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Complex variables functions — Higher order Pizzetti’s formulas, by Grzegorz

Łysik, communicated on 13 November 2015.

Abstract. — We introduce integral mean value functions which are averages of integral means

over spheres/balls and over their images under the action of a discrete group of complex rotations.
In the case of real analytic functions we derive higher order Pizzetti’s formulas. As applications

we obtain a maximum principle for polyharmonic functions and a characterization of convergent
solutions to higher order heat type equations.
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Introduction

The Pizzetti mean-value formula states that the integral mean of a smooth func-
tion u over the Euclidean sphere of radius r is expressed as a series of even powers
of r whose coe‰cients are given by iterated Laplacian evaluated on u at the
center of the sphere multiplied by numerical factors. In the case of 2-dimensional
sphere the formula was derived already in 1909 by Pizzetti [16]. Its extensions
to the case of means over Euclidean spheres and balls in arbitrary dimension
for polyharmonic functions and the inverse mean-value properties were derived
by Nicolesco [15]. Later on the Pizzetti serii were studied from di¤erent points
of view, see [8, 4, 6] and references therein. In particular, it was proved that
real analytic functions can be characterized by convergence of the Pizzetti serii
[2, 12]. The Pizzetti formulas were also extended to the case of means on
Riemannian manifolds [9] and on the Heisenberg group [5, 10], and to the
Dunkl–Laplace operator on Rn [13, 17]. A generalized mean value theorem
with respect to a general Borel measure supported by the unit real ball for solu-
tions of a system of homogeneous partial di¤erential equations was derived by
Zalcman [18].

In the paper we introduce integral mean value functions Nk and Mk which are
averages of integral means over spheres/balls of radius r over their images under
the action of a discrete group Wk generated by a rotation of all variables of Cn

by the angle 2p=k. In the case of real analytic functions we derive higher order
Pizzetti’s formulas. Due to averaging integral means over Wk our higher order
Pizzetti’s serii contain only terms of the form clmD

lmr2lm, m a N0, if k ¼ 2l is even.
As applications we obtain a maximum principle for polyharmonic functions,



a characterization of functions of Laplacian growth and a characterization of
convergent solutions to the initial value problem for the higher order heat type
equation qtu ¼ D lu, uð0; �Þ ¼ j where l a N and j is real analytic.

1. Preliminaries

Let k a N. Denote by � the transformation of Cn into Cn given by �ðz1; . . . ; znÞ ¼
ðe2p{=kz1; . . . ; e2p{=kznÞ and by Wk the group generated by �. Let u be a continuous
function defined on a complex neighborhood U of an open set WHRn. For
x a W and 0a jrj < distðx; qUÞ we define the Wk-spherical and Wk-solid mean
value functions

Nkðu; x; rÞ ¼
1

knsðnÞ
Xk�1

j¼0

Z
Sn�1ð0;1Þ

uðxþ r� jðyÞÞ dSðyÞ;ð1aÞ

Mkðu; x; rÞ ¼
1

ksðnÞ
Xk�1

j¼0

Z
Bnð0;1Þ

uðxþ r� jðyÞÞ dy;ð1bÞ

where sðnÞ ¼ pn=2=Gðn=2þ 1Þ is the volume of the unit ball Bnð0; 1Þ in Rn and
dS ¼ dSn�1 is the natural measure on the unit sphere Sð0; 1Þ ¼ Sn�1ð0; 1Þ.

Note that if k is odd, then Nkðu; x; rÞ ¼ N2kðu; x; rÞ and Mkðu; x; rÞ ¼
M2kðu; x; rÞ. In particular

N1ðu; x; rÞ ¼ N2ðu; x; rÞ ¼
1

nsðnÞ

Z
Sð0;1Þ

uðxþ ryÞ dSðyÞ

and

M1ðu; x; rÞ ¼ M2ðu; x; rÞ ¼
1

sðnÞ

Z
Bð0;1Þ

uðxþ ryÞ dy

are the classical mean value functions and the same as functions N and M in [12].

2. Higher order Pizzetti’s formulas

In this section we assume that u a AðWÞ is a real analytic function on an open set
WHRn. Then u extends to a function ~uu holomorphic on a complex neighborhood
U of W and for any x a W it holds

~uuðyÞ ¼
X
k ANn

0

1

k!

qjkju

qxk
ðxÞðy� xÞk for y a U with ky� xk < rðxÞ;ð2Þ

with some function r a C0ðW;RþÞ. Hence the functions Nk and Mk are well
defined for x a W and jrj small enough.
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Theorem 1 (Higher order Pizzetti’s formulas). Let k ¼ 2l with l a N, u a AðWÞ
and x a W. Then Nkðu; x; rÞ and Mkðu; x; rÞ are real analytic functions at the origin
and for jrj small enough it holds

Nkðu; x; rÞ ¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm;ð3aÞ

Mkðu; x; rÞ ¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2 þ 1

�
lm
ðlmÞ!

r2lm;ð3bÞ

where D is the Laplace operator and ðaÞm ¼ aðaþ 1Þ . . . ðaþm� 1Þ for m a N is
the Pochhammer symbol.

Proof. For x a W and 0 < jrj small enough we compute

Nkðu; x; rÞ ¼
1

knsðnÞ
Xk�1

j¼0

Z
Sð0;1Þ

~uuðxþ r� jðyÞÞ dSðyÞ

¼ð2Þ 1

knsðnÞ
X
k ANn

0

1

k!

qjkju

qxk
ðxÞ

Xk�1

j¼0

Z
Sð0;1Þ

ðr� jðyÞÞk dSðyÞ

¼ 1

knsðnÞ
X
k ANn

0

1

k!

qjkju

qxk
ðxÞrjkj

Xk�1

j¼0

Z
Sð0;1Þ

ðe2jp{=kyÞk dSðyÞ

¼ 1

knsðnÞ
X
k ANn

0

1

k!

qjkju

qxk
ðxÞrjkj

Xk�1

j¼0

e2jjkjp{=k
Z
Sð0;1Þ

yk dSðyÞ

¼
Xl
m¼0

X
jkj¼km

1

k!

qkmu

qxk
ðxÞrkm 1

nsðnÞ

Z
Sð0;1Þ

yk dSðyÞ

¼
Xl
m¼0

X
l ANn

0

2jlj¼km

1

ð2lÞ!
qkmu

qx2l
ðxÞrkm 1

nsðnÞ

Z
Sð0;1Þ

y2l dSðyÞ

since

Xk

j¼0

e2jjkjp{=k ¼ k if jkj ¼ km for some m a N0;

0 otherwise

�

and the integral of yk over Sð0; 1Þ vanishes if at least one of the coordinates ki of
k ¼ ðk1; . . . ; knÞ is odd. Finally using [7, formula 676, 11] we get
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Nkðu; x; rÞ ¼
Xl
m¼0

X
l ANn

0

2jlj¼km

1

ð2lÞ!
G
�
l1 þ 1

2

�
. . .G

�
ln þ 1

2

�
G
�
jlj þ n

2

� qkmu

qx2l
ðxÞrkm

¼
Xl
m¼0

X
l ANn

0

2jlj¼km

1

ð2lÞ!

�
1
2

�
l1
. . .

�
1
2

�
ln�

n
2

�
jlj

qkmu

qx2l
ðxÞrkm

¼k¼2l
Xl
m¼0

r2lm

4 lm
�
n
2

�
lm
ðlmÞ!

X
l AN n

0

jlj¼lm

ðlmÞ!
l!

q2lmu

qx2l
ðxÞ

¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm:

In an analogous way we obtain

Mkðu; x; rÞ ¼
Xl
m¼0

X
2jlj¼km

1

ð2lÞ!

�
1
2

�
l1
. . .

�
1
2

�
ln�

n
2 þ 1

�
jlj

� q
kmu

qx2l
ðxÞrkm

¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2 þ 1

�
lm
ðlmÞ!

r2lm:

The convergence of the serii (3a) and (3b) for jrj < rðxÞ=
ffiffiffi
n

p
(r as in (2)) can be

shown as in the proof of [12, Theorem 3.1]. r

Passing to the limit k ! l in the formulas (3a) and (3b) we get the following
mean value formulas for real analytic functions.

Corollary 1. Let u a AðWÞ and let ~uu be a holomorphic extension of u. Then
for x a W and r > 0 small enough it holds

uðxÞ ¼ 1

2nsðnÞp

Z
S 1
z
ð0;1Þ

Z
Sn�1ð0;1Þ

~uuðxþ rzyÞ dSn�1ðyÞ � dS1ðzÞ

¼ 1

2sðnÞp

Z
S 1
z
ð0;1Þ

Z
Bnð0;1Þ

~uuðxþ rzyÞ dBnðyÞ � dS1ðzÞ;

where S1
z ð0; 1Þ ¼ fz a C : jzj ¼ 1g.

Proof. Indeed since u a AðWÞ for x a W one can find C < l and L < l such
that

jD juðxÞjaCL2jð2jÞ! for j a N0:
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Hence for a fixed e > 0 we can find l0 a N such that for lb l0 and mb 1 we
have

jD lmuðxÞj
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm aC
L2lmð2lmÞ!

4 lm
�
n
2

�
lm
ðlmÞ!

r2lm aCðLrÞ2lm a
e

2m

if r is small enough. So

Xl
m¼1

jD lmuðxÞj
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm a e

and liml!l N2lðu; x; rÞ ¼ uðxÞ. On the other hand by the definition of the func-
tion N2l and the Fubini theorem we get

lim
l!l

N2lðu; x; rÞ ¼
1

2nsðnÞp

Z
S 1
z
ð0;1Þ

Z
Sn�1ð0;1Þ

~uuðxþ rzyÞ dSn�1ðyÞ � dS1ðzÞ:

The second formula is proved in the same way. r

It appears that real analytic functions can be characterized as those smooth
ones for which the higher order Pizzetti’s serii converge.

Theorem 2. Let l a N, r a C0ðW;RþÞ and u a ClðWÞ. If the series

~NNðx; rÞ ¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm

is convergent locally uniformly in fðx; rÞ : x a W; jrj < rðxÞg, then u a AðWÞ and
N2lðu; x; rÞ ¼ ~NNðx; rÞ for x a W and 0a jrj < minðrðxÞ; distðx; qWÞÞ.

Proof. Fix a compact set K TW and set r ¼ infx AK rðxÞ > 0. Then the
assumption implies that

D lmuðxÞ
4 lm

�
n
2

�
lm
ðlmÞ!

r2lm ! 0 as m ! l

uniformly on K � fjrja r1g with any r1 < r. So for any r1 < r there exists a
constant Cðr1Þ < l such that

sup
x AK

jD lmuðxÞjaCðr1Þ � 4 lmðn=2ÞlmðlmÞ!r�2lm
1 for m a N0:
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Applying the inequalities ðn=2Þlm a ðmaxf1; n=2gÞ lmðlmÞ! and 2 lm � ððlmÞ!Þ2 a
ð2lmÞ! we see that for any compact set K TW one can find C < l and L < l
such that

sup
x AK

jD lmuðxÞjaCL2lmð2lmÞ! for m a N0:

But by [11, Theorem] this inequality implies that u a AðWÞ. Finally, by Theorem
1 we get ~NNðx; rÞ ¼ N2lðu; x; rÞ. r

Corollary 2. Under the assumptions of Theorem 2 if the series

~MMðx; rÞ ¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2 þ 1

�
lm
ðlmÞ!

r2lm

is convergent locally uniformly in fðx; rÞ : x a W; jrj < rðxÞg, then u a AðWÞ and
M2lðu; x; rÞ ¼ ~MMðx; rÞ for x a W and 0a jrj < minðrðxÞ; distðx; qWÞÞ.

3. Maximum principle for polyharmonic functions

It is well known that modulus of a function u harmonic on a connected domain
WHRn cannot attain its maximum at an interior point of W unless u is constant.
On the other hand this maximum principle does not extend to l-polyharmonic
functions, i.e., solutions to D lu ¼ 0 with lb 2. However due to the real analy-
ticity of such functions by the formula (3b) we obtain the following maximum
principle for polyharmonic functions.

Theorem 3. Let u be a real valued, l-polyharmonic function on a connected open
set WHRn, l a N. Denote by ~uu its holomorphic extension to a connected complex
neighborhood U of W. If for some x0 a W and r0 > 0 it holds

euðx0ÞbeRe ~uuðyÞ for y a x0 þ
Xl�1

j¼0

� jðBð0; r0ÞÞ;ð4Þ

where �ðzÞ ¼ ep{=lz, then u is constant on W.

Proof. Since u is l-polyharmonic the series in (3b) terminates at the first term.
So for any x a W and 0 < r < rðxÞ we have

M2lðu; x; rÞ ¼
1

lsðnÞ
Xl�1

j¼0

Z
Bnð0; rÞ

~uuðxþ � jðyÞÞ dy ¼ uðxÞ:

So M2lðu; x0; rÞ ¼ uðx0Þ for 0 < r < rðx0Þ and the assumption (4) implies that
Re ~uuðyÞ ¼ uðx0Þ for y a x0 þ

P l�1
j¼0 �

jðBð0; r1ÞÞ with 0 < r1 < minðr0; rðx0ÞÞ. In
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particular Re u ¼ u is constant on Bðx0; r1Þ and since u is real analytic it is
constant on W. r

Corollary 3. Let u be a real valued, l-polyharmonic function on a connected
open set WHRn, l a N. Denote by ~uu its holomorphic extension to a connected
complex neighborhood U of W. If for some x0 a W and r0 > 0 it holds

juðx0Þjb j~uuðyÞj for y a x0 þ
Xl�1

j¼0

� jðBð0; r0ÞÞ;ð5Þ

then u is constant on W.

Proof. By possibly multiplying times �1, we can assume that uðx0Þ is non-
negative. By (5) we have uðx0Þb j~uuðyÞjbRe ~uuðyÞ for y a x0 þ

P l�1
j¼0 �

jðBð0; r0ÞÞ.
Thus by Theorem 3, u is constant on W. r

4. Functions of l-Laplacian growth

The notion of functions of Laplacian growth was introduced by Aronszajn et al.
[1, Chapter II]. Here we introduce its following generalization.

Definition 1. Let l a N, % > 0 and tb 0. A function u smooth on WHRn is
of l-Laplacian growth ð%; tÞ on W if for every compact set K TW and e > 0 one
can find C ¼ CðK ; eÞ < l such that

sup
x AK

jD lmuðxÞjaCð2lmÞ!1�1=%ðtþ eÞ2lm for any m a N0:ð6Þ

It follows by [11, Theorem] that a function u of l-Laplacian growth ð%; tÞ on W
is real analytic on W. Hence (3a) and (3b) hold for any x a W and r small enough.
However due to the estimation (6) both functions N2l and M2l extend to entire
functions of r.

Theorem 4. Let l a N, % > 0, tb 0 and u a ClðWÞ. If u is of l-Laplacian
growth ð%; tÞ on W, then N2lðu; x; rÞ and M2lðu; x; rÞ as functions of r extend holo-
morphically to entire functions of exponential growth ð%; t%=%Þ locally uniformly
in W.

Proof. Let u be of l-Laplacian growth ð%; tÞ on W. Set

~NN2lðu; x; zÞ ¼
Xl
m¼0

D lmuðxÞ
4 lm

�
n
2

�
lm
ðlmÞ!

z2lm for x a W and z a C:ð7Þ

Then ~NN2l is a holomorphic extension of N2l . Indeed, applying (6) and the
inequality ð2lmÞ!a 4 lm

�
n
2

�
lm
ðlmÞ! we get for any K TW, e1 > 0 and R < l,
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sup
x AK

sup
jzjaR

j ~NN2lðu; x; zÞja sup
x AK

Xl
m¼0

jD lmuðxÞj
4 lm

�
n
2

�
lm
ðlmÞ!

R2lm

aCK ; e1

Xl
m¼0

ð2lmÞ!1�1=%ðtþ e1Þ2lm

4 lm
�
n
2

�
lm
� ðlmÞ!

R2lm

aCe1

Xl
m¼0

1

ð2lmÞ!1=% ðtþ e1Þ2lmR2lm:

Clearly, the last series converges for any R and so ~NN2lðu; x; zÞ is an entire function
of z. Now fix e > 0 and find e1 > 0 such that eðtþ e1Þ% a et% þ e. Then using the
inequality j!b ð j=eÞ j for j a N0 we estimate for any m a N0,

1

ð2lmÞ!1=% ðtþ e1Þ2lm a

� e

2lm

�2lm=%

ðtþ e1Þ2lm a

� e%t%=%þ e

2lm

�2lm=%

:

Thus by [3, Theorem 2.2.2], ~NN2lðu; x; zÞ is an entire function of exponential
growth ð%; t%=%Þ locally uniformly in W.

In the case of M2lðu; x; rÞ the proof goes along the same lines. r

Theorem 5. Let l a N, % > 0, tb 0 and u a AðWÞ. Assume that M2lðu; x; rÞ
(resp. N2lðu; x; rÞ) defined for x a W and 0a jrj < distðx; qWÞ extends holomorphi-
cally to an entire function ~MM2lðu; x; zÞ (resp. ~NN2lðu; x; zÞ) of exponential growth
ð%; tÞ locally uniformly in W. Then u is of l-Laplacian growth ð%; ðt%Þ1=%Þ on W.

Proof. Clearly, for any x a W the extension ~MM2l of M2l is given by (3b). Fix
K TW and e > 0. Choose 0 < e3 < e2 < e1 < e satisfying

ð1þ e3Þ3=2�1=%ðð%tÞ1=% þ e1Þa ð%tÞ1=% þ e;ð8Þ
ð%tþ e2Þ1=% a ð%tÞ1=% þ e1;ð9Þ

1þ e3

e
a

%tþ e2

e%tþ e2
:ð10Þ

By [3, Theorem 2.2.10] the assumption that ~MM2l is an entire function of exponen-
tial growth ð%; tÞ uniformly on K implies that we can find Ce2 such that

sup
x AK

jD lmuðxÞj
4 lm

�
n
2 þ 1

�
lm
ðlmÞ!

aCe2

� e%tþ e2

2lm

�2lm=%

for m a N:

We can also find Ce3 such that� n

2
þ 1

�
lm
aCe3ð1þ e3ÞmðlmÞ! for m a N0

and (by the Stirling formula)

ðm=eÞm am!aCe3ðm=eÞmð1þ e3Þm for m a N0:ð11Þ
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Hence for m a N we get

sup
x AK

jD lmuðxÞja 4 lm
� n

2
þ 1

�
lm
ðlmÞ! � Ce2

� e%tþ e2

2lm

�2m=%

ð12Þ

a 4 lmCe2Ce3ð1þ e3Þmðm!Þ2l
� e%tþ e2

2lm

�2lm=%

:

Now by (11) and (10),

ðm!Þ2=% aC2=%
e3

�mð1þ e3Þ
e

�2m=%

aC2=%
e3

�mð%tþ e2Þ
e%tþ e2

�2m=%

:

So

ðm!Þ2=% �
� e%tþ e2

2m

�2m=%

aC2=%
e3

� %tþ e2

2

�2m=%

:

Thus by (12), (9), (11) and (8) we derive

sup
x AK

jD lmuðxÞja 4 lmCe2Ce3ð1þ e3Þmðm!Þ2�2=%
C2=%

e3

� %tþ e2

2

�2m=%

aCe2C
1þ2=%
e3

ð1þ e3Þm4mð1�1=%Þðm!Þ2�2=%ðð%tÞ1=% þ e1Þ2m

aCe2C
3
e3
ð1þ e3Þmð3�2=%Þð2kÞ!1�1=%ðð%tÞ1=% þ e1Þ2m

aCeð2lmÞ!1�1=%ðð%tÞ1=% þ eÞ2lm:

Since K TW was arbitrary u is of l-Laplacian growth ð%; ð%tÞ1=%Þ on W. In the
case of the assumption on N2l the proof goes along the same lines. r

5. Convergent solutions of higher order heat equations

For l a N let us consider the initial value problem for the l-th order heat type
equation

qtu� D l
xu ¼ 0;

ujt¼0 ¼ u0;

(
ð13Þ

where u0 a AðWÞ, WHRn. Clearly, the unique formal power series solution of
(13) is given by

ûuðt; xÞ ¼
Xl
m¼0

D lmu0ðxÞ
m!

tm:ð14Þ

We ask when the solution u is an analytic function of the time variable at t ¼ 0.
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Theorem 6. Let 0 < T al. If the formal power series solution (14) of the
initial value problem (13) is convergent for jtj < T locally uniformly in W,
then M2lðu0; x; rÞ and N2lðu0; x; rÞ extend holomorphically to entire functions of

exponential growth
�

2l
2l�1 ;

2l�1
2l ð2lTÞ1�2l�

locally uniformly in W.

Conversely, if M2lðu0; x; rÞ or N2lðu0; x; rÞ can be holomorphically extended to
entire functions of exponential growth

�
2l

2l�1 ;
2l�1
2l ð2lTÞ1�2l�

locally uniformly in W,

then the solution (14) of (13) is convergent for jtj < T locally uniformly in W.

Proof. Assume that ûuðt; xÞ is convergent for jtj < T locally uniformly in W.
Then for any compact set K TW and e > 0 there exists Ce ¼ CðK; eÞ < l such
that

sup
x AK

jD lmu0ðxÞjaCe

� 1

T
þ e

�m
�m! for m a N0:

So for any m a N0, we have

sup
x AK

jD lmu0ðxÞjaCe

� 1

T
þ e

�m� 1

2l
þ e

�m
� ð2lmÞ!1=2l

aCeðð2lTÞ�1=2l þ eÞ2lm � ð2lmÞ!1=2l :

Hence, u0 is of l-Laplacian growth
�

2l
2l�1 ; ð2lTÞ�1=ð2lÞ� on W and by Theorem 4,

M2lðu0; x; zÞ and N2lðu0; x; zÞ extend holomorphically to entire functions of expo-
nential growth

�
2l

2l�1 ;
2l�1
2l ð2lTÞ1�2l� locally uniformly in W.

Conversely, suppose that M2lðu0; x; rÞ or N2lðu0; x; rÞ can be holomorphi-

cally extended to entire functions of exponential growth
�

2l
2l�1 ;

2l�1
2l ð2lTÞ1�2l�

locally uniformly in W. Then by Theorem 5, u0 is of l-Laplacian growth�
2l

2l�1 ; ð2lTÞ�1=ð2lÞ� on W. Fix KTW and jtj < T . Then for e > 0 su‰ciently

small, we get

sup
x AK

Xl
m¼0

jD lmu0ðxÞj
m!

jtjm aCe

Xl
m¼0

ðð2lTÞ�1=ð2lÞ þ eÞ2lm � ð2lmÞ!1=2l jtjm

m!

aCe

Xl
m¼0

� 1

2lT
þ e

�m
ð2l þ eÞmjtjm

aCe

Xl
m¼0

� 1

T
þ e

�
jtj

� �m
< l:

Since KTW was arbitrary, ûuðt; xÞ is convergent for jtj < T locally uniformly
in W. r

Remark 1. The summability of the formal power series solution (14) of the
equation (13) is studied by Michalik [14].
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