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ABSTRACT. — A regularity result for integrals of the Calculus of Variations with variable expo-
nents is presented. Precisely, we prove that any vector-valued minimizer of an energy integral over
an open set Q < R”, with variable exponent p(x) in the Sobolev class Wlé’C"(Q) for some r > n, is
locally Lipschitz continuous in Q and an a priori estimate holds.
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1. INTRODUCTION

In the past few years the study of energy integrals with variable exponent received
a large interest. We refer for instance to the integral functional

(L.1) Flu) = /Q a(x)h(|Du)) "™ dx,

where a(x) > 0 and p(x) > | are continuous functions in Q, /4 is an increasing
convex function and u is a vector-valued map. The variational integral (1.1)
exhibits p(x)-growth, which is a particular case of the so-called nonstandard
growth, with an extensive literature on the subject. While existence of minimizers
follows from the direct methods of the Calculus of Variations, the regularity
problem is not yet completely settled. We stress that in the vector-valued case,
as suggested by the well known counterexamples by De Giorgi [10], Giusti—
Miranda [18] and more recently by Sverak—Yan [33], Mooney—Savin [30], some
structure conditions on the integrand are required for everywhere regularity.
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Here we consider an open bounded set Q = R”, n>2, a coefficient a €
WLT(Q) and an exponent p € W,2'(Q) for some r > n, an increasing convex
function i = h(t), h:[0,00) —[0,0), he W»*[0,T], for all T>0 and a
vector-valued map u:Q c R" — RY, with N >1. We deal with the local
Lipschitz continuity of minimizers, without a prescribed bound on the oscillation
of p(x), assuming instead the summability of the weak derivatives of @ and p.

Precisely we will prove the following result.

THEOREM 1.1. Letu e le)’cl (Q; RY) be a local minimizer of the energy integral
(1.1). Let h: [0,400) — [0,400) be an increasing convex function, not identically
zero, such that for some My >0, ty > 1 and 0 <6 < %—%

!
(1.2) h'(t) < Myt°, h'(1) < Moh—fl), Vi > 1,

with a,p € Wli’Cr(Q) for r>n. Then u is a locally Lipschitz continuous map and
there exist constants C > 0 and § > 1 such that, for 0 < p < R,

1 Dul .
B

< C (1 + HaXHL"(BR) + ||l’x||L"(BR)
= (R—p)

As usual B, and By are balls in Q of radii p and R with the same center.
In particular the constants C > 0 and f > 1 depend on n, r, My, ty and on the
infimum and the supremum of @ and p in the ball Bg.

Examples of /1 functions which satisfy the assumptions of Theorem 1.1 are, of
course /i(t) =t or

Fﬁ/{1+ammwwﬁmﬁ“
Br

h(t) =tlog(l1+1¢), t=0,

more generally 4(z) = tlog” ¢ for large values of 7 and for some > 0 and also

tS(S
ht)= | ——ds, t=1.
0= [ fosds 1210

As in [9], [16], [23], [34], a different example of a convex function /A(¢) satisfying
the above conditions is given, for large ¢, by

(13) h([) — ta-&-bsinloglogr’

when a > 1 and b > 0 is sufficiently small (see Section 3). The function /2 has
P, g-growth, in the sense that 7 < h(¢) < 7 for large values of ¢, with p =a —b
and g =a+b.

The proof of Theorem 1.1 will follow through several steps, the main one
being a reduction of the given energy functional in (1.1) to the framework con-
sidered by the authors in [13].



LIPSCHITZ CONTINUITY FOR ENERGY INTEGRALS WITH VARIABLE EXPONENTS 63

The energy variable exponent is nowadays a classical topic in the Calculus of
Variations, PDEs and Nonlinear Analysis. The large number of papers studying
energies involving variable exponents is motivated by the fact that this type of
functionals can be considered as a model in the theory of strongly anisotropic
materials (see e.g. Zhikov [35] and Zhikov et al. [36]) and in the theory of electro-
rheological fluids (see e.g. Rajagopal-Ruzicka [31] and Ruzicka [32]). More re-
cently, functionals as in (1.1) were considered also in the study of image denoising
(see e.g. Chen et al. [4]) and in some models for growth of heterogeneous sand-
piles (see e.g. Bocea et al. [2]). The regularity of minimizers has been studied
by many authors. For the case /() = ¢ we mention: Chiado—Piat—Coscia [5],
Coscia—Mingione [7], Acerbi—Mingione [1], Esposito—Leonetti-Mingione [15].
The case h(f) ~ e, m > 0, was considered by Mascolo-Migliorini [26] and with
the x, u dependence by Eleuteri [12]. A further list of references can be found
in Harjulehto-Hasto—Nuortio [20] and Diening—Harjulehto—Hasto—Nuortio
[11]. Energies with variable exponents are also studied in the framework of the
P, g-growth; indeed if p(x) is a continuous function, on a small ball its minimum
and its maximum values behave as p, ¢, with ¢ arbitrarily close to p. We refer to
Marcellini [21], [22], [23], [24] and to Mingione [27] for a survey on this subject.
Variable exponents were also considered under different aspects in Nonlinear
Analysis, for instance with respect to eigenvalue problems and to the multiplicity
of solutions (see e.g. Pucci, Radulescu et al. [3], [28], [29] and, more recently,
Colasuonno—Squassina [6]).

2. PROOF OoF THEOREM 1.1

The proof of Theorem 1.1 follows in several steps:

2.1. Step 1: localization. For every x € Q, there exists Ry > 0 such that the ball
Bg,(x0) is contained in Q and, if we set

(2.1) p=inf{p(x): x € Br,(x0)} > 1
g 1= sup{p(x) : x € By, (x0)}(14+0) +
for some
1 1 1

22) <500
then
(2.3) VAP

p nor

Indeed, for any g there exists Ry > 0 such that

sup{p(x) : x € Bg,(x0)} —inf{p(x) : x € Bg,(x0)} < &.
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We set

&0 ::llﬂ(%—%—é)—r.

This is possible due to the smallness assumptions on ¢ and = we required. At this
point

1
2 ) 0 e B

B inf{p(x) : x € Bg,(x0)}

inf{p(x) : x € Bg,(x0)} 1+0

sup{p(x) : x € Bg,(x0)} 1< 1 (1 1

111 £
<m(5_;_ )_inf{p(x):xeBRo(XO)}

as long as p(x) > 1. This finally entails, taking into account (2.1)

q_ [sup{p.(x) :x € Bgy(x)} + 7](1+9) - 1+5+1_1_5: 1 +1_1.
p inf{p(x) : x € Br,(x0)} nor nor

It is obvious that sup{p(x) : x € Bg,(x0)} < g.

2.2. Step 2: consequences from the assumptions. Before starting, we need the fol-
lowing elementary properties of convex functions.

Let 41:[0,00) — [0, 00) be an increasing convex function fulfilling (1.2). The
functions A(z) and /’(¢) are not identically equal to zero, thus there exists 7y > 1
such that (1.2) holds and

/’l(lo) >0 h/(lo) > 0.

Let us set

(2.4) my 1= min{h(lf)o),h’(lo)}.

Then we have

(2.5) h'(t) = h'(to) =my Vit =>tg

and moreover by convexity and (2.5)

(2.6) h(t) = h(to) + h'(20)(t — t0) = h(to) + mo(t — 1)

> moly + mo(t - Z()) = myl.
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On the other hand, we can also show that

(2.7) ih’(z)t < h(r) < Goh'(0)t,
Co
where
(28) é() = max{Mo + 1,/1’(1‘0)1‘0} Co=1 —l—m.
(1)

Indeed from the Mean Value Theorem and the fact that / is increasing
h(r) < h(0) + (1)t < h(to) + ' (D).

But /1 is convex, so also /' is increasing; this entails, for all £ > 7y > 1

(2.9) h(l()) = h/(to)

thus we get the desired inequality

h(t) < (1 +:,((t;)))h’(t)z = Coh'(1)t.

We prove now the other inequality in (2.7). Indeed, by the second inequality in
(1.2), we have

t 1
/ h'(t)rdr < Mo/ h'(t)dr
to 4]

and by integration by parts

t

h' ()t — h'(t)ty — /

To

t
h'(7)dr < Mo/ h'(t)drt
to

that is
W (6t < (Mo + 1)(h(1) = h(1o)) + I (o) 10 < Coh(t).
Observe that (2.6) and (2.7) imply
(2.10) mot < h(t) < CoMot'™° Vit > 1.
In the sequel it is not restrictive to assume that

my <1< My inf a(x)>my>0 sup a(x) < M,.
XGBRO XEBRO
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2.3. Step 3: ellipticity and growth assumptions. Let us denote
9(x,1) = a(x)h(1)".

In this step we show that g(x, 7) satisfies the following growth conditions, for all
t>tyand a.e. x € By,

(2.11) 2P-2 gi(x, 1) < A(1H0)p(x)-2
<= =

(2.12) A2 < gu(x, 1) < AP

(2.13) g (o, 1) < AL (x)1HOP)F=1

for A, A defined as

1
(2.14) A= min{l,pcg }pmg“,

A_dla=1)

~ 2
CIMITC2 + = max{log(CoMo),d + 1},
mg mo

with d and 7 as in (1.2) and (2.1) respectively and

(2.15) £(x) == |ay(x)| + |px(x)| fora.e. x € Bg,.
Indeed

gi(x, 1) = a(x) p(x)h(t)" 0 (1)
so that

h'(1) <1'2)22'10> qMOqHCgflt(lw)ﬁ(x)fz

016 LD — ) ploype) -

Consider now
gu(x, 1) = a(x) p(x)(p(x) = D020 (0)]* + alx) p(x)h(t) " 0" (1),
We deal first with the second term. We have

< Maat)p(ap(n 1

a(x)p(x)h(n)" " (1) Z

CLO A son -2
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On the other hand

67

. 27) h(6)P™
a()p(3)(p(x) ~ DO 0] L ax)p() (o)~ 1) M 6
2 camg g )G
(2%4> At(l+(5)p(x)72.
We deal now with the lower bounds. First of all we have
t (1) (25),(26) (2.14)
g’();’ ) _ a(x) p(x)h(1)"! 5 ) > a(x) p(x)[mpf) "7 @ > P2,

We also have, using (2.5)

gu(x,1) = a(x) p(x)(p(x) — Dh(e)" 20 (1))

@n 1 h(0)P™ 1) 1
> ng(p — 1)7’1’10 P > g

where we used the fact that my < 1.
Finally

gue(x, 1) = ax(xX) p()h(0) "D (1) + a(x) p (X)h(1) " 1 (1)
+a(x) p(x)h(1)" 7 (1) pa(x) log(h(1))

so that

.01 < 2 0t pagney - )+ 121

+ a(x) p(x)h(0) " (1) pa () og(h(1))

/’S(C)) gi(x, ))(1 + log(h(1))),

IA

with 7 as in (2.15). At this point we observe that, for 7 > #,

(2.10) i
log(h(t)) < log(CoMot®™) =log(CoMy) + (0 + 1)logt < Ct°

a(x) p(x)h(t)"™ "1 (1)

where 7 is as in (2.2) and C := max{log(CyM,),0 + 1} > 1. This allows us to

conclude that

/(x) (2.14),(2.16)

o) < 5

g.(x, )2max{log(CoMy),0 + 1}17 < A/ (x)IFop+=1
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2.4. Step 4. Approximation. We construct a sequence of smooth functions
g (x, 1), related to g(x, |Du|) = a(x)h(|Du|)”"™. We will deal with this approxi-
mation procedure in two steps. First let us define, for a.e. x € B,

) a(x) p(x)h(2)" 7w (1) 0<t<k
E DN dpon ) 4 At ]z
and
(2.18) gF(x, 1) = /O g (x, ) ds + g(x, 0).

Arguing in a similar way as in [13], it is possible to show that the sequence of
functions defined by (2.18) satisfies, for k sufficiently large, the conditions

(2.19) g (x, 1) <
(2.20) g (x,1) <
for all £ > 0, a.e. in Bg,.

At this point, let us denote with p, and a,, the regularization of the functions
p and a respectively

221)  p(x) = / PP+ eny)dy  ay(x) = / p()ax + eay) dy,

where B denotes the unit ball, p is a positive symmetric mollifier such that / p=1

and where ¢, is an infinitesimal sequence of positive numbers. With an abuse
of notation in the sequel we denote with ¢ =¢, and with p, = p,,, a. = a,,. It
is well known that p, and a, converge in the strong topology of W' (Bg,) and
uniformly in Bg, to the functions p and « respectively. Now let us define

ay(x) pe(xX)h(6) " 0! (1) 0<t<k

~ke .
(222) 9; (x7 t) = ae(x)ps(x)h(k)Pr.(x)—lh’(k) _|_L1[[P_1 — kp_l] t>k,

and

{
5 (x, 1) = /0 55(x, 5) ds + 9(x, 0).

Finally consider

(2.23) g (x, 1) == g (x, 1) + e(1 + )%, Vi>0,ae. in Bg,.
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By the properties of function g(x, #) given in the previous step, since p < p,(x) <g¢
in Bg, and by proceeding as in Lemmas 4.2 and Lemma 4.3 of [13], we have that
the sequence g**(x,7) satisfies the following inequalities a.e. in Bg, and for all
¢t > 0, the lower bound in (2.25) and (2.26) ensured by (2.23)

(2.24) g*(x,1) < C(k)(1 + )
P2 ke o
(2.25) o1+ )7 < ¥ (tx’ ) <o+ )T
(226)  min{p— 1, 1}e(1 + )T <gli(x0) < CRY(1+ )T
(2.27) g5 (x, )] < Clk, e, 00)(1 + )T Ve = Bp,.

Moreover the functions g** fulfill for a.e. x € Bg, and > t,

ke
(2.28) MP2 < ul“) < A19?
(2.29) P2 < gke(x 1) < 12
(2.30) 195 (x, 1)] < 4(x)(1 + )7,

where /. € € (Bg,) is the regularized function of / is defined as in (2.15) and 4,
A are as in (2.11), (2.12).
In the sequel, for simplicity of notations, we assume that 7y = 1.

2.5. Step 5: a priori estimates. Letw € Wlé’cp (Q; RY) be a local minimizer of the
functional (1.1); moreover let us take Bg —< Bg, to be a ball of radius R com-
pactly contained in Bg,. Consider the following variational problem

(2.31) inf{F¥(v) : v e w+ Wy " (Br; RV)}.

where

(2.32) Fo (o) = / 4%(x, | D) d.
BRO

Since F* is lower semicontinuous, there exists 0¥ € w + W, 7 (Bg,; R") solution
to Problem (2.31). The purpose of this Step is to prove an a priori estimate for
the L*-norm of Dv** independent of k, &. We claim that, for 0 < p < R < Ry

(2.33) ||D0"|| e,y < C

< ) (14 g*(x,|Dv*))) dx| ,

5
2 11
(14 1412 50 )] [ | y
Br
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with constants C, ff independent of k, &. Once (2.33) is obtained, we observe that,
by convolution properties

||4||LT(BRU) =< ||f||Lr-(3R0>»
thus we deduce

B

2.34)  ||Dv*|], 0 p i < C
( ) H v HL (B,; RNy = [ (R—p)

19711

A+ 1020 e T

L) [ [ 14 g ot
Br

The proof of estimate (2.33) turns to be quite similar to the proof of Proposition
3.1 of [13]; here, for sake of clarity, we list the main arguments, referring to [13]
for more details. For simplicity of notations, from now on we set

f(x,8) = ff(x, &) = g"(x,1¢]), o™ :=u, 4=

Observe that, by (2.28), (2.29), (2.30), we have that, for |£| > 1 and a.e. x € Bg,

(2.35) HEP Pl < 37 S (o Oun
i.j,op

(2.36) forer (6, )| < AIE*,

(2.37) S, ) < £(x)[E)7,

hold, where p and ¢ have been introduced in (2.1). The minimizer u satisfies the
Euler’s first variation

/B S fer, Du)p? (x) dx = 0 Vg = (p%),,_y € Wi (BrsRY),

Ry o

and, by using the technique of the different quotients (see for example [14], [17],
[19]) we have that

(238)  ue WEMCP) (B RY), (14 |Dul>)T|D%|* € L. (Bg,)

loc

ue Wle(Q,RY) (see [8] and references there) and the second variation

(239) /B { > f&;g(ac,z)u)co;uﬁvx/+Zf<fx.v<xvz>u>¢;}dx=0
Ry i, j,o,p,s ! 0,8

Vs=1,...,n, Yo=(p"),_, n € WS™ > (Bp:RY).

.....
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Let 7 € €3(Bg,). For any fixed s € {1,...,n}, we choose
o __ 2 0
0" = nug ®((|Dul = 1),)

for @ : [0,4+00) — [0,+0c0) an increasing, locally Lipschitz continuous function,
with @ and @' bounded on [0, +0), such that ®(0) = 0 and satisfying

(2.40) @' (s5)s < coD(s)

for a suitable value of ¢g. In the following (a)_ denotes the positive part of a € R
and we write ®((|Du| — 1), ) = ®(|Du| — 1), . Let us compute

oy = 2nnul ©(|Du| — 1), + nzuixi@(wu\ -1),
+nul @' (|Dul = 1), [(|1Du] — 1), ],,.

Here we used the fact that u € Wloc (Bg,; RY), see Proposition 3.1 of [8]. Plug-

ging this expression in (2.39) we obtain

(2.41) 0 :/B 2n®(|Du| — 1), Z f;xg/f(x Du)n . u?. ufY dx
Ro

i,j,0,0,s
+ / PODU — 1), 3 fooaCx, Dujit
Bg, ij,o,pB,s
+/ PO (Dul = 1), D" fooos (v, Duull[(1Du] = 1)..], dx
Bg, z/ o, f,s
v / 20®(1Dul — 1), 3 fory (x, D il dx
Bg, ia,s

+

S

P O(|Dul — 1), Y feoy (x, Dujul  dx

BRO io,s

+/B 7O (|Dul = 1), Y fers, (x, [Dul)u, [(|1Dul = 1).],, dx

io,s

=h+DL+L+ 14+ 15+ I

In the following, constants will be denoted by C, regardless of their actual value.
We have that

Lh+hL+5L=—y+ 15+ ).

Consider 7;; by the Cauchy—Schwartz inequality, the Young inequality and
(2.36), we have
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72

(242) || = ‘ | 200Du 1) ST o D il dv
Br, i,j,s,o,f
1

2
< / 277(D(|Du| _l { Z fé“qﬂ X Du)rl‘c uv ”xjuﬁv}
R

0 i,j,s,0,[

1
{ Z fif/‘ XDM) XsXi xdvj} dx

i,j,s,0,f

< c/ \Dy|*®(|Du| — 1), |Dul? dx
R

0

1
—1-5/ O(|Du| — 1), fof/;xDu uy U f\\dx
Br, i,j,s,o,p
Therefore
1
512 + 5L < C/ |D;7|2(D(|Du| - 1)+|Du|qu — (4 + Is + I).

By proceding as in [13], (see also Lemma 4.1 of [25]), we have that

M;(Zu (1Dul — 1) ])

I / P20’ (|Dul 1)
D]

dx >0

and (2.35) implies
L > / n*®(|Du| — 1), | Du|?*|D*u|* dx.
BRo

We now deal with |;]. We have, by (2.30)

|la] = ‘/ 2 ®(|Duf = 1), Y fers, (x5, Duy i, dx
R,

0 i,s,0

i,s,0

< / 290(|Dul — 1), |gine, 1Dul)| S, % | dx
RO I

<

/ (7 + | Dy|)(x)®(1Du| — 1), |Du? d.
BRO

Consider now |I5|. We have, again by (2.30)
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15| = '/ 7 ®(|Du| — 1), |gex(x, [Dul)| | D*u] dx

0

< / n*®(|Du| — 1), £(x)|Dul*" | D>u| dx
BRO

< / (1 Du| — 1), | Dul” 2 D%l

BRD

X [?®(|Dul — 1) |/ (x)|*| Dul*~")"/* dx

< g/ n*®(|Du| — 1), |Du|”*| D*u|* dx
BRO

+C [P = 1)1/ PDu 7
BRU

where in the last line we used the Young inequality. The estimate of I is more
delicate. For any 0 <0 < 1 (please, excuse the abuse of notation: the ¢ used
here is different from the one in (1.2))

6| = ‘/B 7*|gx(x, [Du])| [ Dul®'(|Du| — 1), [(|Du| — 1)1, dx

< / n*®'(|Du| — 1), /(x)|Du|’|D*u| dx
BRO
= [P0 1Dul = 1) (D] = 1), +[(1Dul — 1) 0] |Dul’| D] s

1 - 12
< /B n2{£®/(|Du| — 1), [(|Du] = 1), +6]|Dul? 2|D2u|2}
Ry
x {co®'(|Du| — 1)+|/(X)|2|Du|2q_p+2[(|Du| -1, +5]—1}1/2 dx

< 2 [ po'(|Dul — 1), [(1Du] — 1), +0]|Dul” 2| D*ul® dx
Cop BRO

4 Cueo / 20! (1Du| — 1), |£(x)P[Dul 7*2[(|Dul — 1), +3] " dx.

To estimate the first term in the last inequality we split Bg, = {x : |Du(x)| > 2} U
{x:|Du(x)| <2} and we observe that in the set {x:|Du(x)| > 2} we have
(|Dul —1), > 1, since 6 < 1

(2.43) (|1Dul = 1), +0 <2(|Du| - 1),.
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Therefore we have, using (2.40)
/ P20 (1Du] — 1), [(|Du] — 1), + ] Dul” | Dul> dx
[Du| =2
+/ n*®'(|Du| — 1), [(|Du| — 1), + ]| Du|?*|D*u|* dx
1<|Du|<2
gz/ n*®'(|Du| — 1), (|Du| — 1), |Du|”*|D?u|* dx
[Du|>2
21/ P—2112,,12
[ (Dul = 1) (1Dul = 1) Dul” D% d
1<|Du|<2
+6 n*®'(|Du| — 1), |Du|”"*|D*u|* dx
1<|Du|<2
<20 / P?®(|Dul — 1), |Dul? D[ dx
BRO
+9 n*®'(|Du| — 1), |Du|”*|D*u|* dx.

1<|Du|<2

Now, for ¢ sufficiently small, by collecting the previous estimates, we deduce

(2.44) / n*®(|Du| — 1), | Du|”*|D*u|* dx

BRO

< Ceo / (n? + D) (1 + £(x)| D2
BRO

x [©(|Du| — 1), |Du*"
+ @' (|Du| — 1) |Du*[(|Du| — 1), +0] ") dx

) n*®'(|Du| — 1), |Du|”*|D*u|’ dx,
1<|Du|<2

with a constant C depending on n, r, p, q.
Let define the function

(2.45) D(s) := (145)" 2% > 0;

which satisfies (2.40) with cp = 2(1 + y). We can approximate @ in (2.45) by a
sequence of functions ®,, each of them being equal to @ in the interval [0, 7],
and then extended to [r,4+00) with the constant value ®(r). Then we insert ®,
in (2.44) and, passing to the limit as » — +oo by the Monotone Convergence
Theorem, we obtain for every 0 < J < 1
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246) [ w1+ (1Dul = 1),)72(Dul — 121 Dul 2|
Bg,

< C(1+ V)Z/ (7,]2 + |D;7|2)(1 + /(x)2)(1 + (|Dul — 1)+)"/+211—P dx

Bg,
+dc(y) / 02| Du|? 2| D*u|? dx,
1<|Du|<2
as

(|1Du| = 1),
— T <1 Vo>0.
(|1Dul —=1), +o

By the elementary inequality (for the proof see [13])
P2
2

G+ )T <1 < GO +1EDT, 18 =0,

with Cj, C, depending on 7 (here 7p = 1), we have
/ n?|Du|P 72| D%l dx < c/ n*(1 + |Du|*) = |D2u|? dx < +oo
1<|Du|<2 1<|Du|<2

and, due to (2.38), the last integral is finite. As 6 — 0, the last term in (2.46)
vanishes.
Now, let us define

(2.47) mi= (%),:rjz'

Since / € L"(Bg,), by the Holder inequality

(2.48) /B 7*(L+ (1Dul = 1),)7(|Dul = 1)3|Dul " [D((|Du| = 1),,)| dx

SC(1+7)2HV (77 + 1Dy*)" (14 (|Du] = 1)) """ dx |
R,

0

where C depends also on r and |Bg,| (and so on n) and

(2.49) H:=(1+|/

2
Lr(By))-

Let us introduce

(2.50) G(t):1+/t\/<b(s)(l+s)p72ds:1+/ (1 +5) 75 25 ds;
0

t
0
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since p < g < 2g — p we get

(2.51) [G([)]z <4(1+ [)‘/+P <41+ t)y+2q*!7_
Moreover
(2.52) G,(t) = VO)(1 +z)p74 (245) (1 +t)%+§’2t.

Set w = nG((|Du| — 1)), we have

253 [ PGP~ 1)) ds

<2 / Dy G((|Dul — 1)) dx

B 0
+ 2/ P [G((|Du| = 1) )IP[D((|1Du| — 1),)]* dx
Br,

L
m

<C(l+9y)°H

/ (n? + (D)™ [1 + (|Du| — 1)7F247P™) dx
BRO

Now, let 2* = nzTnz for n > 2, while 2* equal to any fixed real number larger than
2, if n = 2. By Sobolev’s inequality there exists a constant C such that

2

(2.54) { / [nG<<|Du|—1>+>}2*dx} <cC / ID0G((|Du| — 1)) dx.

0

Moreover, since r > n, we have

r n 2%

. < = .
(2:55) bsm= s <573

Observe that

(2.56) (2¢ — p)m = 2(q — p)m + pm;
and in view of the strict inequality in (2.3), we infer the existence of 0 < e < 1
such that
1 1 1 1
(2.57) =p+e(y=7)=<r(,-7)
Set now

(2.58) 0<M:=2(q—pm+pm—1)+e¢ 0<N:=p—e
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We have
(2.59) M+N=2q—pm and M > (2q— p)m— p.

By the assumptions on p, g and the definition of M and N, we claim that

S

1

2.60
(260 (7 +p)’

|1 (oul = 1) b dx]

BRO

2
S

<a( [ wetpa - 10r)"
BRO
By the definition of G, if we set # := (|Du| — 1), (2.60) is proved once we get
261  —— (14 EEE) <o =2(1 +/’<1 )t 2 ds).
ytp a 0
If t < 1; (2.61) holds, in fact

) M N t 74P
;(1 +Z)(%+%+2ﬂ*) < - <2< 2(1 _|_/ (1 +s>§+7*2sds).
y+p y+p 0

Let now ¢ > 1; then (2.61) becomes, after differentiation

7. M N
2+2m+*

2.62 2 (14 ) I < o(1 4 )T
+
y+p
Since
111
2m 2* n r’
we have that
y4 P € V4 € D
G=P 4ot tarm2 =2

(2.63)
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We then have
P4 M_ N
ST A

1 p2 t>1 =
z(1+t) (141 < (14107t
and so (2.62) is satisfied.

By collecting (2.53), (2.54) and (2.60), we obtain

(2.64) [ / 22 1+ (1Du) = 1), CHE 4 (1Dl - 1), dx]

2
2
< CH(y+2q—p)4

X

Ry

1
/ (7 + |Dn")"[1 + (|Du| — 1),] 02 pm dx] ,
B
where the constant C only depends on n, r, p, ¢q, A, A.

Now, let us choose 0 < p < R < Ry and let # to be equal to 1 in B,, with
supp# = Bg and such that |Dy| < ( Rl_ R Let us denote by

K:=ym+M=(y+2q— p)m—N.
From (2.64) it follows

(2.65) {/B 1+ (1Dul — 1), 51 + (D] — 1),]" dx} |

V)2 m NV
< e (CERLY [ 1 (D~ 1,10+ (ul = 1))

Fixed R and p, with R > p, we define the decreasing sequence of radii {p;},-,

R—p

pl:p+ 2,' 9 VIZ()a

R-p
R—p=pi=Pi1 =51
with py = R > p; > p;.; > p and the increasing sequence {r;},.,

. 2%
Ko:=M K=k i>0.

We rewrite (2.65) and we obtain for every i > 0

(2.66) Aip1 < Gi4;,
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where

A= (/B (14 (1Dul = 1), ]*[1 + (| Du| - 1)+]Ndx)%"

Pi

1
Ki

G = TS “L_N)%_zm )zm

CH’”(( %>

By iteration of (2.66), we deduce

e |

»

i+1
2m
()

1 (= 112G 14 (g — 1)) dx}

< é/ 1+ (1Du| — 1),]%0- P g,
B

I:
where

1

11

.
(x4 NV)22k+1 )2"4](5_*) _ i)

R—ﬁ — . 22%m )

i oy

(2.68) C< ﬁ
k=0

with a constant C = C(n,r, p, q). Let us denote

(2.69) 7= =

thus (2.67) implies

(2.70) {/B[l + (D] - 1),10&) dx}

P

< c{m@)}f AR RN

At this point we pass to the limit as i — 40, obtaining

(2.71)  sup[l + (|Du|(x) — 1),]" = 1im {/ L+ (1Du| - 1), &) }
B;

xeBﬁ I—+00

< CL;—@J /B 1+ (1Du] — 1),)% P g,

R
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Set
(2.72) V(x):=1+(|Dul(x) —1), and s:=(2¢— p)m;
the estimate (2.71) becomes, for any p < R < Ry

VA T g
@73) ICIE c([(R 2 W lia )

Our aim is to estimate the essential supremum of |Du| in terms of its L”-norm.
By classical interpolation inequalities

£ 1-2
(2.74) 1V ey < 1715 1V 15
and (2.73) and (2.74) give
z 0
_»r 2 \/ﬁ :
(2.75) Wl < VI, ([m] ||V||LA(BR>>
where

(2.76) 0::%(1—g):%(s—p):%[@q—p)m—p}<1.

For 0 < p < R and for every k > 0, let us define
pri=R—(R=p)27" Bi:=| Vlics,):

By inserting in (2.75) p = p; and R = p;, (so that R — p = (R — p)2=*+1)), we

have for every k > 0
z 0
. 2:(k+1) [7_\/E ]KBHI .
o (R=p)
By iteration of (2.77), we deduce for k > 0

H Zf:ogi
_r vH 0 z oy kL i k+1
o B”‘<C1 T L

(2.77) B, < C' 5|V

A

By (2.76), the series appearing in (2.78) are convergent. Since By is bounded in-
dependently of k, i.e.

Biyt < WVllpssy»

we can pass to the limit as kK — 400 and we obtain for every 0 < p < R with a
constant C = C(n,r, p, q) independent of k

. L
\/ﬁ 10 2 -0
279) uvnuwﬂ)scgm_pj Vs )
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Combining (2.73) and (2.79), by setting p' = (%Lp) we have

s 1
VH H1-0) VH kY ’ MI1-0
2.80) ||V||Lx<3ﬁ>s0<[m] m| 171

Y

which implies

B
VH Y
1Dull e g < Ve, SC{(R_,))} ( / (D) d)’

with

1 1 ~ 1 1 1
2.81 - 1 — 2 .
Since

P t? < g*(x,1) Vt=1ae. in Bg,

the estimate (2.33) follows.

81

2.6. Step 6. comparison and conclusion. We go back to Problem (2.31) and we

observe that, since
t? < C(1 +g*(x,1)) Vt>0,forae. x € Bg,,

by the minimality of v**, we have

(2.82) / Do) dx < C / (1 + g*(x, | D)) dx
BR BR

< C/ [1 4+ g"(x,|Dw|)] dx.
Bp

Moreover, by the convolution properties, as ¢ — 0
g% (x,|Dw|) — g*(x,|Dw|) a.e.in Bg,,
and
g (x, |Dw]) < C(k)(1 + |Dw|*)® € L'(Bg,).

The Lebesgue Dominated Convergence Theorem and (2.19) imply

(2.83) lim [ g¢*(x, DW|)dx—/

BR BR

(2.19)
g (x,|Dw|)dx < / a(x)h(|Dw|)"™
Bp

dx.
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By collecting (2.82) and (2.83)

(2.84) sup [ |Do*|Pdx < C / (1 + a(x)h(|Dw])"™] dx.
& Br Br

Therefore there exists v* € w + WO1 ?(Bg; RY) such that
vk — o%  weakly in WP (Bg; RY).
Moreover, by (2.82) and (2.83) we get, for all B, cc Bg
vk S ok weakly star in W= (B,;RY).

By the semicontinuity of the norm and (2.84), we obtain

(2.85) / |Dv¥|” dx < liminf / |Du*é|7 dx < C / 1+ a(x)h(|Dw|)P™] dx.
Br ¢ Br

Br

On the other hand, (2.34) and (2.83) imply

(286) ||ka||L“‘(Bﬂ;RN") S llmglnf ||ka£||L%(B/7;RN”)

< C[ /B R[l + a(x)h(|Dw|)"™)] dx} ﬁ:: M,

where we set for brevity
A

2 5
é’ —C (1 + H/HL"(BRO))' .
(R—p)

Thus we can deduce that, up to subsequences, there exist v € w + WOI”’ (Bg; RY )
such that

vk — v weakly in W7 (Bg; RY)

v¥ 2 v weakly star in WI’OC(B,,; RY) forall B, =< Bg.

Let us show that v is a solution to the problem
(2.87) inf{ / a(x)h(|Dv|)?™ dx : v e w+ W, (Bg, [REN)}.
Br

To this end, using the semicontinuity of the functional / g* (x,|Dwl|) dx and
(see (2.20)) B,

g o (x, 1) < gF(x,1) Yk > ko,
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we get

(2.88) / ¢ (x, |Do¥|) dx < liminf / 4 (x, | D)) dx
B &

P P

< liminf/ g*(x,|Do*?|) dx.
&

p

Since, up to subsequences, g*(x,¢) converges as ¢ — 0, a.e. in Bg, x [0,+00)
to gX(x,t), by Egorov theorem, fixed K = {& € R : |¢| < M + 1}, for every
0 > 0 there exists 45 with |4s5] < such that gk converges to g uniformly in
(B,\4;) x K. Thus

lim sup/ g*(x, |Dv*¢|) dx = lim sup/ g% (x, | Dv*¢|) dx
é B/’\AO' & Bﬂ\AJ
and due to (2.86)

lim sup / g¥ (o, |Do)) dx < COR) ] (1 + M),
B,ﬁAg

¢ /

with C(k) independent of 6. Thus, putting together the previous inequalities,
(2.88) gives

/ g* (x,|Do*]) dx < lim sup/ g** (x, |IDv**|) dx 4 C(k)|4s|(1 + M)
Bp & Br

so that, letting 0 — 0, by (2.83)

/ g"o(x, |Dv*|) dx < limsup/ g% (x, |Dw|)dx—/ g*(x,|Dw]) dx.
Br Br

7 &

At this point, by the lower semicontinuity of the functional g* (x, | Dw]) dx,

and the Lebesgue Dominated Convergence Theorem applied to the sequence of
functions g*(x,|Dw|), we obtain

J

P

g* (x,| D)) dx < limkinf/ g* (x, |Dv¥)) dx < / g(x,|Dwl|) dx.
B, Br
Finally, letting kg — +c0 and p — R

(2.89) | atm(pel) v < [ aton(pul)* ax

Br
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and passing to the limit in (2.86), we get
B

(2.90) 1DVl v 5, 50) sé{ /B [1+a(x)h(|Dw|)”<x)}dx] .

R

Then w and v are two solutions to Problem (2.87), but since g is not strictly

convex for all # > 0, we may not conclude that w = v in Bg. Let us define

Dw(x) + Dv(x)
2

w+v
2

E():—{XGBR:‘

> 1} and w:=

If Ey has positive measure, then from the convexity of g(x,-) we have

1 I
(2.91) / g(x, | D)) dx < —/ g, |Dw\)dx+—/ g(x,|Du]) dx.
Br\Eo 2 /BBy 2 /BB

Now, by the strict convexity of g(x, ¢) for ¢t > 1, we have

_ 1
(2.92) g(x,|Dw|) dx < 2/

BrnEy BrnE

g(x, |Dw|)dx+;/ g(x,|Dvl|) dx.

BR('\E()

Adding (2.91) and (2.92), we get a contradiction with the minimality of w and v.
Therefore the set Ey has zero measure, which implies that

sup [Dw(x)| < sup |Dw(x) 4+ Dv(x)| + sup |Dv(x)| < 2+ sup |Dv(x)|

P B/’ Bﬂ B/’

and the main estimate follows by (2.90). O

3. AN EXAMPLE
In this section we show that /(¢), defined in (1.3) with 7, to be chosen later,

(31) /’l(l) — ta+bsinloglogt _ e(a-&-bsinloglogt)logt’ Vi > o,

satisfies the assumptions of Theorem 1.1. First let us notice that / satisfies, for
large ¢, the growth condition

tr<h(t)<t?, t>=t

with p=a—band g =a+ b.
Moreover, the first derivative, when ¢ > 1y, is

- I 1 ) 1
(1) = ¢@tbsinloglogt bcosloglogz-@?-logt—i— (a+ bsinloglog?) -

= ga-ItbsinloglogtTp cogloglog t + (a + bsinloglog 7).

Then /'(f) = 0 for t > ¢ if @ > \/2b (since sina + cosa > —/2 for all « € R).
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The second derivative, when ¢ > £y, similarly is

W' (1) = ge-2tbsinloglogt 1p cosloglogt + (a — 1 4 bsinloglog 1)]
- [bcosloglog?+ (a + bsinloglog )]

. 1 1
—i—t"”bsmloglog’[b(cosloglogt—smloglogz) Tog? t]

= ga2tbsinloglogt, {[b cosloglog?+ (a — 1+ bsinloglog)]
- [bcosloglogt + (a + bsinloglog?)]
1
+ b(cosloglogt — sinloglog?) - Tog! };

since the last addendum converges to zero at t — +oo, if @ — 1 > /2b, for large
values of 7 4”(¢) > 0 and we also have

'(t)-t  a—1++2b
< < :
h'(t) a—+/2b

Therefore the function /(¢) satisfies (1.2) for a given d > 0, with a, 5 > 0 such that

1+V2b<a<a+b<1+49,

with #p > 0 large in dependence of a, b. This is possible if 1 <a <1406 and b is
sufficiently small, say b < mln{ 7 1+06— a}
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