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Abstract. — We consider a nonlocal isoperimetric problem defined in the whole space RN , whose

nonlocal part is given by a Riesz potential with exponent a a ð0;N � 1Þ. We show that critical con-
figurations with positive second variation are local minimizers and satisfy a quantitative inequality

with respect to the L1-norm. This criterion provides the existence of a (explicitly determined) critical
threshold determining the interval of volumes for which the ball is a local minimizer. Finally we

deduce that for small masses the ball is also the unique global minimizer, and that for small expo-
nents a in the nonlocal term the ball is the unique minimizer as long as the problem has a solution.
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1. Introduction

In these notes we review the main results and ideas of the paper [3], where the
full details and proofs can be found. For a parameter a a ð0;N � 1Þ, Nb 2, we

consider the following functional defined on measurable sets EHRN :

FaðEÞ :¼ PðEÞ þ
Z
RN

Z
RN

wEðxÞwEðyÞ
jx� yja dx dy;ð1:1Þ

where PðEÞ is the perimeter of the set E and the second term, the so called non-
local term, will be hereafter denoted by NLaðEÞ. We are interested in the study
of the volume constrained minimization problem

minfFaðEÞ : jEj ¼ mg;ð1:2Þ

and in its dependence on the parameters a and m > 0.
The reason why the above problem is interesting lies in the fact that the energy

(1.1) appears in the modeling of di¤erent physical phenomena. The most

1This paper reports the content of a talk given by R. Cristoferi at ‘‘XXV Convegno Nazionale di

Calcolo delle Variazioni’’—Levico, 2–6 February 2015. The purpose of this paper is to review the
main results and ideas of the reference [3] in the paper.



physically relevant case is in three dimensions with a ¼ 1, where the nonlocal
term corresponds to a Coulombic repulsive interaction: one of the first examples
is the celebrated Gamow’s water-drop model for the constitution of the atomic
nucleus (see [14]), and energies of this kind are also related (via G-convergence)
to the Ohta–Kawasaki model for diblock copolymers (see [7, 8, 27]). For the
reader interested in a more specific account on the physical background of this
kind of problems, we suggest to read [25].

From a mathematical point of view, functionals of the form (1.1) recently
drew the attention of many authors (see for example [1, 10, 12, 16, 17, 18, 21,
22, 20, 24, 26]). The main feature of the energy (1.1) is the presence of two com-
peting terms, the sharp interface energy and the long-range repulsive interaction.
Indeed, while the first term is minimized by the ball (by the isoperimetric inequal-
ity), the nonlocal term is in fact maximized by the ball, as a consequence of the
Riesz’s rearrangement inequality (see [23, Theorem 3.7]), and favours scattered
configurations. Hence, due to the presence of this competition in the structure
of the problem, the minimization of Fa is highly non trivial.

In order to have an idea of the behaviour we would expect for such a func-

tional, we notice that, calling ~EE :¼
� jB1j

jEj
� 1
NE, where B1 is the unit ball of R

N , the
functional reads as

FaðEÞ ¼
� jEj
jB1j

�N�1
N
h
Pð ~EEÞ þ

� m

jB1j

�N�aþ1
N

NLað ~EEÞ
i
:

Hence the parameter m appearing in the volume constraint can be normalized
and replaced by a coe‰cient g in front of the nonlocal energy: one can study the
minimization problem, equivalent to (1.2),

minfFa; gðEÞ : jEj ¼ jB1jg;ð1:3Þ

where we define Fa; gðEÞ :¼ PðEÞ þ gNLaðEÞ. It is clear from this expression
that, for small masses (i.e. small g’s), the interfacial energy is the leading term
and this suggests that in this case the functional should behave like the perimeter,
namely we expect the ball to be the unique solution of the minimization problem,
as in the isoperimetric problem; on the other hand, for large masses the non-
local term becomes prevalent and causes the existence of a solution to be not
guaranteed. But this is just heuristic!

What was proved, in some particular cases, is that the functional Fa is
uniquely minimized (up to translations) by the ball for every value of the volume
below a critical threshold: in the planar case in [21], in the case 3aNa 7 in [22],
and in any dimension N with a ¼ N � 2 in [18]. Moreover, the existence of a
critical mass above which the minimum problem does not admit a solution was
established in [21] in dimension N ¼ 2, in [22] for every dimension and for expo-
nents a a ð0; 2Þ, and in [24] in the physical interesting case N ¼ 3, a ¼ 1.

In [3] we provide a contribution to a more detailed picture of the nature of the
minimization problem (1.2). In particular, we follow the approach used in [1] for
the periodic case with a ¼ N � 2, which is based on the positivity of the second
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variation of the functional, in order to obtain a local minimality criterion. This
allows us to show the following new results: first, we prove that the ball is the
unique global minimizer for small masses, for every values of the parameters N
and a (Theorem 3.2); moreover, for a small we also show that the ball is the
unique global minimizer, as long as a minimizer exists (Theorem 3.3), and that
in this regime we can write ð0;lÞ ¼

S
kðmk;mkþ1�, with mkþ1 > mk, in such a

way that for m a ½mk�1;mk� a minimizing sequence for the functional is given
by a configuration of at most k disjoint balls with diverging mutual distance
(Theorem 3.4). Finally, we also investigate the issue of local minimizers, that is,
sets which minimize the energy with respect to competitors su‰ciently close in
the L1-sense (where we measure the distance between two sets by the quantity
(2.2), which takes into account the translation invariance of the functional).
We show the existence of a volume threshold below which the ball is an isolated
local minimizer, determining it explicitly in the three dimensional case with a
Newtonian potential (Theorem 3.1). The energy landscape of the functional Fa,
including the information coming from our analysis and from previous works, is
illustrated in Figure 1.

After our work was completed, a deep analysis comprising also the case
a a ½N � 1;NÞ, and including the possibility for the perimeter term to be a non-
local s-perimeter, has been performed in the paper [11].

2. The local minimality criterion

The issue of existence and characterization of global minimizers of the problem

minfFaðEÞ : EHRN ; jEj ¼ mg;ð2:1Þ

for m > 0, is not at all an easy task. A principal source of di‰culty in applying the
direct method of the Calculus of Variations comes from the lack of compactness

Figure 1. Energy landscape of the functional Fa; g.
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of the space with respect to L1 convergence of sets (with respect to which the
functional is lower semicontinuous). It is in fact well known that the minimum
problem (2.1) does not admit a solution for certain ranges of masses.

Besides the notion of global minimality, we will address also the study of sets
which minimize locally the functional with respect to small volume perturbations.
Since the functional is translation invariant, we will measure the L1-distance of
two sets modulo translations by the distance

aðE;F Þ :¼ min
x ARN

jEsðxþ F Þj;ð2:2Þ

wheres denotes the symmetric di¤erence of two sets.

Definition 2.1. We say that EHRN is a local minimizer for the functional
(1.1) if there exists d > 0 such that

FaðEÞaFaðF Þ

for every F HRN such that jF j ¼ jEj and aðE;FÞa d. We say that E is an
isolated local minimizer if the previous inequality is strict whenever aðE;FÞ > 0.

An important feature of the energy is the Lipschitzianity of the nonlocal
term, that allows us to treat it as a bulk perturbation of the area functional
(see [3, Proposition 2.3]).

Proposition 2.2 (Lipschitzianity of the nonlocal term). Given a a ð0;N � 1Þ
and m a ð0;þlÞ, there exists a constant c0, depending only on N, a and m such

that if E;F HRN are measurable sets with jEj; jF jam then

jNLaðEÞ �NLaðFÞja c0jEsF j

for every aa a.

The above observation is essential in proving some regularity properties of
local and global minimizers, which are mostly known (see, for instance, [22] and
[24] for global minimizers, and [1] for local minimizers in a periodic setting).
The basic idea is to show that a minimizer solves a suitable penalized minimum
problem, where the volume constraint is replaced by a penalization term in the
functional, and to deduce that a quasi-minimality property is satisfied. For a
proof, see [3, Theorem 2.7].

Theorem 2.3. Let EHRN be a global or local minimizer for the functional
(1.1) with volume jEj ¼ m. Then the reduced boundary q�E is a C3;b-manifold
for all b < N � a� 1, and the Hausdor¤ dimension of the singular set satisfies
dimHðqEnq�EÞaN � 8. Moreover, E is (essentially) bounded. Finally, every
local minimizer has at most a finite number of connected components and every
global minimizer E is connected in a measure theoretic sense, i.e. if for a ball BR

we have jEBBRj > 0 and jEnBRj > 0, then HN�1ðqBRBEÞA 0.
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As anticipated above, our method follows a second variation approach which
has been recently developed and applied to di¤erent variational problems, whose
common feature is the fact that the energy functionals are characterized by the
competition between bulk energies and surface energies (see, for instance, [13] in
the context of epitaxially strained elastic films, [5, 4] for the Mumford–Shah func-
tional, [6] for a variational model for cavities in elastic bodies). In particular we
stress the attention on [1], which deals with energies in the form (1.1) in a periodic
setting (see also [19], where the same problem is considered in an open set with
Neumann boundary conditions).

The basic idea is to associate with the second variation of Fa at a regular
critical set E (see Definition 2.6), a quadratic form defined on the functions

j a H 1ðqEÞ such that

Z
qE

j ¼ 0, whose non-negativity is easily seen to be a

necessary condition for local minimality. In our main result (Theorem 2.11) we
show that the strict positivity of this quadratic form is in fact su‰cient for local
minimality.

The general strategy for the proof of this minimality criterion is the one
developed in [1]. But in our case we have to fix some technical details due to
the main di¤erences between the two problems: the fact the a is generic and the
non compactness of our domain.

Since we need to use first and second variations, we briefly recall their
definitions.

Definition 2.4. Let X : RN ! RN be a C2 vector field. We define the admis-
sible flow associated to X as the function F : RN � ð�1; 1Þ ! RN given by the
equations

qF

qt
¼ X ðFÞ; Fðx; 0Þ ¼ x:

As for the case of the perimeter, we will use these admissible flows to compute
the variations of our functional.

Definition 2.5. Let EHRN be a set of class C2, and let F be an admissible
flow. We define the first and second variation of Fa at E with respect to the flow
F to be

d

dt
FaðEtÞjt¼0

and
d2

dt2
FaðEtÞjt¼0

respectively, where we set Et :¼ FtðEÞ.

The first order condition for minimality, coming from the first variation of the
functional, requires a C2-minimizer E (local or global) to satisfy the Euler–
Lagrange equation

HqEðxÞ þ 2vEðxÞ ¼ l for every x a qE;ð2:3Þ
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for some constant l which plays the role of a Lagrange multiplier associated
with the volume constraint. Here HqE :¼ divt nEðxÞ denotes the sum of the prin-
cipal curvatures of qE (divt is the tangential divergence on qE and nE denotes the

exterior unit normal to qE), and vEðxÞ :¼
Z
E

1
jx�yja dy. Following [1], we

define critical sets as those satisfying (2.3) in a weak sense, for which further
regularity can be gained a posteriori (see Remark 2.7).

Definition 2.6. We say that EHRN is a regular critical set for the functional
(1.1) if E is of class C1 and (2.3) holds weakly on qE, i.e.,Z

qE

divt z dH
N�1 ¼ �2

Z
qE

vE3z; nE4 dH
N�1

for every z a C1ðRN ;RNÞ such that

Z
qE

3z; nE4 dH
N�1 ¼ 0.

Remark 2.7. By standard regularity (see, e.g., [2, Proposition 7.56 and Theorem

7.57]) a critical set E is of class W 2;2 and C1;b for all b a ð0; 1Þ. In turn it can be
proved, by using Schauder estimates (see [15, Theorem 9.19]), that E is of class
C3;b for all b a ð0;N � a� 1Þ.

Remark 2.8. Notice that for a ball B we have that vB is constant on qB. Thus
every ball is a regular critical set for the functional (1.1).

The second variation of the functional Fa on a C2-regular set E, computed in
[3, Theorem 3.3], reads as follows:

d2

dt2
FaðEtÞjt¼0

¼ q2FaðEÞ½3X ; nE4� þ R;

where nE is the outer normal to qE, R is a term that vanishes on regular critical
sets and q2FaðEÞ is the quadratic form defined for j a ~HH 1ðqEÞ by

q2FaðEÞ½j� ¼
Z
qE

ðjDtjj2 � jBqE j2j2Þ dHN�1 þ 2

Z
qE

ðqnE vEÞj2 dHN�1ð2:4Þ

þ 2

Z
qE

Z
qE

jðxÞjðyÞ
jx� yja dHN�1ðxÞ dHN�1ðyÞ;

where Dt denotes the tangential derivative on qE, BqE :¼ DtnE is the second
fundamental form of qE and, recalling that we always have to take into account
the volume constraint, we introduce the space

~HH 1ðqEÞ :¼ j a H 1ðqEÞ :
Z
qE

j dHN�1 ¼ 0

� �
;

endowed with the norm kjk ~HH 1ðqEÞ :¼ k‘jkL2ðqEÞ.
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Notice that if E is a regular critical set and F preserves the volume of E,
then

q2FaðEÞ½3X ; n4� ¼ d2FaðEtÞ
dt2

����
t¼0

:

This fact suggests that at a regular local minimizer the quadratic form (2.4)
must be nonnegative on the space ~HH 1ðqEÞ. This is the content of the following
corollary.

Corollary 2.9. Let E be a local minimizer of Fa of class C
2. Then

q2FaðEÞ½j�b 0 for all j a ~HH 1ðqEÞ:

Now we want to look for a su‰cient condition for local minimality. First
of all we notice that, since the functional is translation invariant, if we compute
the second variation of Fa at a regular set E with respect to a flow of the form
Fðx; tÞ :¼ xþ thei, where h a R and ei is an element of the canonical basis of RN

and ni :¼ 3nE ; ei4, we obtain that

q2FaðEÞ½hni� ¼
d2

dt2
FaðEtÞjt¼0

¼ 0:

Following [1], since we aim to prove that the strict positivity of the second varia-
tion is a su‰cient condition for local minimality, we shall exclude the finite
dimensional subspace of ~HH 1ðqEÞ generated by the functions ni, which we denote
by TðqEÞ. Hence we split

~HH 1ðqEÞ ¼ T?ðqEÞaTðqEÞ;

where T?ðqEÞ is the orthogonal complement to TðqEÞ in the L2-sense, i.e.,

T?ðqEÞ :¼ j a ~HH 1ðqEÞ :
Z
qE

jni dH
N�1 ¼ 0 for each i ¼ 1; . . . ;N

� �
:

It can be shown (see [1]) that there exists an orthonormal frame ðe1; . . . ; eNÞ such
that Z

qE

3n; ei43n; ej4 dH
N�1 ¼ 0 for all iA j;

so that the projection on T?ðqEÞ of a function j a ~HH 1ðqEÞ is

pT?ðqEÞðjÞ ¼ j�
XN
i¼1

�Z
qE

j3n; ei4 dH
N�1

� 3n; ei4

k3n; ei4k2L2ðqEÞ
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(notice that 3n; ei42 0 for every i, since on the contrary the set E would be trans-
lation invariant in the direction ei).

Definition 2.10. We say that Fa has positive second variation at the regular
critical set E if

q2FaðEÞ½j� > 0 for all j a T?ðqEÞnf0g:

We are now ready to state the main results of [3], which provides a su‰ciency
local minimality criterion based on the second variation of the functional.

Theorem 2.11. Assume that E is a regular critical set for Fa with compact
boundary and with positive second variation, in the sense of Definition 2.10. Then
there exist d > 0 and C > 0 such that

FaðFÞbFaðEÞ þ CðaðE;F ÞÞ2ð2:5Þ

for every F HRN such that jF j ¼ jEj and aðE;FÞ < d.

Idea of the proof. The proof consists of two main steps.

Step 1: W 2;p-local minimality. In this first step we want to prove that the pos-
itivity of the second variation allows to show that a critical C2 set E is a local
minimum in the W 2;p-topology, for p > maxf2;N � 1g, in the sense that it has
smaller energy than any set F whose boundary can be written as a normal graph
over qE with a function with W 2;p-norm small enough. For, the idea is to exploit
the construction provided by [1, Theorem 3.7] in order to connect E and F with a
sequence of sets ðEtÞt a ½0; 1�, given by the evolution of E through the flow gener-
ated by a vector field X a C2ðRN ;RNÞ, in such a way that E0 ¼ E, E1 ¼ F and
jEtj ¼ m. Calling gðtÞ :¼ FaðEtÞ and recalling that by criticality of E we have
g 0ð0Þ ¼ 0, we can write

FaðFÞ �FaðEÞ ¼ gð1Þ � gð0Þ ¼
Z 1

0

ð1� tÞg 00ðtÞ dt;

where

g 00ðtÞ ¼ d2FaðEsÞ
ds2

����
s¼t

¼ q2FaðEtÞ½3X ; nEt
4� þ Rt:

Since by hypothesis q2FaðEÞ is a positive quadratic form, it can be proved that
it is indeed uniformly positive, that is there exists d1 > 0 such that if qF ¼
fxþ cðxÞnEðxÞ : x a qEg with jF j ¼ jEj and kckW 2; pðqEÞ a d1, then

inf q2FaðFÞ½j� : j a ~HH 1ðqF Þ; kjk ~HH 1ðqFÞ ¼ 1;

Z
qF

jnF dH
N�1

����
����a d1

� �
b

m0

2
;
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for a costant m0 > 0 depending on E. Moreover, given e > 0, it is possible to
find d2 > 0 such that if kckW 2; pðqEÞ a d2, then we can estimate the reminder as
jRtjaCek3X ; nEt

4k2L2ðqEtÞ. Thus, choosing e su‰ciently small we obtain that:

FaðF Þ �FaðEÞbC

Z 1

0

ð1� tÞk3X ; nEt
4k2L2ðqEtÞ dt:

Finally it is also possible to prove that k3X ; nEt
4k2L2ðqEtÞ b k3X ; nE4k2L2ðqEÞ. We

have thus proved an isolated local minmality result in W 2;p for a regular critical
set with positive second variation.

Step 2: W 2;p-local minimality implies L1-local minimality. The idea of this second
step goes back to [13], [9], [1] and relies on the following result, observed by
White in [28]:

Theorem 2.12. Let En HRN be a sequence of L-minimizers of the area func-
tional such that

sup
n

PðEnÞ < þl and wEn
! wE in L1ðRNÞ

for some bounded set E of class C2. Then for n large enough En is of class C1; 12

and

qEn ¼ fxþ cnðxÞnEðxÞ : x a qEg;

with cn ! 0 in C1;bðqEÞ for all b a
�
0; 12

�
.

What we have is a local minimality result on the W 2;p-topology, and we
would like to extend it to the L1-topology. We argue by contradiction and we
take a sequence of sets ðEnÞn with jEnj ¼ jEj, En ! E in L1,

FaðEnÞaFaðEÞ;

and we would like to use the previous step to conclude. The problem is that,
while the first one is local in space, the former one can happen also at infinity,
namely we can have that EnnBnA j, where Bn is the ball of radius n. So the fist
step seems to be useless. The brillant idea of the above cited papers was to use
the sets En’s to construct a new sequence of sets ðFnÞn such that jFnj ¼ jEj,
Fn ! E in L1 but with the additional property of being a uniform sequence of
L-minimizers (because they are selected as solution to a penalized minimum
problem for the energy (1.3)). In this way it is possible to apply Theorem 2.12
to this sequence to infer that in fact the Fn’s are of class C1; 12 and they converge
to E in the C1;b sense. Now, using the Euler–Lagrange equation for the penalized
problem solved by Fn, it is possible to gain the W 2;p-convergence of the sets Fn’s
to E. This will give the desired contradiction and thus allows us to conclude the
proof of the theorem. r
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3. Results

The local minimality criterion in Theorem 2.11 can be applied to obtain informa-
tion about local and global minimizers of the functional (1.1). We start with the
following theorem (see [3, Theorem 2.9]), which shows the existence of a critical
mass mloc such that the ball BR is an isolated local minimizer if jBRj < mloc, but is
no longer a local minimizer for larger masses. We also determine explicitly the
volume threshold in the three-dimensional case with a Newtonian potential.

Theorem 3.1 (Local minimality of the ball). Given Nb 2 and a a ð0;N � 1Þ,
there exists a critical threshold mloc ¼ mlocðN; aÞ > 0 such that the ball BR is an
isolated local minimizer for Fa, in the sense of Definition 2.1, if 0 < jBRj < mloc.

If jBRj > mloc, there exists EHRN with jEj ¼ jBRj and aðE;BRÞ arbitrarily
small such that FaðEÞ < FaðBRÞ.

In particular for dimension N ¼ 3 we have that

mlocð3; aÞ ¼ p
� ð6� aÞð4� aÞ

23�aap

� 3
4�a

:

Finally mlocðN; aÞ ! l as a ! 0þ.

Our local minimality criterion allows us to deduce further properties about
global minimizers. The first result [3, Theorem 2.10] states that the ball is the
unique global minimizer of the functional for small masses. Even if this result
was already known in the literature in some particular cases (see [18] for the
case a ¼ N � 2, [21] for the case N ¼ 2, and [22] for the case 3aNa 7), we
provide an alternative proof which removes the dimensional constraint based on
the second variation approach.

Theorem 3.2 (Global minimality of the ball). Let mglobðN; aÞ be the supremum
of the masses m > 0 such that the ball of mass m is a global minimizer of Fa in
dimension N. Then it holds that 0 < mglobðN; aÞ < l and that the ball BR with
jBRj ¼ m is a local minimizer of Fa if mamglobðN; aÞ. Moreover it is the unique
global minimizer of Fa if m < mglobðN; aÞ.

Idea of the proof. We need to prove three facts:

• mglobðN; aÞ < l,

• mglobðN; aÞ > 0 and the ball BR with jBRj ¼ m is a local minimizer of Fa if
mamglobðN; a; gÞ,

• it is the unique global minimizer of Fa if m < mglobðN; aÞ.

The fact that mglobðN; aÞ < l follows directly from the previous theorem
(Theorem 3.1), since the critical threshold mloc of local minimality of the ball is
always finite. Here we would like to give an idea of the proof of the second fact,
since the proof of the third one is similar.
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In the following we will work with the functional Fa; g defined in (1.3). Sup-
pose by contradiction that there exist a sequence gn ! 0 and a sequence of sets
ðEnÞn with jEnj ¼ jB1j such that

Fa; gnðEnÞaFa; gnðB1Þ:

Since the above inequality can be written as

PðEnÞ �PðB1Þa gnðNLaðB1Þ �NLaðEnÞÞ;

using the quantitative isoperimetric inequality (recall that jEnj ¼ jB1j for all n) to
estimate from below the left-hand side and the Lipschitzianity of the nonlocal
term (see Proposition 2.2) to estimate the right-hand side from above, we obtain

CjEnsB1j2 a gnc0jEnsB1j:

Since gn ! 0 we obtain that En ! B1 in L1. But this implies, using Theorem 3.1,
that there exists n a N such that En ¼ B1 for all nb n. r

In the following theorems we analyze the global minimality issue for a close
to 0, showing in particular that in this case the unique minimizer, as long as a
minimizer exists, is the ball [3, Theorem 2.11], and characterizing the infimum
of the energy when the problem does not have a solution [3, Theorem 2.12].
These results are completely new (except the first one, proved for the special
case of dimension N ¼ 2 in [21]).

Theorem 3.3 (Full characterization of global minimizers for a small). There
exists a critical exponent a ¼ aðNÞ > 0 such that for every a < a the ball with vol-
ume m is the unique (up to translations) global minimizer of Fa if mamglobðN; aÞ,
while for m > mglobðN; aÞ the minimum problem for Fa does not have a solution.

Idea of the proof. The proof is similar to the one of Theorem 3.2: indeed
suppose by contradiction that there exist sequences an ! 0, gn > 0 and sets
ðEnÞn with jEnj ¼ jB1j such that

Fan;gnðEnÞaFan;gnðB1Þ;

which can be rewritten as before as

PðEnÞ �PðB1Þa gnðNLanðB1Þ �NLanðEnÞÞ:

Using the quantitative isoperimetric inequality to estimate from below the left-
hand side, and recalling that we can suppose the gn’s to be bounded from above
by a constant g (since it is known that for a < 2 there exists a bounded threshold
above which the ball is no longer a global minimizer), we infer that

CjEnsB1j2 a gðNLanðB1Þ �NLanðEnÞÞ:
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Now it is easy to show that the right-hand side goes to 0 for an ! 0. Thus
En ! B1 in L1. Finally, looking carefully at the proof leading to Theorem 2.11,
it can be proved that the result is uniform in a and g: namely given a; g > 0 there
exists d > 0 such that

Fa; gðEÞ > Fa; gðB1Þ;

for each a < a, g < g and each set EHRN with jEj ¼ jB1j and 0 < aðE;B1Þ < d.
This observation allows us to conclude the proof of the theorem. r

Theorem 3.4 (Minimizing sequences for a small). Let a < a (where a is given
by Theorem 3.3) and let

fkðmÞ :¼ min
m1;...;mkb0
m1þ���þmk¼m

Xk

j¼1

FaðBiÞ : Bi ball; jBij ¼ mi

( )
:

There exists an increasing sequence ðmkÞk, with m0 ¼ 0, m1 ¼ mglob, such that
limk mk ¼ l and

inf
jEj¼m

FaðEÞ ¼ fkðmÞ for every m a ½mk�1;mk�; for all k a N;ð3:1Þ

that is, for every m a ½mk�1;mk� a minimizing sequence for the total energy is ob-
tained by a configuration of at most k disjoint balls with diverging mutual distance.
Moreover, the number of non-degenerate balls tends to þl as m ! þl.

Remark 3.5. Since mlocðN; aÞ ! þl as a ! 0þ and the non-existence thresh-
old is known to be uniformly bounded for a a ð0; 1Þ, we immediately deduce that
we have mglobðN; aÞ < mlocðN; aÞ, for a small. Moreover, by comparing the en-
ergy of a ball of volume m with the energy of two disjoint balls of volume m

2 , and
sending to infinity the distance between the balls, we deduce after a straightfor-
ward computation (and estimating NLaðB1Þbo2

N2
�a) that the following upper

bound for the global minimality threshold of the ball holds:

mglobðN; a; gÞ < oN

� 2aNð2 1
N � 1Þ

oNg
�
1�

�
1
2

�N�a
N
� � N

Nþ1�a
:

Hence, by comparing this value with the explicit expression of mloc in the physical
interesting case N ¼ 3, a ¼ 1 (see Theorem 3.1), we deduce that mglobð3; 1Þ <
mlocð3; 1Þ.

4. Open problems

There are several open problems regarding this functional. An important issue
that remains unsolved is concerned with the structure of the set of masses for
which the problem does not have a solution: is it always true that it has the
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form ðm;þlÞ for all the values of a and N? Notice that we provide a positive
answer to this question in the case where a is small. Finally, another interesting
question asks if there are other global (or local) minimizers di¤erent from the
ball, and in the a‰rmative case, to provide some information about these minima.
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