Z

Rn

1

1þ jxjnþ1

1

jx� yjn�1
dx

�
dy

aC

Z
Rn

j f ðyÞj
�Z

B1

dx

jxjn�1
þ
Z
Rn

dx

1þ jxjnþ1

�
dy

aCk f kL1ðRnÞ:

If f a Cl
c ðRnÞ then (17) is true by Theorem 5.9 in [10]. For the general case

f a L1ðRnÞ choose fk a Cl
c ðRnÞ such that fk ! f in L1ðRnÞ. Then using (18)

with f C fk � f one hasZ
Rn

jF � ð fk � f Þj jð�DÞ
1
2jj dxaC

Z
Rn

jF � ð fk � f ÞðxÞj
1þ jxjnþ1

dx

aCk fk � f kL1ðRnÞ ! 0;

that is Z
Rn

ðF � fkÞð�DÞ
1
2j dx !

Z
Rn

ðF � f Þð�DÞ
1
2j dx:

12 a. hyder



Now the proof follows fromZ
Rn

ðF � fkÞð�DÞ
1
2j dx ¼

Z
Rn

fkj dx !
Z
Rn

f j dx: r

Proof of the following Proposition can be found in [7].

Proposition A.2. For any s > 0 and j a SðRnÞ we have

jð�DÞsjðxÞja C

jxjnþ2s
:
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