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Number Theory — Residual periodicity on the Marko¤ Surface, by Solomon
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Abstract. — A case study of arithmetic dynamics over the rationals on the Marko¤ surface

is presented, in particular the local-global dynamical property of strong residual periodicity. The dy-
namical system induced by the composition of any two of the reflections from the three special

points at infinity on the Marko¤ surface is shown to be strongly residually periodic. This residual
periodicity is explained by the existence of periodic conic sections of the Marko¤ surface with no

rational points. It is also proven that cutting these conic sections from the surface eliminates strong

residual periodicity.
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1. Introduction

1.1. The Marko¤ surface

We study the Marko¤ surface, given by the a‰ne equation

M : x2 þ y2 þ z2 ¼ 3xyzð1Þ

from an arithmetic dynamics perspective. Classically this surface was first
studied by Marko¤ [15], who proved that there are infinitely many integral
points, generated from the point ð1; 1; 1Þ by repeated applications of three special
automorphisms of the surface (see (3) below). This surface has many connections
to problems in Diophantine approximation and Diophantine geometry (e.g.,
Cassels [7], Zagier [21], Silverman [17], Baragar [3] and Corvaja and Zannier [9],
just to state a few).

In terms of dynamics over Q (as opposed to the dynamical behavior of the
integral points on M), the constant 3 in (1) can be replaced with any a a Qnf0g,
as these surfaces are all isomorphic over Q. Moreover, these isomorphisms will
only a¤ect the dynamical behavior modulo p at a finite number of primes p, so
that strong residual periodicity (see §1.2 below) is invariant under them. In fact,
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for what follows, we replace 3 with 1, to make calculations simpler; i.e., we take
M to be

M : x2 þ y2 þ z2 ¼ xyz:ð2Þ

Geometrically, the Marko¤ surface is a singular cubic surface, with a unique
singular point at ð0; 0; 0Þ. It has three lines at infinity, intersecting at three distinct
points. The following automorphisms of M are of particular interest:

f1 : ðx; y; zÞ 7! ðyz� x; y; zÞ;
f2 : ðx; y; zÞ 7! ðx; xz� y; zÞ;
f3 : ðx; y; zÞ 7! ðx; y; xy� zÞ:

ð3Þ

Each automorphism fi, i ¼ 1; 2; 3, is an involution of the surface M; i.e. f2
i ¼ id.

Geometrically, each fi is a reflection through one of the three intersection points
of the three lines at infinity of M: each line (not at infinity) going through one of
the three points, intersects the surface M at two other points (counted with mul-
tiplicity); the respective automorphism fi interchanges between these two points.
Together with the projective automorphisms of the surface, these reflections gen-
erate the group A of birational automorphisms of the (projective closure of the)
surface that restrict to automorphisms on the a‰ne part of the surface. The sub-
group of A generated by f1, f2, f3 is isomorphic to the free product

3f14 � 3f24 � 3f34:ð4Þ

In particular, the product of any two of the three reflections is an automorphism
of infinite order of the Marko¤ surface (cf. Èl’-Huti [10]).

Cantat and Loray [6] and Cantat [5] studied holomorphic and real dynamics
of the automorphisms of a family of surfaces of the form

SðA;B;C;DÞ : x
2 þ y2 þ z2 þ xyz ¼ Axþ Byþ CzþDð5Þ

(the Marko¤ surface is the case A ¼ B ¼ C ¼ D ¼ 0 with a change of variables).
In particular, they proved that the only real periodic point of automorphisms
of infinite order of the Marko¤ surface, is the fixed and singular point ð0; 0; 0Þ
(cf. proposition 3.2 and §5.1 in [6] and table 1 in [5]).

In this article we study the arithmetic dynamics of automorphisms of the form
fifj (for distinct i and j) of the Marko¤ surface, and obtain results on a local-
global arithmetic dynamics property called strong residual periodicity, which is
explained in the next subsection.

1.2. Residual periodicty and main results

We define an arithmetic-geometric dynamical system to be a pair D ¼ ðX ; f Þ,
where X JPN is a quasiprojective variety defined over a number field K=Q,
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with a given embedding in projective space, and f : X ! X is an endomorphism
of X . The dynamics of this system are induced by iterating f on rational points
P a XðKÞ, i.e. the orbits

P; f ðPÞ; f ð f ðPÞÞ; f ð f ð f ðPÞÞÞ; . . . :ð6Þ

A point P a X ðKÞ is called periodic if f nðPÞ ¼ P for some positive integer n. The
minimal such n is called the exact period of P.

For all but finitely many primes in the number field K (i.e., for all primes
of good reduction for both X and f , cf. Silverman [18], Hutz [11, §2] and
Bandman, Grunewald and Kunyavskiı̆ [2, §6]), we can reduce the dynamical
system D modulo p, to obtain a residual dynamical system Dp ¼ ðXp; fpÞ de-
fined over the residue field Fp. We can then compare the dynamics of the
‘‘global’’ system D, and the dynamics of all (but finitely many of ) the ‘‘local’’
systems Dp.

A periodic point P a X ðKÞ of period n guarantees the existence of periodic
points of period at most n in all but finitely many residual systems (In fact much
more can be said, cf. Silverman [18, Theorem 2.21] and Hutz [11]). The converse
(in a similar vein to counterexamples to the Hasse principle, cf. Cohen [8, §5.7]) is
false however, as can be seen from the example of the dynamical system induced
by the polynomial

f ðxÞ ¼ ðx2 � 2Þðx2 � 3Þðx2 � 6Þ þ xð7Þ

on the a‰ne line A1
Q; this system has no Q-periodic points, but has a fixed point

modulo every prime p a Z (cf. Bandman, Grunewald and Kunyavskiı̆ [2] for
details).

We give a definition generalizing the property shown in the last example:

Definition 1. Let D ¼ ðX ; f Þ be an arithmetic-geometric dynamical system
defined over a number field K and let F be an algebraic subset of X also defined
over K (we call F the forbidden set). We say that D is strongly residually periodic
(with respect to K and F) if there exist a positive integer M and a finite set
of primes S in K , such that for any prime p B S the residual system Dp has a
Fp-periodic point P of period at most M and such that P is not in the reduction
modulo p of the forbidden set F.

If D is strongly residually periodic with a bound M, we denote for short that
D is SRPðMÞ. We also modify the definition of a dynamical system by adding
a third component: D ¼ ðX ; f ;FÞ where X is the variety, f is the endomorphism
and F is the chosen forbidden set. The companion residual systems are likewise
modified: Dp ¼ ðXp; fp;FpÞ. The introduction of the forbidden set allows us
for example to consider the dynamical system D ¼ ðA1

Q; f ðxÞ ¼ x2;F ¼ f0; 1gÞ
as being not strongly residually periodic (over Q), even though 0 and 1 are fixed
modulo every prime p in Q (proving that the system D above is not strongly
residually periodic is similar to Example 6.6 in Bandman, Grunewald and
Kunyavskiı̆ [2]).
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Strong residual periodicity was first introduced by Bandman, Grunewald and
Kunyavskiı̆ [2], and results on residual periodicity on smooth cubic surfaces were
published by the author of the present article [20]. A related study by Silverman
[19], generalized by Akbary and Ghioca [1], proved that the orbit lengths of re-
ductions of a non-periodic point cannot be bounded (in the sense of Definition 1),
implying that strong residual periodicity cannot be explained by a finite set of
rational points in XðKÞ (In fact these papers provide an asymptotic lower bound
for the growth of the residual orbit lengths with respect to the primes).

We now present the main results of this article for the automorphisms fifj
(see (3)) of the Marko¤ surface M (see (2)):

Theorem A. The dynamical system D1 ¼ ðM; fifj;F1 ¼ fð0; 0; 0ÞgÞ, where
i; j a f1; 2; 3g are distinct, is SRPð3Þ over Q and the universal bound of 3 is sharp.

Theorem B. The dynamical system D2 ¼ ðM; f1f2;F2Þ, where the forbidden set

F2 ¼ MB fðz2 � 1Þ ¼ 0gA fð0; 0; 0Þg

is the union of 2 conic sections on the surface, is not strongly residually periodic
over Q.

Remark. Theorem B can be generalized to any fifj, but we state it only for
f1f2 for clarity.

Theorem B is proved by showing that for a specific increasing sequence of
primes, the minimal periods of the residual systems D2;p (i.e. the minimum
of exact periods of Fp-periodic points in D2;p) are unbounded over the primes
(see Lemmas 2 and 3 in §4 below). It should be noted that the conics defined
by the hyperplane sections ze 1 are fixed under the third iteration of f1f2, but
have no Q-rational points. For a dynamical system D ¼ ðX ; f Þ we will call a
subvariety of X strongly periodic if it is fixed under some iteration of the endo-
morphism f (this terminology is not standard).

Now, the results of this article, together with the examples in [20, §9], may
make one suspect that strong residual periodicity of dynamical systems on
surfaces serves merely as an indicator for the existence of absolutely irreducible
strongly periodic curves, defined over the base field K , having only finitely many
K-rational points. As a counterexample, one may take a trivial generalization of
example (7) to the a‰ne plane by fixing a second parameter. A less trivial gener-
alization of example (7) was suggested to the author by Stéphane Lamy:

f ðx; yÞ ¼ ðy; ðy2 � 2Þðy2 � 3Þðy2 � 6Þ þ xÞ:ð8Þ

The map f is a Hénon automorphism of the a‰ne plane, and as such has no
periodic curves, i.e. curves which are invariant under some iteration of f (cf.
Bedford and Smillie [4]). However, one can check that the automorphism f has
no Q-periodic points and has a fixed point modulo every prime integer p, i.e. it is
strongly residually periodic: The first fact can be shown for example by using
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bounds on valuations as in Ingram [12]. The second fact reduces to example (7)
by looking at the diagonal x ¼ y.

2. Preliminaries

Let D ¼ ðX ; f ;FÞ be a dynamical system as in §1:2. Let s a PGLnþ1ðKÞ be
a projective automorphism that restricts to an automorphism of X , then the
linear conjugation of f by s is f s ¼ s�1 � f � s. The dynamical system Ds ¼
ðX ; f s; s�1ðFÞÞ has the same dynamics over K as D (e.g. if P a XðKÞ is a peri-
odic point of exact period n of f , then s�1ðPÞ is a periodic point of exact period n
of f s). Moreover, D is strongly residually periodic if and only if Ds is strongly
residually periodic, as their dynamical behavior may di¤er at only finitely many
primes.

It is not hard to check that all the automorphisms of the Marko¤ surface
of type fifj, for distinct i; j a f1; 2; 3g, are linearly conjugate by permuting the
variables x, y and z. Therefore it is enough to check strong residual periodicity
only for f1f2.

3. The global picture

As mentioned in the introduction, it is already known by Cantat and Loray
[6, §5.1] that the automorphism f1f2 has no periodic points defined over R, and
therefore over Q, other than ð0; 0; 0Þ. More specifically, they proved that a point
ðx; y; zÞ, defined over C, is periodic if and only it is fixed (i.e. the point ð0; 0; 0Þ) or
if z ¼e2 cosðpyÞAe2, where y is a rational number (compare with table 1
below). However, we carefully study the dynamics over Q, as it will help us in
the local analysis as well.

The automorphism f1f2 fixes the third parameter z, and the projection
p3 : ðx; y; zÞ 7! z induces a conic fibration on M, which is preserved by f1f2; i.e.
each fiber is invariant under f1f2. The action of the automorphism on each fiber
is linear.

Fixing a fiber z ¼ l, we get

f1f2ðx; y; lÞ ¼
�1 l

0 1

� �
1 0

l �1

� �
x

y

� �
¼ �1þ l2 �l

l �1

� �
x

y

� �
:ð9Þ

We denote

Al ¼
�1þ l2 �l

l �1

� �
:ð10Þ

If there exists a point ðx; yÞA ð0; 0Þ that is Al-periodic then detðAn
l � IÞ ¼ 0

for some positive integer n. We notice that the determinant of Al is 1, so that
detðAn

l Þ ¼ 1. Suppose that UAU�1 is the Jordan form of A, then detðAn
l � IÞ ¼

0 implies detððUAlU
�1Þn � IÞ ¼ 0. This in turn implies that one of the eigen-
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values of Al is a root of unity or zero, and since the determinant of Al is 1 we get
that both eigenvalues must be roots of unity. Thus the possible Jordan forms for
Al such that detðAn

l � IÞ ¼ 0 for some positive integer n are:

m 1

0 m

� �
;

m 0

0 m�1

� �
ð11Þ

where m is a root of unity and m�1 ¼ m, the complex conjugate of m. Such an Al

has infinite order if and only if its Jordan form is of the first type in (11), and since
detðAlÞ ¼ 1 this implies m ¼e1.

The characteristic polynomial of Al for any l is

flðtÞ ¼ detðtI � AlÞ ¼ t2 þ ð2� l2Þtþ 1 ¼ t2 þ dtþ 1ð12Þ

where d ¼ 2� l2 ¼ �TrðAlÞ. If l is rational then so is d, so that the minimal
polynomial of a root m of flðtÞ must divide flðtÞ. Since m is a root of unity, the
minimal polynomial is a cyclotomic polynomial of degree at most 2, and there
are only finitely many of those. We summarize them in the following table (here
rn is a chosen primitive n-th root of unity in Q):

We see that for the cases of r4 and r6 the fibers over l are not defined over Q,
so they cannot contribute rational periodic points.

If m ¼ 1 then l ¼e2, and Al ¼
3 H2

e2 �1

� �
with Jordan form

1 1

0 1

� �
. Such

an Al can only have periodic points that are fixed, and these can be checked to
have to be of the form ðx; xÞ for l ¼ 2, and ðx;�xÞ for l ¼ �2. In any case, the
fibers over l ¼e2 are ðxH yÞ2 þ 4 ¼ 0; and these are reducible over QðiÞ and
have no Q-rational points.

For m ¼ �1 we get Al ¼ �I , but the equation of the conic x2 þ y2 ¼ 0 is
reducible over QðiÞ and the only Q-rational point is ð0; 0; 0Þ, which is fixed.

Finally, for the case m ¼ r3, the two fibers over l ¼e1 are

x2 þ y2 H xyþ 1 ¼ 0:ð13Þ

These curves are geometrically irreducible and contain no rational points.

Table 1. Fibers where the roots of fl are roots of unity and d is rational

m fl d l

1 t2 � 2tþ 1 �2 e2
�1 t2 þ 2tþ 1 2 0
r3 t2 þ tþ 1 1 e1
r4 t2 þ 1 0 e

ffiffiffi
2

p

r6 t2 � tþ 1 �1 e
ffiffiffi
3

p
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By the computations above we can conclude that the system D1 (see Theorem
A) is SRP(3): First, the fibers over l ¼e1 contain rational points over Fp for any
prime pA 3. In fact, by using for instance Chevalley’s theorem (cf. Ireland and
Rosen [13, §10.2]), we know that for any prime p there exists a Fp-rational point
in the projective closure of the plane curves x2 þ y2 e xyþ 1 (the point might
be at infinity); since the curves are smooth for pA 3 they are rational, and we
get that the curves should contain pþ 1 rational points, at least one of which
is not at infinity (for the case of p ¼ 3 one can check that there are no solutions
not at infinity). Second, the automorphism f1f2 is of order 3 on these fibers

as UAlU
�1 ¼

r3 0

0 r�1
3

� �
is of order 3; therefore the Fp-rational points on the

fibers will be periodic of period dividing 3. In fact, one can check using direct

computation that the matrices Ae1 ¼
0 H1

e1 �1

� �
have no Fp-periodic points

of period 1 or 2 for pA 3, so that the Fp-rational points on the fibers are in fact
of exact period 3. This proves the first part of Theorem A.

4. The local picture

Taking the determinant commutes with reduction modulo p, so that Al has
determinant 1 modulo every prime p. The same reasoning as in the previous
section implies that we are interested in pairs ðt; dÞ a Fp

� � Fp, where Fp
�

is the group of invertible (nonzero) elements in the algebraic closure of Fp,
satisfying

t2 þ dtþ 1 ¼ 0:ð14Þ

Let ðt; dÞ a Fp
� � Fp be a solution to (14), and suppose that t has order n in Fp

�
.

Then t is a primitive n-th root of unity in Fp, so it is also a root of the n-th
cyclotomic polynomial Fn (the n-th cyclotomic polynomial Fn is the minimal
polynomial of the primitive n-th roots of unity over Q). We can assume that
gcdðp; nÞ ¼ 1, since otherwise there are no primitive n-th roots in Fp.

We recall the following fact from the algebra of finite fields (see Lidl and
Niederreiter [14, Theorem 2.47]): suppose gcdðp; nÞ ¼ 1, and let k be the order
of p in the multiplicative group of invertible elements in the ring Z=nZ; then Fn

factors over Fp into fðnÞ
k

irreducible polynomials of degree k (where f is Euler’s
totient).

We are interested in the minimal n such that t2 þ dtþ 1 and Fn have a com-
mon factor in the ring Fp½t�; suppose that this is so: if t2 þ dtþ 1 has distinct roots
then t2 þ dtþ 1 is a factor of Fn, otherwise it has a multiple roots that must be
e1. In the latter case we get either flðtÞ ¼ ðt� 1Þ2 ¼ F1ðtÞ2 or flðtÞ ¼ ðtþ 1Þ2 ¼
F2ðtÞ2. By the fact mentioned in the previous paragraph, k (the order of p
modulo n) must be either 1 or 2, so that p2C 1 ðmod nÞ, or in other words, n is
a divisor of p2 � 1. We have thus proved the following lemma:
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Lemma 1. If the residual system D2;p (see Theorem B) has a periodic point of
exact period n, then n divides p2 � 1.

It is easy to check that for any prime pb 5 we have 24 j ðp2 � 1Þ. We denote

by oðpÞ the smallest prime factor of
p2�1

24
for a prime pb 5.

Lemma 2. If pb 5 is a prime of the form p ¼ 24lþ 19, then any periodic point
of the residual system D2;p lying outside of the forbidden set F2;p has period greater
or equal to oðpÞ.

Proof. By Lemma 1 it is enough to prove that D2;p has no periodic points of
period dividing 24 for primes p of the form p ¼ 24lþ 19, lying outside the for-
bidden set. We proceed to analyze all cases for positive integers n that are factors
of 24, and check for which fibers l the polynomial flðtÞ has a common factor
with the cyclotomic polynomial FnðtÞ.

For n ¼ 1, we must have flðtÞ ¼ F1ðtÞ2 ¼ t2 � 2tþ 1. Therefore d ¼ �2 and
l ¼e2 (see §3). The fibers over l ¼e2 have Fp-rational points only if �1 is a
quadratic residue modulo p. The Jordan form of Al (for p > 2) is

1 1

0 1

� �
ð15Þ

which is of infinite order over Q, but of order p over Fp. One can see from the
Jordan form that if there are periodic points of period m < p, they must be fixed
of the form ðx; 0Þ. For l ¼e2

Al ¼
3 H2

e2 �1

� �
;ð16Þ

and one can check that there are no Fp-fixed points over the relevant fibers.
For n ¼ 2, we must have flðtÞ ¼ F2ðtÞ2 ¼ t2 þ 2tþ 1, implying that l ¼ 0;

the fiber over l ¼ 0 is geometrically reducible, and other than the point ð0; 0; 0Þ
contains Fp-rational points only when �1 is a quadratic residue modulo p. This
means that for primes of the form q ¼ 4lþ 1 there exist points of exact period 2
for large enough primes q. However, primes of the form p ¼ 24lþ 19 are not of
this form, so for these primes there are no periodic points of period 2.

For n ¼ 3, we have already seen in the previous section that the fibers over
l ¼e1 will contain points of exact period 3 for large enough primes p. These
fibers are in the (reduction of the) forbidden set of D2.

For n ¼ 4 and n ¼ 6, we have seen in the previous section that when 2 and 3
respectively are quadratic residues (for primes of the form p ¼ 8le 1 and
p ¼ 12le 1, respectively), the relevant fibers will be defined over Fp; it is easy
to check that for large enough primes they are geometrically irreducible, and
will contain Fp-periodic points of exact period 4 and 6. However, for primes of
the form p ¼ 24lþ 19, the numbers 2 and 3 are not quadratic residues.

For n ¼ 8, the only type of factor of F8ðtÞ ¼ t4 þ 1 that is of the form
t2 þ dtþ 1 is t2 þ atþ 1, where a2 ¼ 2. Since a must be in Fp, we get this type
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of factor only for primes p such that 2 is a quadratic residue, that is primes of the
form p ¼ 8le 1. We remark here that the existence of a factor of the form
t2 þ dtþ 1 does not guarantee Fp-periodic points of period 8, since the fibers
may still not be defined over Fp, so that the minimal periods may be larger.

For n ¼ 12, the cyclotomic polynomial F12ðtÞ ¼ t4 � t2 þ 1 has a factor of the
form t2 þ dtþ 1 for d ¼ b where b2 ¼ 3, but 3 is a quadratic residue mod p if
and only if p ¼ 12le 1.

For n ¼ 24, the polynomial F24ðtÞ ¼ t8 � t4 þ 1 has a factor of the required
form if and only if d ¼ g where g is a root of x4 � 4x2 þ 1. But this polynomial
has a root only for those primes p where 2 and 3 are both quadratic residues
mod p (the splitting field of x4 � 4x2 þ 1 over Q is Qð

ffiffiffi
2

p
;

ffiffiffi
3

p
Þ), which does not

happen for primes p ¼ 24lþ 19. r

Lemma 3. There exists an increasing sequence of primes ðpkÞlk¼1 such that pk is of
the form pk ¼ 24lþ 19 for any positive integer k, and

lim
k!l

oðpkÞ ¼ l:

As remarked to the author by Roger Heath-Brown, the proof of this lemma is
an easy combination of the Chinese remainder theorem and Dirichlet’s theorem.

Proof. To prove the lemma it is enough to show that for any positive integer k
there exists a prime pk such that oðpkÞ > k. Let q1 ¼ 2, q2 ¼ 3; . . . ; qr be the list
of primes up to k, and let q ¼

Qr
j¼3 qj be the product of all but the first two. The

numbers q and 6 are coprime, so by the Chinese remainder theorem (see Ireland
and Rosen [13, §3.4]) there exists a solution x ¼ a to the system of congruences

xC 5 ðmod72Þ
xC 2 ðmod qÞ

�
:

Since a and 72q must be coprime, there exists by Dirichlet’s theorem (see
Serre [16, §VI.4]) a prime pk such that pk C a ðmod72qÞ. Now 4 j pk � 1 but
pk�1
4 C 1 ðmod18Þ and 6 j pk þ 1 but

pkþ1
6 C 1 ðmod12Þ. Hence

p2
k
�1

24 is coprime
to 6. Moreover, for any prime 5a pa k we have pk C aC 2 ðmod pÞ so that

pk � 1C 1 ðmod pÞ and pk þ 1C 3 ðmod pÞ; thus
p2
k
�1

24 is coprime to p. This
implies that oðpkÞ > k. r

Theorem B now follows from Lemmas 2 and 3: Let ðpkÞlk¼1 be a sequence as
in Lemma 3; by Lemma 2 the minimal periods of the residual systems D2;pk tend
to infinity with k, so that the system D2 cannot be strongly residually periodic.

We can also conclude that the dynamical system D1 is not SRP(1) or SRP(2),
since in the proof of Lemma 2 we can see there exist periodic points for the
residual system D1;p of exact period 2 only for large enough primes of the form
p ¼ 4lþ 1, and no fixed points other than ð0; 0; 0Þ. Together with the conclusion
of the previous section, we have proved Theorem A.
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