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ABSTRACT. — We study a nonlinear elliptic system of Lane—Emden type in R, N > 3, which is
equivalent to a fourth order quasilinear elliptic equation involving a suitable “‘sublinear” term.
Thanks to some compact imbeddings in weighted Sobolev spaces, existence and multiplicity results
are proved by means of a generalized Weierstrass Theorem and a variant of the Symmetric
Mountain Pass Theorem. These results apply in particular to a biharmonic equation under Navier
conditions in RY.
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1. INTRODUCTION

In the last years many authors have studied elliptic systems of two coupled semi-
linear Poisson equations

—Au=g(v) inQ,
(1.1) —Av=f(u) inQ,
u=v=>0 on 0Q),

where Q is a bounded smooth domain of RY, N > 3 and f,g: R — R are given
functions.

In the model case g(s) =s”~! and f(s) =s9"!, p,g > 1, (here and in the
following s* = sgn(s)|s|” denotes the odd extension of the power function) the
previous problem is referred to as the Lane—Emden system because it is a natural
extension of the classical Lane—Emden equation

—Au=u""' inQ,

arising in Astronomy. It has been proved that Lane—Emden type systems have
non-trivial solutions for all p,q > 1 either in the so-called superquadratic but

!Partially supported by INDAM-GNAMPA Project 2015 “Metodi variazionali e topologici
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subcritical case, i.e. 1 — % <Il)+i <1 (see (2], [11], [13], [14], [19], [23] and [24])

and in the subquadratic case, i.e. 117 —l—é > 1 (see [6], [8] and [16]). On the contrary,
if p and ¢ belong to the critical hyperbola %—k% =1~ %, because of the lack of
compactness of the problem, non-existence of solutions has been stated in [21]
and [25] by using Pohozaev type arguments.

In the superquadratic case, existence and multiplicity results have been stated
also in unboundled domains by adding in the second equation a suitable term of
the form p(x)ur— (see [3], [4], [5] and [10]).

Aim of the paper is to study nonlinear elliptic systems like (1.1) in the whole
space R" but in the subquadratic case. More precisely we consider the following

nonlinear elliptic system

—Au = vP~! in RV,
(1.2) —Av = —p(x)u# + f(x,u) in RY,
u,v— 0 as |x| — +oo,

where p : RY — Rand f: RY x R — R satisfy the following assumptions:

(p;) pis a Lebesgue measurable function verifying infe\:}ss p(x) > 0;
R’

1
p / ——dy —0as |x| -+
(p2) Bl(x)P(J’) o

where B;(x) is the unit sphere centered in x;

(f1) f is a Carathéodory function (i.e., f(-,s) is measurable on R" for all s € R
and f'(x,-) is continuous on R for a.e. x € RY);
(f2) there exist g € (l,ﬁ) and a positive function b e LA(R"Y) with u=
P

(m) = m such that

1/ (x,8)] < b(x)|s]4" fora.e. x e RN and for all s € R;
(f3) there exist § > 0 and a positive function b; € L*(R") such that
f(x,5)s = bi(x)|s|? fora.e. xe R and foralls e R, |s| <J,

with ¢ and u the same as in (f3);
(fs) f(x,—s) = —f(x,s) for a.e. x € R and for all s € R.

We prove the following results. For the definition of the functional space E, and
of the energy functional / which appear in next theorems see Section 2.

THEOREM 1.1. Suppose that (p,), (p,), (f1)—(f3) hold. Then, system (1.2) admits

1

a non-trivial weak solution (ui,(—Au)r-1). Moreover, if f satisfies also (f3)
1

globally (i.e. witho = +0) and (f4), system (1.2) has a sequence { (i, (—Ady)»-7)}
of non-trivial weak solutions such that w, — 0 in E, and I(it) — 0 as k — +oco.
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The multiplicity result contained in Theorem 1.1 can be weakened as follows in
the case 1 < p < &5 by replacing (/2) and (f4) with the weaker assumptions

(fs) there exist g € (1, = L), >0 and a positive function b e L*(R") with
U= (q(lfil)) such that

f(x,8)s < b(x)|s|]? forae. xeRY andforallse R, |s] <J;
(f6) f(x,—s) = —f(x,s) for a.e. x e Q and for all s € R, |s| <.

THEOREM 1.2. Let 1 < p < 575. Assume that (p,), (py). (f1), (f3), (f5) and (fs)

hold. Then, system (1.2) has a sequence { (g, (— Auk)ﬁ)} of non-trivial weak
solutions such that i, — 0 uniformly in RN and I(ii;) — 0 as k — +co.

REMARK 1.3. Let us observe that, denoting F(x,s) / f(x,1)dt, from (f3),
(f3) and (fs) by integration it follows that

b
(1.3) |F(x,s)| < %Mq for a.e. x € RY and for all s € R;

S

1(x)
q

(1.4) F(x,s) > Is|? fora.e. x € RY and for all s € R, |s] <0;

b
(1.5  F(x,5) < %Mq for a.e. x e RV and for all s € R, |s| <.

We emphasize that, really, in order to obtain the multiplicity result in the case
l<p<y 2 we need only local assumptions since Theorem 1.2 still holds if
we con31der /:RY x [=6,6] — R an odd Carathéodory function verifying (f3)
and (f5).

REMARK 1.4. Clearly, (f2) and (f3) imply that b;(x) < b(x) for a.e. x € Q. In
particular, the function f(x,s) = b(x)s?"! verifies (f1)—(f4) if b(x) is a positive
function in L*(R") with u =

prq-rq°

Following the variational formulation in [12] (see also [13]), we shall prove the
above results by studying an equivalent fourth order quasilinear elliptic equation
under Navier boundary conditions. Really, this equation is very interesting from
a mathematical point of view, independently of its equivalence with system (1.2).
In the particular case p =2, we obtain the biharmonic equation with Navier
boundary conditions

(1.6) {Azu = —pXu+ f(x,u) in RY,
' u,Au—0 as |x| — +o0.

We recall that the biharmonic case has been widely studied in literature since it
seems to be special and intermediate between the second order and the general
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polyharmonic case (see e.g. [7, 15] and [17, Section 7.2 and page 358 of Section
7.12] and references within). Here, by Theorems 1.1 and 1.2 we deduce the
following results which, to our knowledge, are new within the framework of
biharmonic equations with “‘sublinear” terms.

COROLLARY 1.5. Suppose that (p,), (p,), (fi)—(f3) hold. Then, problem (1.6)
admits a non-trivial weak solution i. Moreover, if f satisfies also (f3) globally
(i.e. with 6 =+4o0) and (fs), problem (1.6) has a sequence {u} of non-trivial
weak solutions such that w, — 0 in E, and I(ix) — 0 as k — +o0.

COROLLARY 1.6. Let N = 3. Assume that (p,), (p,), (f1), (f3), (fs) and (fs)
hold. Then, problem (1.6) has a sequence {i} of non-trivial weak solutions such
that i, — 0 uniformly in R™ and I(i;) — 0 as k — +co.

The paper is organized as follows: in Section 2 we introduce the variational for-
mulation of the problem and we recall a variant of the Symmetric Mountain Pass
Theorem for “sublinear’ problems stated in [20]. In Section 3 we prove Theorem
1.1 and Theorem 1.2. In particular, in order to prove the multiplicity result
stated in Theorem 1.2, we introduce a new modified problem which admits a
sequence of solutions uniformly converging to zero. Finally, we prove that these
solutions provide solutions to the original system (1.2).

Notations.

o L'(RY), with 1 <t < +o0, denotes the Lebesgue space with the usual norm
| ’ |t;

o Whkeo(RY), with ke N, 6eR, 1 <k,0< o0, is the usual Sobolev space
equipped with the norm

.= “ul” d. ‘d é;
lut]| gy (Z/» | D%ul X—I—/RN|M| x)

|of=k < R

e Cp(RY) is the space of the continuous bounded functions on R" equipped with
the usual norm | - |_;
e ¢ denotes a real positive constant changing line from line.

2. VARIATIONAL TOOLS

Let N > 3 and p > 1. Arguing as in [12] (see also [13], it is possible to transform
system (1.2) in an equivalent quasilinear scalar problem. Indeed, the system (1.2)
can be rewritten as

(—Au)ﬁ =v in RY,

—Av = —p(x)uﬁ + f(x,u) in RY,

u,v—0 as |x| — +oo,
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that is equivalent to the fourth order quasilinear elliptic equation
2 ~A(~ A7 = —p(x)urT + f(x,u) in RY,
u,Au— 0 as x| — +o0.

Clearly, if u is a weak solution of (2.1), we define weak solution of system (1.2)
the couple (u, (— Au)ﬁ "). In order to prove that problem (2.1) has a variational
structure, let £ be the space w2 I(RN ) endowed with the norm

P P E
||u||—</ Au|p_ldx+/ 7 )"
RV RY

and with dual space (E', || - ||z/). As N > 3, the above norm is equivalent to the
norm || - [z (see Corollary 9.10 and its previous remark in [18, pp. 235]).

2.
As (p;) holds, we can consider the space E, = W, ”'(R"), namely

{u € Wz’PIT)l([RiN) :/ p(x)|u|%dx < oo}
RN

equipped with the norm

E
full, = ([ 185+ [ ool )
RV RY

equivalent to

—1

/ |D%u| 71 1dx+/ (x)|u|ﬁdx)T

From now on, let 1 < ¢ < oo and

|o|=2

Li(RY) = {ueL(RN) /RNp(x)|u|’dx<oo}

endowed with the norm

iy = ([ ol )

A
Clearly, E, = En L) '(R") and we have that E, — E. Then, if we set
N .
P\ (N—2)pp—N if p> %5,
(2.2) — ) =
p—1 +oo 1f1<p_N2,

the Sobolev imbedding Theorems give the following result (see e.g. [9, Corollary
9.13)).
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PROPOSITION 2.1. Assume that p satisfies (p,). The following continuous imbed-
dings hold:

(A) if p>:5. e % <X then

(B) if p= —NNz, Le. —— 7= —1;7, then

Ny : V4 2R
E, — L'(RY) zf—p_lsz<<—p_l) :

(C) ifl<p<%,i.e.%>ﬂ,then

t(oNY P P\
Ey = LR if Ty lgzs(—p_l)

and, for every u € E,,
lu(x) —u(x")| < Cllu|| |x = x'|*  forae. x,x" e RY,

where o and C are suitable constants depending on p and N.
Moreover,

(2.3) E, — Cp(R").

As ensured by the following result, the presence of the weight p(x) allows us to
overcome the lack of compactness of the problem.

PROPOSITION 2.2. Under assumptions (p;) and (p,), it follows that the imbed-
dings

t(mN 4 P\
E, — L'(R") forallp—_1 £t<<p—_1)

are compact. Moreover, ifﬁ > N the imbedding is compact also for t = (ﬁ)**,
Le.,

(2.4) E, —— Cp(R").
PRrOOF. For the proof, we refer to |3, Proof of Proposition 3.1]. m|

REMARK 2.3. Since b is a positive function belonging to L*(R"), by Hélder
inequality and Proposition 2.2 it follows that

E, —— LZ(RN)
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where
LI(RY) = {u e LIRY) : / b(ox) ] dx < oo}
RN
endowed with the norm

iy = ([ Lol ).

Now, it is possible to state the following variational principle.

PRrROPOSITION 2.4. Assume that (p,), (p,), (f1) and (f2) hold. Then, the weak
solutions of problem (2.1) are the critical points of the energy functional defined
on E, by

-1 i .
1) =222 [ (84 poful 7~ [ Fxu)ax
P JrY RY
More precisely, I € C'(E,) and its differential dI : E, — E) is defined as
25) A= || [P+ p(a) L S dy

Jor all u, € E,. Moreover, the function u — f(-,u(-)) is compact from E, to E,.

ProoF. First, we prove that the functional

-1 =
I(u) :—pp lullf" — /RNF(x,u)dx, uek,,

is well defined and its Fréchet differential given in (2.5) is a continuous operator
from E, to Efﬁ We study separately the two maps

p—1. 5
wli) ="l ) = [ Fond

Clearly, g, € C'(E,) since ¢, is continuous from E, to R and its Gateaux differ-
ential at u

dﬁ”o(u)[d—/ (_A“)ﬁ(—AC)dx—i—/ P(X)uﬁédx

RN RN

is a linear continuous map on E,. For the details we refer to [3, Proof of Propo-
sition 2.7].
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Now, we have to prove that also ¢, € C'(E,) with
(2.6) do,(u / S(x,u)ldx forallu,( e E,.

First, by (1.3) in Remark 1.3 and Holder inequality it is
1 1
e / \F(x, )] dx < - / b(x) ] dx < ~ (B[, Jul,
RN q JrY q -1
and similarly, by (f2) we obtain
/ e, u) [¢] dx < / )¢l < 1ol K,
IR/\

Hence, by Sobolev imbeddings in Proposition 2.1 it follows that ¢,(u) € R and

dp;(u)[{] € R for all u,({ € E,. Moreover, standard tools imply that the Gateaux

differential of ¢; at u is as in (2.6) and it is linear and continuous from E, to R.
At this point, we have to prove that dg; is continuous from E, to E /;’ e

(2.7) 1doy (un) = dp(W)l|lg; — 0 if uy — win E,.

Indeed, by Holder inequality and Sobolev imbeddings,

(@p1() = dpn()l < [ | 17Cxm) = f (] [€]
< /o)) — LDl
Now, by (f2) we get

(e un) — (e u)|” < e(|f (6 )|+ |f (x,0)| )
< c((b(x))” |un) "9V + (B(x)) ] TV
< e((b(x))" |ty — u] "4 + (B(x)) || 797V,

By Fatou’s lemma, it follows that
(2.8) / liminf (c(b(x))?|up — ul"7Y + (b(x))?|u|7V)
RN n—-+0o0
— | f(x,un) = f(x,u)|”) dx
< timinf [ (e(b() s — "0+ (b))
RN

n—-—+oo
- |f(x, un) - f(x, u)|[7) dx.
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Now, we observe that, since u, — u in E, it is u,(x) — u(x) a.e. x € R", therefore
(b(x))? |un(x) —u(x)|""V 50 ae xeRY

and also by (f7)
Lf(x, un(x)) = F(x,u(x))]” — 0 ae xeRY.

On the other hand, by Holder inequality and Sobolev imbeddings we get
/ (B(x))? [ty — "V dx < |b|? |t — u| 71
RY p-1

and, since u, — u in Lﬁ_fl([RN ) by Proposition 2.1, also the left-hand side term
goes to zero as n — +oo. Consequently, (2.8) involves

c/ (b(x))p|u|p(q1)dxgc/ (b(X))p|u|p(q71)dx
RY a

+ liminf (— /R ) — f(x, u)\f’dx)

n—-+oo

from which it follows that

0 < —limsup </[R€N |/ (x, uy) —f(x,u)|”dx)

n—-+o0

and therefore

n——400

0 < liminf (/R (% tn) — £ (x,10)]” dx)

< limsup(/RN |/ (x, uy) —f(x,u)|”dx) <0.

n—-+ao0

Hence,

|f('aun(')) _f(vu()>|p —0 asn— +w

and (2.7) is proved.
Finally, by exploiting Proposition 2.2 instead of Proposition 2.1 in the pre-
vious arguments it follows that dg, is compact from E, to E. O

Now, we recall a suitable version stated by R. Kajikiya in [20] of the classical
Symmetric Mountain Pass Theorem (see [1]).

Let X be an infinite dimensional Banach space, X’ its dual space and
J:X — R be a C! functional. Let us recall that J satisfies the Palais—Smale,
briefly (PS), condition, if any (PS) sequence, i.e. any sequence {u;} in X such
that {J(ux)} is bounded and dJ(u;) — 0 in X’ as k — +o0, has a convergent
subsequence.
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For all integer k, let
'y = {4 < X — {0} | 4 closed and symmetric, y(A4) > k},

where, as usual, y(4) denotes the genus of the set 4 (for the definition and rela-
tive properties see, €.g., [22]).
The following result has been proved in [20, Theorem 1].

THEOREM 2.5. Let J € C'(X,R) satisfying

(A1) J is even, bounded from below, J(0) = 0 and J satisfies the (PS) condition;
(A2) for every k € N there exists Ay € Ty such that sup 4 J(u) < 0.

Then,

() either there exists a sequence {uy} such that dJ(ux) =0, J(ur) < 0 and {u;}
converges to zero;

(i) or there exist two sequences {uy} and {vi} such that dJ(u;) =0, J(u;) =0,
up #0, limg u =0, dJ(vx) =0, J(vg) <0, limg J(vr) = 0 and {vx} converges
to a non-zero limit.

REMARK 2.6. In any case (i) or (ii), Theorem 2.5 gives the existence of a
sequence {u;} of critical points such that J(ux) <0, u; # 0, limg ux =0 and,
consequently, limy J(ux) = 0.

3. PROOF OF THE MAIN RESULTS

ProOF oF THEOREM 1.1. From (1.3), Holder inequality and Sobolev embed-
dings, we get

-1 A o
Iy === / (1Auf7T + p(x)|uf77) dx - / F(x,u) dx
P JrY RY

P

p—1 — 1/ q
—|lu - b(x)|u|? dx
=l = [ b

p—1 5
aall™" = el [full -

Y

v

Then, since 1 < ¢ < %1, it follows that / is bounded from below and coercive
on the reflexive Banach space E,.

Moreover, by using the notations introduced in Proposition 2.4, the functional
I = ¢y — ¢, is weakly lower semicontinuous on E, since ¢, is weakly lower semi-
continuous by the norm properties while ¢, is weakly continuous as it is of class
C! on E, and its derivative dp; is compact by the second part of Proposition 2.4.
Then, by a generalized Weierstrass Theorem there exists & € E, such that /(1) =
min, e, (u). Hence, by applying now the first part of Proposition 2.4, i is a
solution of problem (2.1).
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Clearly, (f>) implies f(x,0) =0 for a.e. x € R, then problem (2.1) admits
always the trivial solution u = 0 with 7(0) = 0.

Anyway, by (f3) condition (1.4) in Remark 1.3 holds, therefore the solution
is non trivial since, fixed u; € E, A L*(RY) with u; # 0, by Holder inequality
and 1 <q<ﬁweget

P

-1 » e
Iew) = 2= a7 |77 — / F(xem) dx
.
-1
< 2L a7~ S bl
q -
<0=1(0)

for ¢ > 0 small enough.

Now, in order to prove the multiplicity result, assume that also (fs4) holds.
Then, the functional 7 is even. Let us point out that 7 satisfies (PS) condition.
Indeed, if {u;} is a (PS) sequence, {u} is bounded by the coerciveness of I.
Thus, up to subsequence, there exists u € E, such that u; — u. By Proposition
2.4 we have that the function u — f(-,u(-)) is compact from E, to E, and,
reasoning as in [15, Section 3] we conclude that u;x — u in E,. Hence, I satisfies
assumption (A4;) in Theorem 2.5.

Now, let us denote by {¢;} a Schauder basis of the separable Banach space
E,. For k e N fixed, let Ex = {ey,...,er} be a k-dimensional subspace of E,. By

1
Remark 2.3 we get that [ul, , = ( bl(x)|u|qu)q is a norm in E,, therefore,
: RN

since we are in finite dimension, there exists ¢ > 0 such that ||u|, < cxlul, ,, for
every u € Ej. Clearly,

= sup |ull,
VEEA‘J“\,;,;”:I

hence the sequence {c} is increasing. Moreover, ¢, — +o0 if k — +00. Indeed,
if by contradiction {c;} was bounded, taken u € E, and u; the component of
u along Ej, it is u =lim;u; in E, and in LZ]([R{N). Since for every k it is
llurl, < cxlugl, ,, passing to the limit we have |[ul|, < clul, , , for ¢ suitable
constant independent of u. Hence, L" (RY) — E, while Remark 2.3 ensures that
E,— L} (R™) which gives the contradlctlon Therefore taken u € Ej from (1.4)
w1th 5 =+ we get

IA

1) ”—n G ——/ byl dx

p—1

IA

ol —QCQq\IuIIZ <2 L

1

A
if we choose 2”771 lull)" < %c,:q||u||;’ or equivalently [juf|, < (2(1)_’;)“; )T
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Chosen 0 < d;, < ( 1! = r?ﬂl, it results that r, — 0 as k — +o

35107
2(p—1)qe!
and k

—1
{ue B |ul, = di} {ueEp:I( )<—Td“ }

So, denoted by

Ak:{ueﬂﬁl()<—£;idw}

as [ is even and continuous, Ay is closed and symmetric, i.e. 4; € [, and, by
well known properties of the genus, y(Ax) = y(Ex nSy,) =k, where Sy =
{ue E:|ul, = di}. Consequently, for every k € N there exists 4x € I'x such
that

1 =
sup I < —p—afk”1
Ay p

<0.

Hence, (A4,) holds and by Theorem 2.5 (see also Remark 2.6), there exists a se-
quence {i} in E, such that i, # 0, dI (i) = 0, limy &4 = 0 and limy 1 (it ) = 0.
Therefore, by Proposition 2.4, {@} is a sequence of non-trivial solutions to
(2.1) such that I(i#) <0, i — 0 in E, and (i) — 0 as k — +co, hence
(#t, (—Auy)r1) is a solution to system (1.2) with ity — 0 in E, and I (i) — 0 as
k — +oo. O

Now, we have to prove the multiplicity result stated in Theorem 1.2 for the case
1 < p <+%5. First of all, let us observe that, under local assumptions (f3) and
(/5), problem (2.1) does not admit a variational formulation since the functional
I is not well defined on the space E,. Therefore, we modify the term f by intro-
ducing a new function f satisfying the same hypotheses of f but globally with
respect to s € R.

First, taken 0 > 0 as in assumptions (f3) and ( f5) let us consider a cut-off
function ¢ such that 0 < ¢(s) < 1, p(s) = Lif |s| < 5, p(s) = 0 if |s| > J and ¢ is
even, continuous and strictly decreasing on § 9 < |s| <6. Then, let us define

F(x,5)s = p(s) f(x,8)s + (1 — p(s))b1(x)|s]?, for a.e. x e RV, forall s € R.
It is possible to prove the following Proposition.

PROPOSITION 3.1. Assume that f verifies assumptions (f1), (f3), (f5) and (fs).
Then f is an odd Carathéodory function such that for a.e. x € RY and for all s € R
it is

(3-1) % 1)1l < F(x,9)s < (b(x) + b (x)]s]”.
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PROOF. Since f satisfies (/1) and (fs), by the definition of ¢ it is easy to see that
f is an odd Carathéodory function on RY x R.

Moreover, if |s| < §, it is f(x,s)s = f(x,s)s and then by (f3) and (f5) we
obtain

bi(x)|s]? < f(x,s)s < b(x)|s|]? forae. xeRY,

and (3.1) follows by the positivity of b;.

On the other hand, if |s| > 6, it is f(x,s)s = b1(x)|s|? and (3.1) follows again
since b and by are positive functions. Finally, if § <|[s| <d, by (f3) it is
f(x,s)s > 0. Recalling that ¢(s) > 1 or 1 — ¢(s) > 1, we have in any case

1
Sf(x,8)s > Ebl(x)|s|q fora.e. x e RV,

while by (f5)

F(x,5)s < f(x,8)s + by (x)|s]? < (b(x) + by (x))|s|? forae. x e RY.
Hence, the proof of (3.1) is complete. O

REMARK 3.2. Clearly, since b;(x) >0 for a.e. x € R¥, condition (3.1) implies
that f verifies (f>) with b(x) replaced by b(x) + by (x) for a.e. x € RY.
At this point we can consider the following new problem

(32) ~A(~ A7 = —p(x)urT + f(x,u) in RY,
u, Au— 0 as |x| — +oo.

and the associated energy functional defined on E, by

- —1 A A —
Ty =22 [ (8774 poful7 i~ [ Flxuyar,
P JRrY RY

t

with F(x, 1) = / f(x,s) ds. By Proposition 3.1 and Remark 3.2, Proposition 2.4
0

can be applied to 7, hence it follows that I € C'(E,) and its critical points are the
weak solutions to problem (3.2). Let us remark that, by integration, from (3.1)
we obtain that, for a.e. x € RY and for all s € R, it is

(3.3) 2iqb1<x)|s|q < F(x,5) < S (b(x) + b1 (x)]s]".

|-

The following Proposition will be crucial in the statement of our multiplicity
result since it allows us to obtain solutions of system (1.2) by studying problem
(3.2).

PROPOSITION 3.3. Ler 1 < p < 5. Assume that (p;), (p). (1) and (f5) hold.
Let {u} be a sequence in E, of solutions of problem (3.2) such that ux — 0 in
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E, as k — +oo. Thus, ux — 0 uniformly in RY and therefore uy solves problem
(2.1) for all k large enough.

PROOF. Since 1 < p < %5, from (2.3) it follows that ux — 0 uniformly in RY.
Therefore, let us point out that, taken d > 0 as in assumptions (f3) and (fs), there
exists k € N such that for every k > k it is |ux|,, < §, namely |u(x)| < for
every x € RY and for every k > k. It follows that f(x up(x)) = f(x,ux(x)) and
F(x,ux(x)) = F(x,u(x)), therefore we have that I(uy) = I(w) and dI(u) =
dI (uy), hence by Proposition 2.4 u; is a solution to problem (2.1) for every
k> k. O

PrROOF OF THEOREM 1.2. Observe that by Proposition 3.1 f satisfies (f1)—(f2).
Therefore, Theorem 1.1 applies to the functional 7. In particular, system (3.2)

has a sequence { (i, (— Azlk)ﬁ)} of non trivial weak solutions with & — 0 in
E, and [ (uk) — 0 as k — +oo. Finally, by applying Proposition 3.3, i — 0
unlformly in RY and for1 k large enough i1, is a solution to problem (2. 1) hence
for k large (it, (—Aii)»7) is a solution to system (1.2) with & — 0 in E, and
I(ig) — 0 as k — +o0. O
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