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Abstract. — We study a nonlinear elliptic system of Lane–Emden type in RN , Nb 3, which is

equivalent to a fourth order quasilinear elliptic equation involving a suitable ‘‘sublinear’’ term.
Thanks to some compact imbeddings in weighted Sobolev spaces, existence and multiplicity results

are proved by means of a generalized Weierstrass Theorem and a variant of the Symmetric
Mountain Pass Theorem. These results apply in particular to a biharmonic equation under Navier

conditions in RN .
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1. Introduction

In the last years many authors have studied elliptic systems of two coupled semi-
linear Poisson equations

�Du ¼ gðvÞ in W;

�Dv ¼ f ðuÞ in W;

u ¼ v ¼ 0 on qW;

8<
:ð1:1Þ

where W is a bounded smooth domain of RN , Nb 3 and f ; g : R ! R are given
functions.

In the model case gðsÞ ¼ s p�1 and f ðsÞ ¼ sq�1, p; q > 1, (here and in the
following sa ¼ sgnðsÞjsja denotes the odd extension of the power function) the
previous problem is referred to as the Lane–Emden system because it is a natural
extension of the classical Lane–Emden equation

�Du ¼ u p�1 in W;

arising in Astronomy. It has been proved that Lane–Emden type systems have
non-trivial solutions for all p; q > 1 either in the so-called superquadratic but
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subcritical case, i.e. 1� 2
N
< 1

p
þ 1

q
< 1 (see [2], [11], [13], [14], [19], [23] and [24])

and in the subquadratic case, i.e. 1
p
þ 1

q
> 1 (see [6], [8] and [16]). On the contrary,

if p and q belong to the critical hyperbola 1
p
þ 1

q
¼ 1� 2

N
, because of the lack of

compactness of the problem, non-existence of solutions has been stated in [21]
and [25] by using Pohozaev type arguments.

In the superquadratic case, existence and multiplicity results have been stated
also in unbounded domains by adding in the second equation a suitable term of

the form rðxÞu
1

p�1 (see [3], [4], [5] and [10]).
Aim of the paper is to study nonlinear elliptic systems like (1.1) in the whole

space RN but in the subquadratic case. More precisely we consider the following
nonlinear elliptic system

�Du ¼ v p�1 in RN ;

�Dv ¼ �rðxÞu
1

p�1 þ f ðx; uÞ in RN ;

u; v ! 0 as jxj ! þl;

8><
>:ð1:2Þ

where r : RN ! R and f : RN � R ! R satisfy the following assumptions:

ðr1Þ r is a Lebesgue measurable function verifying infess
RN

rðxÞ > 0;

ðr2Þ
Z
B1ðxÞ

1

rðyÞ dy ! 0 as jxj ! þl

where B1ðxÞ is the unit sphere centered in x;

ð f1Þ f is a Carathéodory function (i.e., f ð�; sÞ is measurable on RN for all s a R
and f ðx; �Þ is continuous on R for a.e. x a RN );

ð f2Þ there exist q a
�
1;

p

p�1

�
and a positive function b a LmðRNÞ with m ¼� p

qðp�1Þ
�0 ¼ p

pþq�pq
such that

j f ðx; sÞja bðxÞjsjq�1 for a:e: x a RN and for all s a R;

ð f3Þ there exist d > 0 and a positive function b1 a LmðRNÞ such that

f ðx; sÞsb b1ðxÞjsjq for a:e: x a RN and for all s a R; jsja d;

with q and m the same as in ð f2Þ;
ð f4Þ f ðx;�sÞ ¼ �f ðx; sÞ for a.e. x a RN and for all s a R.

We prove the following results. For the definition of the functional space Er and
of the energy functional I which appear in next theorems see Section 2.

Theorem 1.1. Suppose that ðr1Þ, ðr2Þ, ð f1Þ–ð f3Þ hold. Then, system (1.2) admits

a non-trivial weak solution ðu; ð�DuÞ
1

p�1Þ. Moreover, if f satisfies also ð f3Þ
globally (i.e. with d ¼ þl) and ð f4Þ, system (1.2) has a sequence fðuk; ð�DukÞ

1
p�1Þg

of non-trivial weak solutions such that uk ! 0 in Er and IðukÞ ! 0 as k ! þl.
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The multiplicity result contained in Theorem 1.1 can be weakened as follows in
the case 1 < p < N

N�2 by replacing ð f2Þ and ð f4Þ with the weaker assumptions

ð f5Þ there exist q a
�
1;

p

p�1

�
, d > 0 and a positive function b a LmðRNÞ with

m ¼
� p

qðp�1Þ
�0
such that

f ðx; sÞsa bðxÞjsjq for a:e: x a RN and for all s a R; jsja d;

ð f6Þ f ðx;�sÞ ¼ �f ðx; sÞ for a.e. x a W and for all s a R, jsja d.

Theorem 1.2. Let 1 < p < N
N�2 . Assume that ðr1Þ, ðr2Þ, ð f1Þ, ð f3Þ, ð f5Þ and ð f6Þ

hold. Then, system (1.2) has a sequence fðuk; ð�DukÞ
1

p�1Þg of non-trivial weak
solutions such that uk ! 0 uniformly in RN and IðukÞ ! 0 as k ! þl.

Remark 1.3. Let us observe that, denoting Fðx; sÞ ¼
Z s

0

f ðx; tÞ dt, from ð f2Þ,
ð f3Þ and ð f5Þ by integration it follows that

jFðx; sÞja bðxÞ
q

jsjq for a:e: x a RN and for all s a R;ð1:3Þ

Fðx; sÞb b1ðxÞ
q

jsjq for a:e: x a RN and for all s a R; jsja d;ð1:4Þ

Fðx; sÞa bðxÞ
q

jsjq for a:e: x a RN and for all s a R; jsja d:ð1:5Þ

We emphasize that, really, in order to obtain the multiplicity result in the case
1 < p < N

N�2 we need only local assumptions since Theorem 1.2 still holds if

we consider f : RN � ½�d; d� ! R an odd Carathéodory function verifying ð f3Þ
and ð f5Þ.

Remark 1.4. Clearly, ð f2Þ and ð f3Þ imply that b1ðxÞa bðxÞ for a.e. x a W. In
particular, the function f ðx; sÞ ¼ bðxÞsq�1 verifies ð f1Þ–ð f4Þ if bðxÞ is a positive
function in LmðRNÞ with m ¼ p

pþq�pq
.

Following the variational formulation in [12] (see also [13]), we shall prove the
above results by studying an equivalent fourth order quasilinear elliptic equation
under Navier boundary conditions. Really, this equation is very interesting from
a mathematical point of view, independently of its equivalence with system (1.2).
In the particular case p ¼ 2, we obtain the biharmonic equation with Navier
boundary conditions

D2u ¼ �rðxÞuþ f ðx; uÞ in RN ;

u;Du ! 0 as jxj ! þl:

�
ð1:6Þ

We recall that the biharmonic case has been widely studied in literature since it
seems to be special and intermediate between the second order and the general
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polyharmonic case (see e.g. [7, 15] and [17, Section 7.2 and page 358 of Section
7.12] and references within). Here, by Theorems 1.1 and 1.2 we deduce the
following results which, to our knowledge, are new within the framework of
biharmonic equations with ‘‘sublinear’’ terms.

Corollary 1.5. Suppose that ðr1Þ, ðr2Þ, ð f1Þ–ð f3Þ hold. Then, problem (1.6)
admits a non-trivial weak solution u. Moreover, if f satisfies also ð f3Þ globally
(i.e. with d ¼ þl) and ð f4Þ, problem (1.6) has a sequence fukg of non-trivial
weak solutions such that uk ! 0 in Er and IðukÞ ! 0 as k ! þl.

Corollary 1.6. Let N ¼ 3. Assume that ðr1Þ, ðr2Þ, ð f1Þ, ð f3Þ, ð f5Þ and ð f6Þ
hold. Then, problem (1.6) has a sequence fukg of non-trivial weak solutions such
that uk ! 0 uniformly in RN and IðukÞ ! 0 as k ! þl.

The paper is organized as follows: in Section 2 we introduce the variational for-
mulation of the problem and we recall a variant of the Symmetric Mountain Pass
Theorem for ‘‘sublinear’’ problems stated in [20]. In Section 3 we prove Theorem
1.1 and Theorem 1.2. In particular, in order to prove the multiplicity result
stated in Theorem 1.2, we introduce a new modified problem which admits a
sequence of solutions uniformly converging to zero. Finally, we prove that these
solutions provide solutions to the original system (1.2).

Notations.

• LtðRNÞ, with 1a taþl, denotes the Lebesgue space with the usual norm
j � jt;

• Wk;sðRNÞ, with k a N, s a R, 1a k; sal, is the usual Sobolev space
equipped with the norm

kukW k; s ¼
� X

jaj¼k

Z
RN

jDaujs dxþ
Z
RN

jujs dx
�1

s

;

• CBðRNÞ is the space of the continuous bounded functions on RN equipped with
the usual norm j � jl;

• c denotes a real positive constant changing line from line.

2. Variational tools

Let Nb 3 and p > 1. Arguing as in [12] (see also [13], it is possible to transform
system (1.2) in an equivalent quasilinear scalar problem. Indeed, the system (1.2)
can be rewritten as

ð�DuÞ
1

p�1 ¼ v in RN ;

�Dv ¼ �rðxÞu
1

p�1 þ f ðx; uÞ in RN ;

u; v ! 0 as jxj ! þl;

8><
>:
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that is equivalent to the fourth order quasilinear elliptic equation

�Dð�DuÞ
1

p�1 ¼ �rðxÞu
1

p�1 þ f ðx; uÞ in RN ;

u;Du ! 0 as jxj ! þl:

(
ð2:1Þ

Clearly, if u is a weak solution of (2.1), we define weak solution of system (1.2)

the couple ðu; ð�DuÞ
1

p�1Þ. In order to prove that problem (2.1) has a variational
structure, let E be the space W 2;

p

p�1ðRNÞ endowed with the norm

kuk ¼
�Z

RN

jDuj
p

p�1 dxþ
Z
RN

juj
p

p�1 dx
�p�1

p

and with dual space ðE 0; k � kE 0 Þ. As Nb 3, the above norm is equivalent to the
norm k � kW 2; p=ð p�1Þ (see Corollary 9.10 and its previous remark in [18, pp. 235]).

As ðr1Þ holds, we can consider the space Er ¼ W
2;

p

p�1
r ðRNÞ, namely

u a W
2;

p

p�1ðRNÞ :
Z
RN

rðxÞjuj
p

p�1 dx < l

� �

equipped with the norm

kukr ¼
�Z

RN

jDuj
p

p�1 dxþ
Z
RN

rðxÞjuj
p

p�1 dx
�p�1

p

equivalent to

� X
jaj¼2

Z
RN

jDauj
p

p�1 dxþ
Z
RN

rðxÞjuj
p

p�1 dx
�p�1

p

:

From now on, let 1a t < l and

Lt
rðRNÞ ¼ u a LtðRNÞ :

Z
RN

rðxÞjuj t dx < l

� �

endowed with the norm

jujt;r ¼
�Z

RN

rðxÞjuj t dx
�1

t

:

Clearly, Er ¼ EBL
p

p�1
r ðRNÞ and we have that Er ,! E. Then, if we set

� p

p� 1

���
¼

Np

ðN�2Þp�N
if p > N

N�2 ;

þl if 1 < pa N
N�2 ;

(
ð2:2Þ

the Sobolev imbedding Theorems give the following result (see e.g. [9, Corollary
9.13]).
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Proposition 2.1. Assume that r satisfies ðr1Þ. The following continuous imbed-
dings hold:

(A) if p > N
N�2 , i.e.

p

p�1 <
N
2 , then

Er ,! LtðRNÞ if
p

p� 1
a ta

� p

p� 1

���
;

(B) if p ¼ N
N�2 , i.e.

p

p�1 ¼ N
2 , then

Er ,! LtðRNÞ if
p

p� 1
a t <

� p

p� 1

���
;

(C) if 1 < p < N
N�2 , i.e.

p

p�1 >
N
2 , then

Er ,! LtðRNÞ if
p

p� 1
a ta

� p

p� 1

���
and, for every u a Er,

juðxÞ � uðx 0ÞjaCkuk jx� x 0ja for a:e: x; x 0 a RN ;

where a and C are suitable constants depending on p and N.
Moreover,

Er ,! CBðRNÞ:ð2:3Þ

As ensured by the following result, the presence of the weight rðxÞ allows us to
overcome the lack of compactness of the problem.

Proposition 2.2. Under assumptions ðr1Þ and ðr2Þ, it follows that the imbed-
dings

Er ,! LtðRNÞ for all
p

p� 1
a t <

� p

p� 1

���

are compact. Moreover, if
p

p�1 >
N
2 , the imbedding is compact also for t ¼

� p

p�1

���
,

i.e.,

Er ,!,! CBðRNÞ:ð2:4Þ

Proof. For the proof, we refer to [3, Proof of Proposition 3.1]. r

Remark 2.3. Since b is a positive function belonging to LmðRNÞ, by Hölder
inequality and Proposition 2.2 it follows that

Er ,!,! L
q
b ðR

NÞ

94 s. barile and a. salvatore



where

L
q
b ðR

NÞ ¼ u a LqðRNÞ :
Z
RN

bðxÞjujq dx < l

� �

endowed with the norm

jujq;b ¼
�Z

RN

bðxÞjujq dx
�1

q

:

Now, it is possible to state the following variational principle.

Proposition 2.4. Assume that ðr1Þ, ðr2Þ, ð f1Þ and ð f2Þ hold. Then, the weak
solutions of problem (2.1) are the critical points of the energy functional defined
on Er by

IðuÞ ¼ p� 1

p

Z
RN

ðjDuj
p

p�1 þ rðxÞjuj
p

p�1Þ dx�
Z
RN

Fðx; uÞ dx:

More precisely, I a C1ðErÞ and its di¤erential dI : Er ! E 0
r is defined as

dIðuÞ½z� ¼
Z
RN

½ð�DuÞ
1

p�1ð�DzÞ þ rðxÞjuj
1

p�1z� f ðx; uÞz� dxð2:5Þ

for all u; z a Er. Moreover, the function u 7! f ð�; uð�ÞÞ is compact from Er to E 0
r.

Proof. First, we prove that the functional

IðuÞ ¼ p� 1

p
kuk

p

p�1
r �

Z
RN

F ðx; uÞ dx; u a Er;

is well defined and its Fréchet di¤erential given in (2.5) is a continuous operator
from Er to E 0

r. We study separately the two maps

j0ðuÞ ¼
p� 1

p
kuk

p

p�1
r ; j1ðuÞ ¼

Z
RN

F ðx; uÞ dx:

Clearly, j0 a C1ðErÞ since j0 is continuous from Er to R and its Gâteaux di¤er-
ential at u

dj0ðuÞ½z� ¼
Z
RN

ð�DuÞ
1

p�1ð�DzÞ dxþ
Z
RN

rðxÞu
1

p�1z dx

is a linear continuous map on Er. For the details we refer to [3, Proof of Propo-
sition 2.7].
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Now, we have to prove that also j1 a C1ðErÞ with

dj1ðuÞ½z� ¼
Z
RN

f ðx; uÞz dx for all u; z a Er:ð2:6Þ

First, by (1.3) in Remark 1.3 and Hölder inequality it is

jj1ðuÞja
Z
RN

jFðx; uÞj dxa 1

q

Z
RN

bðxÞjujq dxa 1

q
jbjmjuj

q
p

p�1

and similarly, by ð f2Þ we obtainZ
RN

j f ðx; uÞj jzj dxa
Z
RN

bðxÞjujq�1jzj dxa jbjmjuj
q�1
p

p�1

jzj p

p�1
:

Hence, by Sobolev imbeddings in Proposition 2.1 it follows that j1ðuÞ a R and
dj1ðuÞ½z� a R for all u; z a Er. Moreover, standard tools imply that the Gâteaux
di¤erential of j1 at u is as in (2.6) and it is linear and continuous from Er to R.

At this point, we have to prove that dj1 is continuous from Er to E 0
r, i.e.

kdj1ðunÞ � dj1ðuÞkE 0
r
! 0 if un ! u in Er:ð2:7Þ

Indeed, by Hölder inequality and Sobolev imbeddings,

jðdj1ðunÞ � dj1ðuÞÞ½z�ja
Z
RN

j f ðx; unÞ � f ðx; uÞj jzj dx

a j f ð�; unð�ÞÞ � f ð�; uð�ÞÞjpjzj p

p�1
:

Now, by ð f2Þ we get

j f ðx; unÞ � f ðx; uÞj p a cðj f ðx; unÞj p þ j f ðx; uÞj pÞ
a cððbðxÞÞ pjunj pðq�1Þ þ ðbðxÞÞ pjuj pðq�1ÞÞ
a cððbðxÞÞ pjun � uj pðq�1Þ þ ðbðxÞÞ pjuj pðq�1ÞÞ:

By Fatou’s lemma, it follows thatZ
RN

lim inf
n!þl

ðcðbðxÞÞ pjun � uj pðq�1Þ þ ðbðxÞÞ pjuj pðq�1ÞÞð2:8Þ

� j f ðx; unÞ � f ðx; uÞj pÞ dx

a lim inf
n!þl

Z
RN

ðcðbðxÞÞ pjun � uj pðq�1Þ þ ðbðxÞÞ pjuj pðq�1ÞÞ

� j f ðx; unÞ � f ðx; uÞj pÞ dx:
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Now, we observe that, since un ! u in Er it is unðxÞ ! uðxÞ a.e. x a RN , therefore

ðbðxÞÞ pjunðxÞ � uðxÞj pðq�1Þ ! 0 a:e: x a RN

and also by ð f1Þ

j f ðx; unðxÞÞ � f ðx; uðxÞÞj p ! 0 a:e: x a RN :

On the other hand, by Hölder inequality and Sobolev imbeddings we getZ
RN

ðbðxÞÞ pjun � uj pðq�1Þ
dxa jbj pm jun � uj pðq�1Þ

p

p�1

and, since un ! u in L
p

p�1ðRNÞ by Proposition 2.1, also the left-hand side term
goes to zero as n ! þl. Consequently, (2.8) involves

c

Z
RN

ðbðxÞÞ pjuj pðq�1Þ
dxa c

Z
RN

ðbðxÞÞ pjuj pðq�1Þ
dx

þ lim inf
n!þl

�
�
Z
RN

j f ðx; unÞ � f ðx; uÞj p dx
�

from which it follows that

0a� lim sup
n!þl

�Z
RN

j f ðx; unÞ � f ðx; uÞj p dx
�

and therefore

0a lim inf
n!þl

�Z
RN

j f ðx; unÞ � f ðx; uÞj p dx
�

a lim sup
n!þl

�Z
RN

j f ðx; unÞ � f ðx; uÞj p dx
�
a 0:

Hence,

j f ð�; unð�ÞÞ � f ð�; uð�ÞÞjp ! 0 as n ! þl

and (2.7) is proved.
Finally, by exploiting Proposition 2.2 instead of Proposition 2.1 in the pre-

vious arguments it follows that dj1 is compact from Er to E 0
r. r

Now, we recall a suitable version stated by R. Kajikiya in [20] of the classical
Symmetric Mountain Pass Theorem (see [1]).

Let X be an infinite dimensional Banach space, X 0 its dual space and
J : X ! R be a C1 functional. Let us recall that J satisfies the Palais–Smale,
briefly ðPSÞ, condition, if any ðPSÞ sequence, i.e. any sequence fukg in X such
that fJðukÞg is bounded and dJðukÞ ! 0 in X 0 as k ! þl, has a convergent
subsequence.
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For all integer k, let

Gk ¼ fAHX � f0g jA closed and symmetric; gðAÞb kg;

where, as usual, gðAÞ denotes the genus of the set A (for the definition and rela-
tive properties see, e.g., [22]).

The following result has been proved in [20, Theorem 1].

Theorem 2.5. Let J a C1ðX ;RÞ satisfying

ðA1Þ J is even, bounded from below, Jð0Þ ¼ 0 and J satisfies the ðPSÞ condition;
ðA2Þ for every k a N there exists Ak a Gk such that supAk

JðuÞ < 0.

Then,

(i) either there exists a sequence fukg such that dJðukÞ ¼ 0, JðukÞ < 0 and fukg
converges to zero;

(ii) or there exist two sequences fukg and fvkg such that dJðukÞ ¼ 0, JðukÞ ¼ 0,
uk A 0, limk uk ¼ 0, dJðvkÞ ¼ 0, JðvkÞ < 0, limk JðvkÞ ¼ 0 and fvkg converges
to a non-zero limit.

Remark 2.6. In any case (i) or (ii), Theorem 2.5 gives the existence of a
sequence fukg of critical points such that JðukÞa 0, uk A 0, limk uk ¼ 0 and,
consequently, limk JðukÞ ¼ 0.

3. Proof of the main results

Proof of Theorem 1.1. From (1.3), Hölder inequality and Sobolev embed-
dings, we get

IðuÞ ¼ p� 1

p

Z
RN

ðjDuj
p

p�1 þ rðxÞjuj
p

p�1Þ dx�
Z
RN

F ðx; uÞ dx

b
p� 1

p
kuk

p

p�1
r � 1

q

Z
RN

bðxÞjujq dx

b
p� 1

p
kuk

p

p�1
r � cjbjmkuk

q
r :

Then, since 1 < q <
p

p�1
, it follows that I is bounded from below and coercive

on the reflexive Banach space Er.
Moreover, by using the notations introduced in Proposition 2.4, the functional

I ¼ j0 � j1 is weakly lower semicontinuous on Er since j0 is weakly lower semi-
continuous by the norm properties while j1 is weakly continuous as it is of class
C1 on Er and its derivative dj1 is compact by the second part of Proposition 2.4.
Then, by a generalized Weierstrass Theorem there exists u a Er such that IðuÞ ¼
minu AEr

IðuÞ. Hence, by applying now the first part of Proposition 2.4, u is a
solution of problem (2.1).
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Clearly, ð f2Þ implies f ðx; 0Þ ¼ 0 for a.e. x a RN , then problem (2.1) admits
always the trivial solution u ¼ 0 with Ið0Þ ¼ 0.

Anyway, by ð f3Þ condition (1.4) in Remark 1.3 holds, therefore the solution u
is non trivial since, fixed u1 a ErBLlðRNÞ with u1A 0, by Hölder inequality
and 1 < q <

p

p�1
we get

Iðeu1Þ ¼
p� 1

p
e

p

p�1ku1k
p

p�1
r �

Z
RN

F ðx; eu1Þ dx

a
p� 1

p
e

p

p�1ku1k
p

p�1
r � eq

q
jb1jmju1j

q
p

p�1

< 0 ¼ Ið0Þ

for e > 0 small enough.
Now, in order to prove the multiplicity result, assume that also ð f4Þ holds.

Then, the functional I is even. Let us point out that I satisfies ðPSÞ condition.
Indeed, if fukg is a ðPSÞ sequence, fukg is bounded by the coerciveness of I .
Thus, up to subsequence, there exists u a Er such that uk * u. By Proposition
2.4 we have that the function u ! f ð�; uð�ÞÞ is compact from Er to E 0

r and,
reasoning as in [15, Section 3] we conclude that uk ! u in Er. Hence, I satisfies
assumption ðA1Þ in Theorem 2.5.

Now, let us denote by fejg a Schauder basis of the separable Banach space
Er. For k a N fixed, let Ek ¼ fe1; . . . ; ekg be a k-dimensional subspace of Er. By

Remark 2.3 we get that jujq;b1 :¼
�Z

RN

b1ðxÞjujq dx
�1

q

is a norm in Er, therefore,

since we are in finite dimension, there exists ck > 0 such that kukr a ckjujq;b1 for
every u a Ek. Clearly,

ck ¼ sup
u AEk ; jujq; b1¼1

kukr;

hence the sequence fckg is increasing. Moreover, ck ! þl if k ! þl. Indeed,
if by contradiction fckg was bounded, taken u a Er and uk the component of

u along Ek, it is u ¼ limk uk in Er and in L
q
b1
ðRNÞ. Since for every k it is

kukkr a ckjukjq;b1 , passing to the limit we have kukr a cjujq;b1 , for c suitable

constant independent of u. Hence, Lq
b1
ðRNÞ ,! Er while Remark 2.3 ensures that

Er ,! L
q
b1
ðRNÞ which gives the contradiction. Therefore, taken u a Ek from (1.4)

with d ¼ þl we get

IðuÞa p� 1

p
kuk

p

p�1
r � 1

q

Z
RN

b1ðxÞjujq dx

a
p� 1

p
kuk

p

p�1
r � 1

q
c
�q
k kukq

r a� p� 1

p
kuk

p

p�1
r

if we choose 2
p�1
p

kuk
p

p�1
r a 1

q
c
�q
k kukq

r or equivalently kukr a
� p

2ðp�1Þqcq
k

� 1
p

p�1
�q .
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Chosen 0 < dk a
� p

2ðp�1Þqcq
k

� 1
p

p�1
�q ¼ r

1
p

p�1
�q

k , it results that rk ! 0 as k ! þl
and

fu a Ek : kukr ¼ dkgH u a Er : IðuÞa� p� 1

p
d

p

p�1

k

� �
:

So, denoted by

Ak ¼ u a Er : IðuÞa� p� 1

p
d

p

p�1

k

� �
;

as I is even and continuous, Ak is closed and symmetric, i.e. Ak a Gk and, by
well known properties of the genus, gðAkÞb gðEk BSdkÞ ¼ k, where Sdk ¼
fu a E : kukr ¼ dkg. Consequently, for every k a N there exists Ak a Gk such
that

sup
Ak

I a� p� 1

p
d

p

p�1

k < 0:

Hence, ðA2Þ holds and by Theorem 2.5 (see also Remark 2.6), there exists a se-
quence fukg in Er such that uk A 0, dIðukÞ ¼ 0, limk uk ¼ 0 and limk IðukÞ ¼ 0.
Therefore, by Proposition 2.4, fukg is a sequence of non-trivial solutions to
(2.1) such that IðukÞa 0, uk ! 0 in Er and IðukÞ ! 0 as k ! þl, hence

ðuk; ð�DukÞ
1

p�1Þ is a solution to system (1.2) with uk ! 0 in Er and IðukÞ ! 0 as
k ! þl. r

Now, we have to prove the multiplicity result stated in Theorem 1.2 for the case
1 < p < N

N�2 . First of all, let us observe that, under local assumptions ð f3Þ and

ð f5Þ, problem (2.1) does not admit a variational formulation since the functional
I is not well defined on the space Er. Therefore, we modify the term f by intro-
ducing a new function f satisfying the same hypotheses of f but globally with
respect to s a R.

First, taken d > 0 as in assumptions ð f3Þ and ð f5Þ, let us consider a cut-o¤

function j such that 0a jðsÞa 1, jðsÞ ¼ 1 if jsja d
2 , jðsÞ ¼ 0 if jsjb d and j is

even, continuous and strictly decreasing on d
2 a jsja d. Then, let us define

f ðx; sÞs ¼ jðsÞ f ðx; sÞsþ ð1� jðsÞÞb1ðxÞjsjq; for a:e: x a RN ; for all s a R:

It is possible to prove the following Proposition.

Proposition 3.1. Assume that f verifies assumptions ð f1Þ, ð f3Þ, ð f5Þ and ð f6Þ.
Then f is an odd Carathéodory function such that for a.e. x a RN and for all s a R
it is

1

2
b1ðxÞjsjq a f ðx; sÞsa ðbðxÞ þ b1ðxÞÞjsjq:ð3:1Þ
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Proof. Since f satisfies ð f1Þ and ð f6Þ, by the definition of j it is easy to see that
f is an odd Carathéodory function on RN � R.

Moreover, if jsja d
2 , it is f ðx; sÞs ¼ f ðx; sÞs and then by ð f3Þ and ð f5Þ we

obtain

b1ðxÞjsjq a f ðx; sÞsa bðxÞjsjq for a:e: x a RN ;

and (3.1) follows by the positivity of b1.
On the other hand, if jsjb d, it is f ðx; sÞs ¼ b1ðxÞjsjq and (3.1) follows again

since b and b1 are positive functions. Finally, if d
2 a jsja d, by ð f3Þ it is

f ðx; sÞsb 0. Recalling that jðsÞb 1
2 or 1� jðsÞb 1

2 , we have in any case

f ðx; sÞsb 1

2
b1ðxÞjsjq for a:e: x a RN ;

while by ð f5Þ

f ðx; sÞsa f ðx; sÞsþ b1ðxÞjsjq a ðbðxÞ þ b1ðxÞÞjsjq for a:e: x a RN :

Hence, the proof of (3.1) is complete. r

Remark 3.2. Clearly, since b1ðxÞ > 0 for a.e. x a RN , condition (3.1) implies
that f verifies ð f2Þ with bðxÞ replaced by bðxÞ þ b1ðxÞ for a.e. x a RN .

At this point we can consider the following new problem

�Dð�DuÞ
1

p�1 ¼ �rðxÞu
1

p�1 þ f ðx; uÞ in RN ;

u;Du ! 0 as jxj ! þl:

(
ð3:2Þ

and the associated energy functional defined on Er by

IðuÞ ¼ p� 1

p

Z
RN

ðjDuj
p

p�1 þ rðxÞjuj
p

p�1Þ dx�
Z
RN

Fðx; uÞ dx;

with F ðx; tÞ ¼
Z t

0

f ðx; sÞ ds. By Proposition 3.1 and Remark 3.2, Proposition 2.4

can be applied to I , hence it follows that I a C1ðErÞ and its critical points are the
weak solutions to problem (3.2). Let us remark that, by integration, from (3.1)
we obtain that, for a.e. x a RN and for all s a R, it is

1

2q
b1ðxÞjsjq aF ðx; sÞa 1

q
ðbðxÞ þ b1ðxÞÞjsjq:ð3:3Þ

The following Proposition will be crucial in the statement of our multiplicity
result since it allows us to obtain solutions of system (1.2) by studying problem
(3.2).

Proposition 3.3. Let 1 < p < N
N�2 . Assume that ðr1Þ, ðr2Þ, ð f1Þ and ð f5Þ hold.

Let fukg be a sequence in Er of solutions of problem (3.2) such that uk ! 0 in
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Er as k ! þl. Thus, uk ! 0 uniformly in RN and therefore uk solves problem
(2.1) for all k large enough.

Proof. Since 1 < p < N
N�2 , from (2.3) it follows that uk ! 0 uniformly in RN .

Therefore, let us point out that, taken d > 0 as in assumptions ð f3Þ and ð f5Þ, there
exists k a N such that for every kb k it is jukjl a d

2 , namely jukðxÞja d
2 for

every x a RN and for every kb k. It follows that f ðx; ukðxÞÞ ¼ f ðx; ukðxÞÞ and
F ðx; ukðxÞÞ ¼ Fðx; ukðxÞÞ, therefore we have that IðukÞ ¼ IðukÞ and dIðukÞ ¼
dIðukÞ, hence by Proposition 2.4 uk is a solution to problem (2.1) for every

kb k. r

Proof of Theorem 1.2. Observe that by Proposition 3.1 f satisfies ð f1Þ–ð f4Þ.
Therefore, Theorem 1.1 applies to the functional I . In particular, system (3.2)

has a sequence fðuk; ð�DukÞ
1

p�1Þg of non trivial weak solutions with uk ! 0 in
Er and IðukÞ ! 0 as k ! þl. Finally, by applying Proposition 3.3, uk ! 0
uniformly in RN and for k large enough uk is a solution to problem (2.1), hence
for k large ðuk; ð�DukÞ

1
p�1Þ is a solution to system (1.2) with uk ! 0 in Er and

IðukÞ ! 0 as k ! þl. r
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