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Abstract. — We discuss a recent approximation result for Barenblatt’s cohesive fracture energies

in the case of antiplane shear. The regularized functionals are damage energies of Ambrosio–
Tortorelli type and the approximation is obtained in the sense of G-convergence. The extension to

the general case of linearized elasticity in dimension n is still an open problem. To prepare for this
extension we study the structure of a subclass of functions of bounded deformation.
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1. Introduction

The classical variational model in Fracture Mechanics takes the form

Z
W

hðj‘ujÞ dxþ
Z
Ju

gðj½u�jÞ dHn�1 þ kjDcujðWÞð1:1Þ

in the case of antiplane shear, for a scalar displacement u : W ! R in the space
of functions with bounded variation (see for example [11]). In formula (1.1) the
three terms represent the stored energy, the energy spent to open the crack, and
the energy due to micro-cracking respectively.

The most renowned example of (1.1) is Gri‰th’s brittle fracture energy, where
h is quadratic, g is constant, and k ¼ þl, so that Dcu necessarily vanishes and
u actually is a special function of bounded variation. This functional is known as
Mumford–Shah functional in the context of image segmentation.

Another important case of (1.1) is Barenblatt’s cohesive fracture energy,
where h is chosen quadratic near the origin and linear at þl, g is concave, linear
near the origin, and grows from gð0Þ ¼ 0 to some finite value gðþlÞ representing
the energetic cost of total fracture, while k is finite and non-zero. A particular
subcase is given by Dugdale’s energy, where the surface density is precisely
gðsÞ :¼ minfs; 1g, s a ½0;þlÞ.

1This paper reports the content of a talk given by Flaviana Iurlano at ‘‘XXV Convegno Nazio-
nale di Calcolo delle Variazioni’’—Levico, 2–6 February 2015.



Both for numerical and physical applications, a very important issue is the
approximation of models as (1.1) with more regular models within the framework
of G-convergence. However an approximation of (1.1) with functionals of the
form

Z
W

feð‘uÞ dx; u a W 1;1ðWÞð1:2Þ

cannot be performed, since otherwise also the lower semicontinuous envelope of
(1.2) would G-converge to the same limit, implying in turn the convexity of (1.1).
Since G-convergence preserves convexity, the last assertion follows from the fact
that the lower semicontinuous envelope of (1.2) can be written as

Z
W

f��e ð‘uÞ dx; u a W 1;1ðWÞ;

where f��e is the convex envelope of fe.
A standard approach to provide an approximation of (1.1) is to introduce

an auxiliary variable, playing the role of regularization of the singularities of the
displacement u. In the first work of this sort, Ambrosio and Tortorelli [8, 7] show
that the elliptic functional

Z
W

�
ðv2 þ oðeÞÞj‘uj2 þ ð1� vÞ2

4e
þ ej‘vj2

�
dxð1:3Þ

G-converges in L1ðWÞ � L1ðWÞ to the Mumford–Shah functional. Though in-
spired by image segmentation problems, this result turns out to be useful also in
the mechanical framework, since the approximating functionals can be regarded
as energies for damaged materials with damage variable v (see [28, 33] and refer-
ences therein). Indeed the behavior of v as e ! 0 can be interpreted as concentra-
tion of the damage along suitable hypersurfaces, which will become cracks in the
limit.

Again in the context of image reconstruction, Alicandro, Braides, and Shah
propose in [2] (see also [3]) an approximation for functionals with more general
dependence on the opening of the jump ½u�, including in particular Barenblatt’s
energy. A key point here is that the regularizations they adopt depend on j‘uj
through an asymptotically linear function.

Contrary to the Ambrosio–Tortorelli case, these approximating functionals
are not appropriate to describe damage because of the linear growth in j‘uj of
the term representing the elastic energy. The only approximations with quadratic
bulk densities available in the literature so far have been obtained for energies
which are linear [30] or a‰ne in the jump ½u� [6, 24, 27], and have in common
that the profiles of u and v in the optimal-transition problem related to the func-
tion g can be decoupled. Let us stress also the fact that from a numerical point
of view a quadratic functional is easier to handle than a functional with linear
growth.
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Motivated by these remarks, in [19] we present a new G-convergence result
for Barenblatt’s energies using damage energy functionals introduced by [33],
hence in particular quadratic in the gradients. Our functionals, which will be
introduced precisely in Section 3, are of the type (1.3) with the only di¤erence
that the elastic coe‰cient v2 is now replaced by a function of the form f 2e ðvÞ :¼
minf1; ej2ðvÞg, where j vanishes at 0 (total damage), is nondecreasing, and
diverges for v ! 1 (undamaged material).

The limit bulk density h depends only on the asymptotic behavior of j in 1:
it starts quadratically at the origin and then proceeds linearly with a suitable
slope, while the fracture energy density g can be determined by solving a one-
dimensional vectorial optimal profile problem (see (3.4) and (3.5)). If in addition
the function j depends on the parameter e, for specific choices we recover in the
limit Dugdale’s and Gri‰th’s fracture models, and models with surface energy
density having a power-law growth at small openings (see Remark 3.3).

The proof of these results is based on several theoretical tools, such as a relax-
ation procedure in BV for functionals which are finite on the subspace SBV 2 of
functions in SBV whose approximate gradient is square integrable and whose
jump set has finite Hn�1-dimensional measure. Another important tool is an
integral representation theorem on SBV 2.

A very interesting, though involved, issue is the extension of the previous
result to the general case of linearly elastic fracture mechanics in dimension n.
In this case the displacement u is vector-valued, the gradient ‘u is replaced by
the symmetric gradient eðuÞ, and the natural space is the set of functions with
bounded deformation BD (see [35] and Section 2 below). Many fine properties
and results holding in the BV framework have a counterpart for BD (see [4]),
but in general BD functions remain less well understood. In particular the study
of lower semicontinuity and relaxation in BD is still in its beginnings (see [10, 29,
34, 26, 12, 13, 21, 9]) and integral representation results have been established
only in some special cases (see [25]). Compactness and approximation results
with more regular functions have been obtained in [10, 14, 15, 23, 31].

The aforementioned relaxation and integral representation results do not
cover the SBD2 case (the definition of SBD2 is given in analogy to SBV 2, see
Section 2 below) and therefore they are not su‰cient to extend the proof of the
G-convergence in [19] to the vector-valued case. To this aim, it is convenient to
explore more accurately the fine properties of SBD2 and its relation to BV . In
[20] we contribute to this topic studying three di¤erent problems, which will be
detailed in Section 4 below.

On the positive side, we show that a function u in SBD2 whose distributional
strain consists only of a jump part belongs to GSBV (see Theorem 4.1), and
that SBD2 functions are approximately continuous Hn�1-a.e. away from the
jump set (see Theorem 4.4). On the negative side, we construct a function which
is BD but not in SBD2, nor in GSBV , and has distributional symmetric gradient
consisting only of a jump part, and one which has a distributional symmetric
gradient consisting of only a Cantor part (see Theorems 4.2 and 4.3). Finally,
in the light of the previous results, in Subsection 4.2 we discuss the possibility
that SBD2 functions are actually of (generalized) bounded variation.
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2. Notation

Let WHRn be open. For the definitions, the notation, and the main properties
of the spaces BV , SBV , GBV , and GSBV we refer to the book [5]. We recall
that SBV 2ðWÞ is defined by

SBV 2ðWÞ :¼ fu a SBVðWÞ : ‘u a L2ðW;RnÞ and Hn�1ðJuÞ < þlg:

The space BDðWÞ of functions of bounded deformation (see [35]) is defined as
follows

BDðWÞ :¼ fu a L1ðW;RnÞ : Eu a M bðW;Rn�n
sym Þg;

where Eu :¼ ðDuþDuTÞ=2 and M b denotes the set of bounded Radon measures.
Given u a BDðWÞ, we say that x a W is a point of approximate continuity of u

if there is ~uuðxÞ a Rn such that

lim
r!0

1

LnðBrÞ

Z
BrðxÞ

juðyÞ � ~uuðxÞj dy ¼ 0:

We denote by Su the set of points x a W which are not points of approximate
continuity.

We say that x a W is a jump point of u if there are two vectors uþðxÞA
u�ðxÞ a Rn and a vector nuðxÞ a Sn�1 such that

lim
r!0

1

LnðBrÞ

Z
Bþ
r ðxÞ

juðyÞ � uþðxÞj dy ¼ lim
r!0

1

LnðBrÞ

Z
B�
r ðxÞ

juðyÞ � u�ðxÞj dy ¼ 0;

where Be
r ðxÞ ¼ BrðxÞB feðy� xÞ � nuðxÞ > 0g. Hence Ju HSu and if u a

BVðW;RnÞ it is well known that Hn�1ðSunJuÞ ¼ 0, see, for example, [5].
One crucial property of BDðWÞ functions is that the strain Eu can be decom-

posed in a part absolutely continuous with respect to the Lebesgue measure
Ln

KW, a jump part and a third part, called Cantor part,

Eu ¼ eðuÞLn
KWþ ½u�n nu þ nu n ½u�

2
Hn�1

KJu þ Ecu;

where ½u� :¼ uþ � u� is the jump of u and Ju turns out to be ðn� 1Þ-rectifiable,
see [4] for details.

In addition, the approximate di¤erentiability of BD functions has been estab-
lished in [4, Theorem 7.4]. We denote by ‘u the approximate di¤erential of
u a BDðWÞ, so that eðuÞ ¼ 1

2 ð‘uþ ð‘uÞTÞ.
The set of special functions of bounded deformation is defined by

SBDðWÞ :¼ fu a BDðWÞ : Ecu ¼ 0g
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and its subspace SBDp, for p a ð1;lÞ, by

SBDpðWÞ :¼ fu a SBDðWÞ : eðuÞ a LpðWÞ; Hn�1ðJuÞ < lg:ð2:1Þ

Concerning G-convergence, the definitions and main results can be found in
[22].

3. Damage converges to cohesive fracture

In this section we present our G-convergence result for Barenblatt’s cohesive
energy. To be precise, given a bounded open set WHRn with Lipschitz boundary
and an infinitesimal sequence ek > 0, we consider the sequence of energy func-
tionals for damaged materials Fk : L

1ðWÞ�L1ðWÞ ! ½0;þl� defined by

Fkðu; vÞð3:1Þ

:¼

Z
W

�
f 2k ðvÞj‘uj

2 þ ð1� vÞ2

4ek
þ ekj‘vj2

�
dx

if ðu; vÞ aH 1ðWÞ�H 1ðWÞ
and 0a va 1 Ln-a:e:;

þl otherwise;

8><
>:

where

fkðzÞ :¼ minf1; e
1
2

kjðzÞg; fkð1Þ ¼ 1;ð3:2Þ

and

j a C0ð½0; 1Þ; ½0;þlÞÞ is a nondecreasing function satisfying j�1ð0Þ ¼ f0g

with

lim
z!1�

ð1� zÞjðzÞ ¼ l; l a ð0;þlÞ:ð3:3Þ

In particular, the function ½0; 1Þ 7! ð1� zÞjðzÞ can be continuously extended to
z ¼ 1 with value l. The function jðzÞ :¼ z

1�z
is a prototype.

Let now F : L1ðWÞ ! ½0;þl� be defined by

FðuÞ :¼

Z
W

hðj‘ujÞ dxþ
Z
Ju

gðj½u�jÞ dHn�1 þ ljDcujðWÞ if u a GBVðWÞ;

þl otherwise;

8<
:

with h; g : ½0;þlÞ ! ½0;þlÞ given by

hðsÞ :¼ s2 if sa l=2;

ls� l2=4 if sb l=2;

�
ð3:4Þ
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and

gðsÞ :¼ inf
ða;bÞ AU s

Z 1

0

j1� bj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2ðbÞja 0j2 þ jb 0j2

q
dt;ð3:5Þ

where

U s :¼ fa; b a H 1ðð0; 1ÞÞ : 0a ba 1; að0Þ ¼ 0; að1Þ ¼ s; bð0Þ ¼ bð1Þ ¼ 1g:ð3:6Þ

In the one-dimensional setting the functional F turns out to be finite on BVðWÞ.
It is also easy to check that h and g satisfy all the properties of densities in
Barenblatt’s cohesive fracture model as discussed in the introduction.

Our main result is the following.

Theorem 3.1. Under the assumptions (3.1–3.6), the functionals Fk G-converge in
L1ðWÞ � L1ðWÞ to the functional F defined by

Fðu; vÞ :¼ FðuÞ if v ¼ 1 Ln-a:e: in W;

þl otherwise:

�

Remark 3.2. Up to a slight modification in the definition of the functionals
(3.1) a compactness result can be proved. Hence the convergence of minima and
minimizers of problems connected to (3.1) to the corrispondent quantities in the
limit is ensured by a general result of G-convergence.

Remark 3.3. By slightly changing the approximating energies Fk’s, we can
build upon the results above to obtain di¤erent models in the limit. To be precise
we are able to reach Gri‰th’s and Dugdale’s energies, and a cohesive energy with
power-law growth at small openings. Indeed, if we replace the function j in (3.2)
by a function which pointwise diverges as lk=ð1� zÞ, with lk " l, then one can
show that Gri‰th’s energy is recovered.

We now consider elastic coe‰cients of the form

fkðzÞ :¼ minf1; e
1
2

k maxfjðzÞ; akzgg:

If ak ! l and ake
1
2

k ! 0, then Dugdale’s energy is obtained, i.e., gðsÞ ¼
minf1; lsg.

Finally we consider a situation in which j diverges with exponent p > 1 close
to z ¼ 1, so that (3.3) is replaced by

lim
z!1

ð1� zÞ pjðzÞ ¼ g:

Taking

fkðzÞ :¼ min 1; e
1
2

k min
kz

1� z
; jðzÞ

� �� �
;
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one finds that the functionals G-converge to a problem of the form of (1.1). The
fracture energy g turns out to be proportional to the opening s2=ðpþ1Þ at small s.
Moreover the coe‰cient of the Cantor part is infinite, so that the e¤ective domain
of the limit problem is contained in the space GSBV .

4. A comparison between SBDp
and BV

4.1. The main results. In this section we present some fine results on SBDp func-
tions, whose definition has been given in Section 2.

The first theorem says that piecewise a‰ne functions induced by Caccioppoli
partitions have components in GSBV . For the definition and the main prop-
erties of Caccioppoli partitions we refer to [5, Section 4.4]. We call a function
u : W ! Rm Caccioppoli-a‰ne if there exist matrices Ak a Rm�n and vectors
bk a Rm such that

uðxÞ ¼
X
k

ðAkxþ bkÞwEk
ðxÞ;

where ðEkÞk is a Caccioppoli partition of W.

Theorem 4.1. Let WJRn be a bounded Lipschitz set, u : W ! Rm be
Caccioppoli-a‰ne. Then u a ðGSBVðWÞÞm HGSBVðW;RmÞ with

‘u ¼ Ak Ln-a:e: on Ek; and Hn�1ðJunJEÞ ¼ 0;

where JE ¼
S

k q
�Ek BW and q�Ek denotes the essential boundary of the set Ek (see

[5, Definition 3.60]). In particular, if m ¼ n and u a SBDðWÞ with eðuÞ ¼ 0
Ln-a.e. on W and Hn�1ðJuÞ < l then u a ðGSBVðWÞÞn HGSBVðW;RnÞ.

The second result we present goes in the opposite direction, showing that func-
tions with vanishing symmetrized strain and jump set of infinite measure are not
necessarily in the space GSBV . The proof follows an idea of [18, Theorem 1].

Theorem 4.2. For any nonempty open set WJRn there is u a SBDðWÞB
LlðW;RnÞ such that eðuÞ ¼ 0 Ln-a.e., Hn�1ðJuÞ ¼ l, and ‘u B L1ðW;Rn�nÞ. In
particular u B GBVðW;RnÞ.

In the same spirit a function u in BDnGBV for which Eu ¼ Ecu can be
constructed.

Theorem 4.3. For any nonempty open set WJRn there is u a BDðWÞB
LlðW;RnÞ such that Eu ¼ Ecu and ‘u B L1ðW;Rn�nÞ. In particular u B
GBVðW;RnÞ.

In conclusion of the section we present the following theorem concerning the
size of the set SunJu for a function u belonging to SBDpðWÞ. It is based on a
Korn–Poincaré inequality for SBDp functions (see [16]).
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Theorem 4.4. If u a SBDpðWÞ for some p > 1, with WHRn open, then
Hn�1ðSunJuÞ ¼ 0.

4.2. Discussion. As already mentioned, the space SBDpðWÞ defined in (2.1) nat-
urally appears in the variational formulation of some mathematical problems of
Mechanics of Materials, and the study of its fine properties is at the base of a
thorough understanding of those problems.

It is reasonable to expect that an SBDp function is significantly more regular
than a general BD function, due to the higher integrability of its strain and to
the finiteness Hn�1-measure of its jump set. The results known so far and those
described above seem to suggest that SBDp functions might be in fact of gen-
eralized bounded variation (and in this case also special, due to Alberti’s rank one
theorem [1]).

Let us now motivate the previous assertion discussing the possible optimality of
the aforementioned inclusion. First let us highlight that if u a BDðWÞnSBDpðWÞ
then u is not necessarily in GBVðW;RnÞ. Indeed, we recall that a generic function
u a SBDðWÞ is not necessarily of generalized bounded variation, even if Eu ¼
eðuÞLn (see [4, Example 7.7], which is based on [32]). In this last case obviously
a higher integrability of the strain would give the desired property.

However the condition eðuÞ ¼ 0 Ln-a.e. alone is not su‰cient to guarantee
that u a SBDðWÞ is of generalized bounded variation, as Theorem 4.2 shows,
but a bound on the size of the jump set has also to be assumed. Analogously
Theorem 4.3 says that also the property Ecu ¼ 0 is mandatory for our purposes.

On the contrary, one cannot expect an inclusion better than SBDpðWÞH
GSBVðW;RnÞ, to be precise one cannot hope for a higher integrability of the
gradient, a counterexample is given in [20].

In conclusion of this discussion, we mention the result proved in [17, Theo-
rem A.1]. The authors show that any u a SBDðWÞ with eðuÞ ¼ 0 Ln-a.e. and
Hn�1ðJuÞ < l is in fact a Caccioppoli-a‰ne function (see Section 4.1 for the
definition). Theorem 4.1 thus yields that it also belongs to GSBVðW;RnÞ.
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