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Abstract. — We consider a boundary value problem driven by the fractional p-Laplacian

operator with a bounded reaction term. By means of barrier arguments, we prove Hölder regularity
up to the boundary for the weak solutions, both in the singular (1 < p < 2) and the degenerate

(p > 2) case.
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1. Introduction and main result

In this short note we summarize some new results, whose full proofs are displayed
in the forthcoming paper [6]. Our aim is to study regularity of the minimizers of
the functional

u 7! 1

p

Z
RN�RN

juðxÞ � uðyÞj p

jx� yjNþps
dx dy�

Z
W

fu dx

over the functions u a Ws;pðRNÞ such that u ¼ 0 a.e. in Wc. Here and in the se-
quel, WHRN (N > 1) is a bounded domain with a C1;1 boundary qW, p a ð1;lÞ
and s a ð0; 1Þ are real numbers, and f a LlðWÞ. The notion of minimizer of the
above functional corresponds to that of a weak solution of the Dirichlet-type
boundary value problem

ð�DÞspu ¼ f in W

u ¼ 0 in Wc;

�
ð1:1Þ

where ð�DÞsp is the s-fractional p-Laplacian operator, defined pointwisely for
su‰ciently smooth u’s by

ð�DÞspuðxÞ ¼ 2 lim
e!0þ

Z
Bc
e ðxÞ

juðxÞ � uðyÞj p�2ðuðxÞ � uðyÞÞ
jx� yjNþps

dy:ð1:2Þ

1The purpose of this paper is to announce and present results which are to appear (see reference
[6] in the paper).



The operator in problem (1.1) is both non-local and non-linear. It embraces, as a
special case, the well-known fractional Laplacian ð�DÞs (p ¼ 2), as well as non-
linear singular (p < 2) and degenerate (p > 2) cases.

Interior regularity results are not new for problems of the type (1.1): see for
instance [1], [3], [7], and [8]. Most results, providing Hölder regularity even for
more general operators, are based on Caccioppoli-type or logarithmic estimates,
non-local Harnack inequalities, and (in the case of [8]) a Krylov-type approach.
Interior and boundary regularity results involving fully non-linear, uniformly
elliptic non-local operators, are obtained in [2] and [12] respectively. Boundary
regularity for degenerate or singular problems such as (1.1), on the other hand,
is still a terra incognita.

In the linear case p ¼ 2 with f a LlðWÞ, the global behavior of solutions is
well understood. In particular, we focus on the results of [10]: CsðWÞ regularity
is obtained for the weak solutions, and is proved to be optimal by means of
explicit examples, while higher regularity, namely C bðWÞ for any b a ð0; 2sÞ, is
achieved in the interior. Furthermore, a detailed analysis of the boundary behav-
ior of the solution u reveals that u=ds is Hölder continuous as well in W, where

dðxÞ ¼ distðx;WcÞ:

The study of boundary regularity is particularly important in view of applications
to problems with a non-linear reaction f ðx; uÞ, as it allows to prove fractional
versions of the Pohozaev identity [11] and of the Brezis–Nirenberg characteriza-
tion of local minimizers in critical point theory [4, 5].

Our long-term aim is to extend to the non-linear case pA 2 these latter results,
which is also the reason why we focus on weak solutions rather than other types
of generalized (e.g. viscosity) solutions. A first, but important, step towards such
aim consists in proving global Hölder regularity for problem (1.1).

Our main result is the following:

Theorem 1.1. There exist a a ð0; 1Þ and CW > 0, depending only on N, p, s, with
CW also depending on W, such that, for all weak solution u a Ws;pðRNÞ of problem
(1.1), u a C aðWÞ and

kuk
C aðWÞ aCWk f k

1
p�1

LlðWÞ:

Our method di¤ers from those of the aforementioned papers by the fact that we
do not use ‘hard’ regularity theory, but we prefer to employ rather elementary
methods based on barriers, a comparison principle from [9], and a special ‘non-
local lemma’ describing how ð�DÞspu changes in the presence of a perturbation of
u supported away from W. We shall divide our study in two main steps:

(a) Interior regularity: we prove a weak Harnack inequality for positive solu-
tions, then we localize it and develop a strong induction argument to achieve
local C a bounds (a a ð0; sÞ) with a multiplicative constant which may blow
up approaching qW;
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(b) Boundary regularity: we find an explicit solution for ð�DÞspu ¼ 0 on the half-
space, then, by means of a variable change, we produce an upper barrier
near qW and by comparison we estimate u by a multiple of ds near qW.
Note that, due to the non-linear nature of the problem, we cannot use frac-
tional Kelvin transform.

Step (b) allows us to stabilize the constant of step (a) as we approach the bound-
ary, thus yielding the conclusion. In view of possible future developments, we
remark here that the non-optimal Hölder exponent a is the outcome of interior
regularity rather than of the boundary behavior. In fact, it is reasonable to
expect Cs-interior regularity, which would ensure Cs-global regularity at once.

2. Preliminary results and notation

Let U JRN be open, not necessarily bounded. First, for all measurable
u : U ! R we define the Gagliardo seminorm

½u� p
W s; pðUÞ ¼

Z
U�U

juðxÞ � uðyÞj p

jx� yjNþps
dx dy;

then we introduce some Sobolev-type function spaces:

Ws;pðUÞ ¼ fu a LpðUÞ : ½u�W s; pðUÞ < lg; kukW s; pðUÞ ¼ kukL pðUÞ þ ½u�W s; pðUÞ;

W
s;p
0 ðUÞ ¼ fu a Ws;pðRNÞ : u ¼ 0 a:e: in U cg; kukW s; p

0
ðUÞ ¼ ½u�W s; pðUÞ;

W�s;p 0 ðUÞ ¼ ðWs;p
0 ðUÞÞ�; 1

p
þ 1

p 0 ¼ 1;

~WWs;pðUÞ ¼
�
u a L

p
locðR

NÞ : u a Ws;pðVÞ for some V UU ; and

Z
RN

juðxÞj p�1

ð1þ jxjÞNþps
dx < þl

�
:

If U is unbounded, then the space ~WWs;p
loc ðUÞ contains the functions u a L

p
locðRNÞ

such that u a ~WWs;pðU 0Þ for all U 0TU . The non-local tail for a measurable
u : RN ! R outside a ball BRðxÞ is

Tailðu; x;RÞ ¼
�
Rps

Z
Bc
R
ðxÞ

juðyÞj p�1

jx� yjNþps
dy

� 1
p�1

:

For all bounded U and all L a W�s;p 0 ðUÞ, by a weak solution of ð�DÞspu ¼ L in
U we will mean a function u a ~WWs;pðUÞ such that, for all j a W

s;p
0 ðUÞ,

Z
U�U

ðuðxÞ � uðyÞÞ p�1ðjðxÞ � jðyÞÞ
jx� yjNþps

dx dy ¼ LðjÞð2:1Þ
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(we denote a p�1 ¼ jaj p�2
a for all a a R). We remark that the left-hand side

of (2.1) is finite and continuous with respect to j, since u a ~WWs;pðUÞ. If U is
unbounded, u a ~WWs;p

loc ðUÞ is a weak solution if it is so in any U 0 TU . Corre-
sponding notions of weak super- and sub-solution can be given.

Though we are mainly concerned with weak solutions, we also define a no-
tion of strong solution: if f a L1

locðUÞ, u a ~WWs;pðUÞ is said to solve ð�DÞspu ¼ f
strongly in U if

2

Z
Bc
e ðxÞ

ðuðxÞ � uðyÞÞ p�1

jx� yjNþps
dy ! f in L1

locðUÞ:ð2:2Þ

Now we introduce two major tools for our results. The first lemma enlightens a
consequence of the non-local character of ð�DÞsp:

Lemma 2.1 (Non-local lemma). Let u a ~WWs;p
loc ðUÞ be a weak (resp. strong) solu-

tion of ð�DÞspu ¼ f in U, with f a L1
locðUÞ, and v a L1

locðRNÞ satisfy

distðsuppðvÞ;UÞ > 0;

Z
U c

jvðxÞj p�1

ð1þ jxjÞNþps
dx < l:

Set for a.e. Lebesgue point x a U for u

hðxÞ ¼ 2

Z
suppðvÞ

ðuðxÞ � uðyÞ � vðyÞÞ p�1 � ðuðxÞ � uðyÞÞ p�1

jx� yjNþps
dy:

Then, uþ v a ~WWs;p
loc ðUÞ and ð�DÞspðuþ vÞ ¼ f þ h weakly (resp. strongly) in U.

Another important tool is the following, whose proof follows almost immediately
from [9]:

Theorem 2.2 (Comparison principle). Let U be bounded, and u; v a ~WWs;pðUÞ
satisfy ua v a.e. in U c and

Z
U�U

ðuðxÞ � uðyÞÞ p�1ðjðxÞ � jðyÞÞ
jx� yjNþps

dx dy

a

Z
U�U

ðvðxÞ � vðyÞÞ p�1ðjðxÞ � jðyÞÞ
jx� yjNþps

dx dy

for all j a W
s;p
0 ðUÞ, jb 0 in U. Then, ua v a.e. in U.

Remark 2.3. The pointwise definition of ð�DÞspu, even if u is smooth, is a deli-
cate issue in the singular case. Roughly speaking, if pb 2, whenever u a C2ðUÞ
the limiting procedure in (2.2) is well defined, so that formula (1.2) makes
sense. If p < 2, on the other hand, such a representation is possible only for
s < 2ðp� 1Þ=p, and in fact explicit examples can be detected, of very smooth
functions u a Cl

c ðRNÞ such that the integral in (1.2) does not converge at a
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given point. This is a well known drawback of the viscosity solution approach
for singular nonlinear equations.

3. Interior regularity

We will address the interior regularity problem with a simple proof peculiar to
non-local problems. It can be seen as an analogue for ‘‘divergence form’’ non-
local equation of the elementary proof of [13], which is restricted to non-local
operators in ‘‘non-divergence’’ form. We begin with a weak Harnack inequality
for globally non-negative super-solutions (all balls are intended as centered at 0,
except when otherwise specified).

Theorem 3.1 (Weak Harnack inequality). Let u a ~WWs;pðBR=3Þ satisfy

ð�DÞspub�K weakly in BR=3

ub 0 in RN ;

�

for some R > 0. Then,

inf
BR=4

ub s
�Z

BRnBR=2

u p�1 dx
� 1

p�1 � CðKRpsÞ
1

p�1ð3:1Þ

with s a ð0; 1Þ, C > 0, depending only on N, s, p.

Sketch of the proof. For simplicity we consider only the case pb 2, and by scal-
ing we can also assume R ¼ 1. We produce a lower barrier for u, as follows.
Pick a cut-o¤ j a ClðRNÞ taking values in ½0; 1�, such that j ¼ 1 in B1=4, j ¼ 0
in Bc

1=3, and ð�DÞspj is bounded in B1 in a weak sense. We choose s a ð0; 1Þ
(to be determined later) and set

L ¼
�Z

B1nB1=2

u p�1 dx
� 1

p�1

; w ¼ sLjþ wB1nB1=2
u:

Applying Lemma 2.1 and the elementary inequality

a p�1 � ða� bÞ p�1
b 22�pb p�1; a; bb 0;

we get weakly in B1=3

ð�DÞspðsLjÞðxÞ � ð�DÞspwðxÞ

¼
Z
B1nB1=2

ðsLjðxÞÞ p�1 � ðsLjðxÞ � uðyÞÞ p�1

jx� yjNþps
dy

b c

Z
B1nB1=2

u p�1ðyÞ
jx� yjNþps

dyb cL p�1:
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By the homogeneity properties of ð�DÞsp we thus have

ð�DÞspwa kð�DÞspjklðsLÞ p�1 � cL p�1 ¼ Lp�1ðs p�1Cj � cÞ

weakly in B1=3. Therefore either (3.1) is trivial for large C due to ub 0 in RN ,
or for suitably small s > 0 we have

ð�DÞspwa�Ka ð�DÞspu weakly in B1=3

wa u in Bc
1=3;

(

hence by Theorem 2.2 wa u in B1=3, and in particular ub sL in B1=4, which
gives (3.1). r

Remark 3.2. It is worth noting that, despite the proof being quite elementary,
the constant s in the previous weak Harnack inequality degenerates as s ! 1.
This is due to the fact that, in the previous proof,

Cj ¼ kð�DÞspjklU
1

1� s

as s ! 1, however regular j is. This gives sU ð1� sÞ1=ðp�1Þ and as a conse-
quence, all the following Hölder estimates blow up as s ! 0. More involved
proofs (see e.g. [3]), closely related to the classical regularity approach for local
non-linear variational equations, can however give Hölder estimates which are
stable when s ! 1.

Now we can prove a local Hölder estimate for bounded weak solutions on a
ball:

Theorem 3.3 (Local Hölder regularity). Let u a ~WWs;pðB2RÞBLlðB2RÞ satisfy
jð�DÞspujaK weakly in B2R, R > 0. Then

½u�C aðBRÞ aCððKRpsÞ
1

p�1 þ kukLlðB2RÞ þ Tailðu; 0; 2RÞÞR�a;

with a a ð0; s� and C > 0 depending on N, s, p, where ½u�C aðBRÞ is the C aðBRÞ-
seminorm.

Sketch of the proof. First we need to localize Theorem 3.1, that is, to prove a
weak Harnack inequality for super-solutions which are non-negative in a ball
only. If v a ~WWs;pðBR=3Þ satisfies

ð�DÞspvb�K weakly in BR=3

vb 0 in BR;

�

then we may apply Lemma 2.1 to vþ (its positive part), producing a tail term
depending on v� (the negative part). Using Theorem 3.1, we see that for all

20 a. iannizzotto, s. j. n. mosconi and m. squassina



e > 0 there exists Ce > 0 (depending also on N, p, s) such that

inf
BR=4

vb s
�Z

BRnBR=2

v p�1 dx
� 1

p�1 � CðKRpsÞ
1

p�1 � e sup
BR

v� Ce Tailðv�; 0;RÞ;ð3:2Þ

again with s a ð0; 1Þ, C > 0 depending only on N, p, s. We then use a strong
induction argument to produce two sequences ðmjÞ, ðMjÞ, with mj non-decreasing
and Mj non-increasing, such that for all j a N

mj a inf
B
R=4 j

ua sup
B
R=4 j

uaMj; Mj �mj ¼ l
� R

4 j

�a
;

with a a ð0; 1Þ depending only on N, s, p and l > 0 depending on u. This is done
by applying (3.2) to the functions u�mj, Mj � u in BR=4 j , where they are both
non-negative, in the inductive step. Then, we obtain the following oscillation
estimate for all r a ð0;RÞ:

osc
Br

uaCððKRpsÞ
1

p�1 þ kukLlðBRÞ þ Tailðu; 0;RÞÞ r
a

Ra
;ð3:3Þ

with C > 0 depending on N, s, p. A standard argument then provides the
claimed estimate. r

4. Boundary regularity and conclusion

In this final section we turn back to weak solutions of (1.1). First, by applying
Theorem 2.2 to u and a multiple of the weak solution c a W

s;p
0 ðB1Þ of

ð�DÞspc ¼ 1 in B1

c ¼ 0 in Bc
1;

�

we prove the following:

Theorem 4.1 (A priori bound). Let u a W
s;p
0 ðWÞ satisfy jð�DÞspujaK weakly

in W. Then

kukLlðWÞ a ðCdKÞ
1

p�1;

with Cd > 0 depending on N, s, p, and d ¼ diamðWÞ.

Now we produce a local upper barrier. We set eN ¼ ð0; . . . ; 0; 1Þ, RN
þ ¼

fx a RN : x � eN > 0g.

Lemma 4.2. There exists w a CsðRNÞ, r > 0, a a ð0; 1Þ, c > 1 such that

ð�DÞspwb a weakly in BrðeNÞnB1

c�1ðjxj � 1Þs awðxÞa cðjxj � 1Þs in RN :

(
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Sketch of the proof. We divide our argument in four steps:

(a) We find an explicit solution on a half-space: namely, uNðxÞ ¼ ðxNÞsþ belongs
in ~WWs;p

loc ðRN
þ Þ and satisfies ð�DÞspuN ¼ 0 both strongly and weakly in RN

þ .
(b) For all R > 0 big enough we find a di¤eomorphism F a C1;1ðRN ;RNÞ such

that FðxÞ ¼ x outside a ball, mapping 0 to xR and the plane fxN ¼ 0g to
qBRð~xxRÞ locally around 0 (xR, ~xxR on the positive and negative eN-semiaxes,
respectively), and satisfying further kF� IkC 1; 1 aC=R.

(c) We prove stability of ð�DÞsp under C1;1 changes of variable of the type above:
setting vN ¼ uN �F�1, we see that ð�DÞspvN ¼ g weakly in FðRN

þ Þ, for some
g a LlðRNÞ with kgkLlðRN Þ < C=R.

(d) We truncate vN at a convenient heigth M > 0, i.e., we set v ¼ maxfvN ;Mg,
and we apply Lemma 2.1 to obtain ð�DÞspvb b weakly in FðRN

þ ÞnB2ðxRÞ
(b > 0).

By scaling and translating v, we find w as required. r

The barrier w is used to prove an estimate of weak solutions, near qW, by means
of a multiple of ds:

Theorem 4.3. Let u a W
s;p
0 ðWÞ satisfy jð�DÞspujaK weakly in W. Then for

a.e. x a W

juðxÞja ðCWKÞ
1

p�1dsðxÞ;

with CW > 0 depending on N, s, p, and W.

Sketch of the proof. We may reduce to the case K ¼ 1. By Theorem 4.1, the
desired estimate is easily obtained away from qW. Due to the reguarity of qW,
we can find r > 0 such that in the set

Wr ¼ fx a W : dðxÞ < rg

d decreases linearly on segments normal to qW. Fix x1 a Wr and denote x0 its
unique metric projection on qW. Let w be as in Lemma 4.2. By scaling and
translating w, we construct ~ww a CsðRNÞ such that ~wwaCds on the line segment
½x0; x1�, and moreover

ð�DÞspua 1a ð�DÞsp ~ww weakly in Brðx0ÞBW

ua ~ww in ðBrðx0ÞBWÞc;

�

with a small r < jx0 � x1j. By Theorem 2.2 we see that uðx1ÞaCdsðx1Þ. An
analogous argument applies to �u, yielding the conclusion. r

Remark 4.4. As a byproduct, by arguments analogous to those displayed
in steps (a)–(c) above, we prove that, for convenient r;K > 0, we have
jð�DÞspd

sjaK both weakly and strongly in Wr. In fact, it can be proved that

ð�DÞspd
s a C bðWrÞ for some b a ð0; 1Þ, which is an interesting information, as it
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shows that the boundary behavior of weak solutions in the general case p > 1 is
similar to that in the linear case p ¼ 2 (see [10, Lemma 3.9]).

We are now ready to conclude:

Sketch of the proof of Theorem 1.1. Set K ¼ k f kLlðWÞ, so jð�DÞspujaK weakly
in W. By Theorem 4.1, we only need to prove our estimate on the Hölder
seminorm. Recalling Theorem 3.3, by a covering argument we find a a ð0; s�
(depending only on N, s, p) and, for all W 0

TW, a constant C > 0 (depending

also on W 0) such that u a C aðW 0Þ and ½u�
C aðW 0Þ aCK

1
p�1.

Let r > 0 be as in the proof of Theorem 4.3. For all x1 a Wr let r ¼ dðx1Þ.
Theorem 3.3 produces the following estimate:

½u�C aðBr=2ðx1ÞÞ aCððKr psÞ
1

p�1 þ kukLlðBrðx1ÞÞ þ Tailðu; x1; rÞÞr�a:ð4:1Þ

The first term in the right-hand side of (4.1) is bounded due to aa s, ra r. For
the second term we invoke Theorem 4.3 and the inequalities dðxÞa 2ra 2r for
x a Brðx1Þ to obtain

juðxÞjr�a
aCK

1
p�1rs�a

aCK
1

p�1rs�a; Ex a Brðx1Þ:

Finally, the tail term is bounded by means of Theorem 4.3 again, together with
s-Hölder continuity of ds, thus we have from (4.1)

½u�C aðBr=2ðx1ÞÞ aCK
1

p�1 Ex1 a Wr; r ¼ dðx1Þ

with C > 0 depending on N, s, p, and W. Patching together the above estimates,
we reach the conclusion. r
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Università degli Studi di Verona

Strada le Grazie 15

I-37134 Verona, Italy

sunrajohannes.mosconi@univr.it

Marco Squassina

Dipartimento di Informatica
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