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ABSTRACT. — We introduce integral mean value functions which are averages of integral means
over spheres/balls and over their images under the action of a discrete group of complex rotations.
In the case of real analytic functions we derive higher order Pizzetti’s formulas. As applications
we obtain a maximum principle for polyharmonic functions and a characterization of convergent
solutions to higher order heat type equations.
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INTRODUCTION

The Pizzetti mean-value formula states that the integral mean of a smooth func-
tion u over the Euclidean sphere of radius r is expressed as a series of even powers
of r whose coefficients are given by iterated Laplacian evaluated on u at the
center of the sphere multiplied by numerical factors. In the case of 2-dimensional
sphere the formula was derived already in 1909 by Pizzetti [16]. Its extensions
to the case of means over Euclidean spheres and balls in arbitrary dimension
for polyharmonic functions and the inverse mean-value properties were derived
by Nicolesco [15]. Later on the Pizzetti serii were studied from different points
of view, see [8, 4, 6] and references therein. In particular, it was proved that
real analytic functions can be characterized by convergence of the Pizzetti serii
[2, 12]. The Pizzetti formulas were also extended to the case of means on
Riemannian manifolds [9] and on the Heisenberg group [5, 10], and to the
Dunkl-Laplace operator on R” [13, 17]. A generalized mean value theorem
with respect to a general Borel measure supported by the unit real ball for solu-
tions of a system of homogeneous partial differential equations was derived by
Zalcman [18].

In the paper we introduce integral mean value functions N and M} which are
averages of integral means over spheres/balls of radius r over their images under
the action of a discrete group W generated by a rotation of all variables of C”
by the angle 27/k. In the case of real analytic functions we derive higher order
Pizzetti’s formulas. Due to averaging integral means over W our higher order
Pizzetti’s serii contain only terms of the form clmA/mrzl’“, m € Ny, if k = 2/ is even.
As applications we obtain a maximum principle for polyharmonic functions,
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a characterization of functions of Laplacian growth and a characterization of
convergent solutions to the initial value problem for the higher order heat type
equation du = A'u, u(0,-) = ¢ where / € N and ¢ is real analytic.

1. PRELIMINARIES

Let k € N. Denote by e the transformation of C" into C" given by €(zy,...,z,) =
(e?/kzy ... e*™/kz,) and by W; the group generated by e. Let u be a continuous
function defined on a complex neighborhood U of an open set Q = R”. For
xeQ and 0 < |r| < dist(x,0U) we define the Wj-spherical and Wi-solid mean
value functions

k—1
(1a) Mt = goesd [ e s
k—1
o) e =g [ )y

where a(n) = n/?/T'(n/2 + 1) is the volume of the unit ball B”(0,1) in R" and
dS = dS"! is the natural measure on the unit sphere S(0,1) = S"~1(0,1).

Note that if k is odd, then Ni(u;x,r) = Ny(u;x,r) and My (u;x,r) =
Mo (u; x, r). In particular

Ni(u;x,r) = Na(u; x,r) = p ey

/ u(x+ry)dS(y)
5(0,1)

and

1
My .1) = M) =~ /B S

are the classical mean value functions and the same as functions N and M in [12].

2. HIGHER ORDER PIZZETTI’S FORMULAS

In this section we assume that u € .7(Q) is a real analytic function on an open set
Q < R”". Then u extends to a function # holomorphic on a complex neighborhood
U of Q and for any x € Q it holds

) 1 oy . .
@) a0) =Y S =x" forye Uwith |y — x| < p(),
reNg "

with some function p € C°(Q, R, ). Hence the functions N, and M are well
defined for x € Q and |r| small enough.
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THEOREM | (Higher order Pizzetti’s formulas). Let k =2/ withl € N, u € o/(Q)

and x € Q. Then Ny.(u; x,r) and My (u; x,r) are real analytic functions at the origin
and for |r| small enough it holds

- Alm (X) 2lm

) Nl r) = 3 iy G
© Al’”u(x) 2l
3b M(u; x,r) = r

where A is the Laplace operator and (a),, = a(a+1)...(a+m—1) for m e N is
the Pochhammer symbol.

PRrOOF. For x € Q and 0 < |r| small enough we compute

kna(n) < X Kl Ox* = Jso.)
1 1y .
= Sar Y [ @myyasiy)
kna(n) e Kl Ox*” jZO S(0,1)
_ 1 10 ‘Kl |K| 2j|k|me/k K]S
~ kna(n) Kl 0 Z ¢ yas(y)
re Ny 0,1)

_ S 1 u km 1 K
S Y S O L s

akm km 1 / 2/
= E E x)rt " dS
m=0 /eN{ 2/ ' axZ/( ) na(n) S(O,l)y (y)
2|4|= km

since

zk:ffzj‘x‘m/k B { k if |i| = km for some m € Ny,
0 otherwise

and the integral of y* over S(0, 1) vanishes if at least one of the coordinates x; of
i = (i1, . ..,%,) is odd. Finally using [7, formula 676, 11] we get
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z r DTt +1) ok
X :Z 1 (/1+2) (/ +2)5 u

20)! NGED o "

0 1 1 ) kmu
B Z 1 (2)/1 (2)/,7 0 ()b

OV

2 (Im)! 0>y
= 41m(g)lm(lm)! /;\; /) Ox (x)
|/|=Im

4 (3), )
In an analogous way we obtain

Sy 1 B
m=02|/|=km (2/)' (g + 1)\/| ax?

M (u; x,r) = )rk

(x)r

- Almu(x) 2Im
=> p2hm.
4 (14 1), (Im)!

m=0
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The convergence of the serii (3a) and (3b) for |r| < p(x)/v/n (p as in (2)) can be

shown as in the proof of [12, Theorem 3.1].

|

Passing to the limit kK — oo in the formulas (3a) and (3b) we get the following

mean value formulas for real analytic functions.

COROLLARY 1. Let u € o/(Q) and let i be a holomorphic extension of u. Then

for x € Q and r > 0 small enough it holds

1
— ~ d n—1 .d 1
) = g | o Jo g o rE) s (0) a8

1
- u dB"(y) -dS'(0),
20(n)n /Sl (0,1) /"(0, 1 #x +rCy) () ©)

where S}(0,1) = {{ e C: [{] = 1}.

PROOE. Indeed since u € o/ (Q) for x € Q one can find C < oo and L < oo such

that

|A7u(x)| < CL¥(2j)! for j e N.



HIGHER ORDER PIZZETTI’S FORMULAS 109

Hence for a fixed ¢ > 0 we can find /) € N such that for / > /[, and m > 1 we
have

AM™ L¥m(20m)!
1,|, - u(x)| r21m < - n( ll’l/I) 2Im < C(Lr)Zlm < im
4 1(§)lm<lm)! 4 I(Z)In't(lm)! 2
if r 1s small enough. So

0 Im

A" U)o
g re<e
m=1 4lm (%)lm(lm)'

and lim;_ ., Ny/(u; x,r) = u(x). On the other hand by the definition of the func-
tion Np; and the Fubini theorem we get

1
fim N xr) =5 [ [ ) ds () dS' Q)
[—o0 2}10'(71)77: Sg(O.l) §7-1(0,1)
The second formula is proved in the same way. O

It appears that real analytic functions can be characterized as those smooth
ones for which the higher order Pizzetti’s serii converge.

THEOREM 2. Letl e N, pe CO(Q;R,) and u e C*(Q). If the series

N O
N(x,r) = T
0= 2 ), ()

is convergent locally uniformly in {(x,r) : x € Q,|r| < p(x)}, then u € o/ (Q) and

Noy(u;x,r) = N(x,r) for x € Q and 0 < |r| < min(p(x),dist(x, 0Q)).

PrOOF. Fix a compact set K €Q and set p=inf,.xp(x) > 0. Then the
assumption implies that

A lmu(x) 2Im

WV — 0 asm — o

uniformly on K x {|r| < p;} with any p; < p. So for any p, < p there exists a
constant C(p;) < oo such that

sup |A"™u(x)| < C(py) - 4" (n/2),,(Im)!p; > for m e N.
xek
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Applying the inequalities (1/2),, < (max{1,n/2})"(Im)! and 2/ x ((Im)!)* <
(2Im)! we see that for any compact set K € Q one can find C < oo and L < oo
such that

sup |A™u(x)| < CL*™(2Im)!  for m € Ny.

xekK
But by [11, Theorem] this inequality implies that u € /(). Finally, by Theorem
1 we get N(x,r) = Ny(u; x,r). O

COROLLARY 2. Under the assumptions of Theorem 2 if the series

v _ > Alm ( ) m
M(x’ r) 241171( )lm<lm) r

m=0

is convergent locally uniformly in {(x,r) : x € Q,[r| < p(x)}, then u € o/ (Q) and
Moy (u; x, 1) = M(x,r) for x € Q and 0 < |r| < min(p(x), dist(x, 0Q)).

3. MAXIMUM PRINCIPLE FOR POLYHARMONIC FUNCTIONS

It is well known that modulus of a function # harmonic on a connected domain
Q < R” cannot attain its maximum at an interior point of Q unless u is constant.
On the other hand this maximum principle does not extend to /-polyharmonic
functions, i.e., solutions to A’u = 0 with / > 2. However due to the real analy-
ticity of such functions by the formula (3b) we obtain the following maximum
principle for polyharmonic functions.

THEOREM 3. Let u be a real valued, [-polyharmonic function on a connected open
set Q < R", [ € N. Denote by u its holomorphic extension to a connected complex
neighborhood U of Q. If for some x¢ € Q and ry > 0 it holds

~

-1
) tu(xo) = £Rei(y) fory €xo+ e (B(0,r)),

Il
=)

where €(z) = e™/'z, then u is constant on Q.

PRrROOF. Since u is [-polyharmonic the series in (3b) terminates at the first term.
So for any x € Q and 0 < r < p(x) we have

-1
Mo (u; x,r) Z/ i(x+ € (y))dy = u(x).

nO,

So My(u; xo,7) = u(xp) for 0 < r< p(xo) and the assumption (4) implies that
Rei(y) = u(xg) for y e xo + Z o e/ (B(0,r1)) with 0 < r; < min(ro, p(xp)). In
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particular Reu = u is constant on B(xg,r;) and since u is real analytic it is
constant on Q. O

COROLLARY 3. Let u be a real valued, I-polyharmonic function on a connected
open set Q < R", [ € N. Denote by u its holomorphic extension to a connected
complex neighborhood U of Q. If for some xo € Q and ry > 0 it holds

(5) u(xo0)| = [u(y)| for y e xo+ Zef (0,70)),

then u is constant on Q.

PRrROOF. By possibly multiplying times —1, we can assume that u(xo) is non-
negative. By (5) we have u(x) > |a(y)| > Re u(y) for y e xo + Z o € (B(0,19)).
Thus by Theorem 3, u is constant on Q. O

4. FUNCTIONS OF /-LAPLACIAN GROWTH

The notion of functions of Laplacian growth was introduced by Aronszajn et al.
[1, Chapter II]. Here we introduce its following generalization.

DEFINITION 1. Let /e N, o > 0 and 7 > 0. A function u smooth on Q = R” is
of I-Laplacian growth (o,7) on Q if for every compact set K € Q and ¢ > 0 one
can find C = C(K,¢) < co such that

(6) sup [A™u(x)| < C2Im)!' V(x4 )*™  for any m e N.
xekK

It follows by [11, Theorem] that a function u of /-Laplacian growth (o, 7) on Q
is real analytic on Q. Hence (3a) and (3b) hold for any x € Q and r small enough.
However due to the estimation (6) both functions N, and My, extend to entire
functions of r.

THEOREM 4. Let [e N, 0>0, 1>0 and ue C*(Q). If u is of I-Laplacian
growth (0,7) on Q, then Noy(u; x,r) and My (u; x,r) as functions of r extend holo-

morphically to entire functions of exponential growth (o,t%/0) locally uniformly
in Q.

PROOF. Let u be of /-Laplacian growth (o, 7) on Q. Set

0 Im
(7) Noy(u;x,2) = Z%z”’” for x e Qand z € C.

Im

Then N is a holomorphic extension of Ny. Indeed, applying (6) and the
inequality (2/m)! < 4””(") (Im)! we get for any K € Q, ¢, > 0 and R < o0,
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0 Im
N7 |A u(x)| 2Im
sup sup |Ny(u; x,z)| < sup E e
xek [z[<R XEKm=O4lm(§)lm(lm)!

0 11-1/0 L\ 2im
CK7£1 Z (21m3r;1 n (T - Cll) R
m=0 4 (i)lm ’ (lm)

0
1 2lm p2Im
SCSIZOW(T+8I) R,

Clearly, the last series converges for any R and so Ny /(u; x, z) is an entire function
of z. Now fix ¢ > 0 and find & > 0 such that e(z + ¢;)° < er? + ¢. Then using the
inequality j! > (j/e)’ for j € Ny we estimate for any m € N,
1
(2Im)\1/e

IA

e )2IM/0

eot?/o+¢ )2/’”/0
2lm '

(T+81)21m < ( i

(t+e)™ < (

Thus by [3, Theorem 2.2.2], Ny(u;x,z) is an entire function of exponential
growth (o, 7?/0) locally uniformly in Q.
In the case of My (u; x,r) the proof goes along the same lines. O

THEOREM 5. Let [ e N, 0> 0, 1 >0 and u € o/(Q). Assume that My (u;x,r)
(resp. No(u; x,r)) defined for x € Q and 0 < |r| < dist(x, 0Q) extends holomorphi-
cally to an entire function My(u;x,z) (resp. Ny(u;x,z)) of exponential growth
(0,7) locally uniformly in Q. Then u is of I-Laplacian growth (o, (rg)l/g) on Q.

PROOF. Clearly, for any x € Q the extension M of My, is given by (3b). Fix
K& Qande>0.Choose 0 < &3 < & < ¢ < ¢ satisfying

(8) (1+e3)7V2((00) "V + 1) < (01)/? + e,
9) (0t + )" < (00)"? + &1,

1+ &3 - ot + &
e T eor+e

(10)
By [3, Theorem 2.2.10] the assumption that My, is an entire function of exponen-
tial growth (p, 7) uniformly on K implies that we can find C,, such that

A"u(x eoT + &y \2Im/o
sup — In (x)] - Q( 0 2)
xekK 4im (§+ l)lm(lm)! 2lm

for m e N.

We can also find C,, such that

(f+ 1) < Co(1+5)"(Im)! for m e Ny
2 Im ’

and (by the Stirling formula)
(11) (m/e)" <m! < Cyy(m/e)" (1 +&)" form e Nj.
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Hence for m € N we get

Im Im E l. eoT + & 2mfe
(12) sup [A"u(x)| < 4 (2+1%Jmu qi s )
Im m 1y 2/ €oT + & 2im/e
g4c;gu+@)m)( Mn) :
Now by (11) and (10),
1\2/0 2/0 I’}’l(1+83) 2m/o 20 m(gf+gz) 2m/o
(m)™* < & ( e ) <G < eot + & ) '

So

2m/o T + &\ 2m/0
,2/g.(€QT+82) < z/g<9 2)
() 2m =G 2 '

Thus by (12), (9), (11) and (8) we derive

( ot + & >2m/@
2

< C82C£13+2/g(1 +83)Wl4m(l—l/g)(m!)2—2/g(<gl_)l/g+81)2m
< GG (1 +23)" 20 )1 Ve((01) V2 4 )™
< C,(2Im)!" V(1) Ve 4 &)™

sup |[A™u(x)| < 4™, C,, (1 + 83)m(m!)272/9C623/9

xekK

Since K € Q was arbitrary u is of /-Laplacian growth (g, (Q‘L')l/ ?) on Q. In the
case of the assumption on Ny, the proof goes along the same lines. O

5. CONVERGENT SOLUTIONS OF HIGHER ORDER HEAT EQUATIONS

For / € N let us consider the initial value problem for the /-th order heat type
equation

— ) —
(13) {8,u Alu=0,

Uj=0 = Uo,

where uy € o/ (Q), Q = R". Clearly, the unique formal power series solution of
(13) is given by

(14) a@mzfigﬁﬂﬁm

|
m=0 n:

We ask when the solution u is an analytic function of the time variable at z = 0.



114 G. LYSIK

THEOREM 6. Let 0 < T < oo. If the formal power series solution (14) of the
initial value problem (13) is convergent for |t| < T locally uniformly in Q,
then Myi(ug; x,7) and Noy(ug; x,r) extend holomorphically to entire functions of
exponential growth (525,251 (ZIT)I_ZZ) locally uniformly in Q.

Conversely, if My (ug; x,r) or Nz;(uo,x r) can be holomorphzcally extended to
entire functions of exponential growth (21 T ,2]211 (2[T) ) locally uniformly in Q,
then the solution (14) of (13) is convergent for |t| < T locally uniformly in Q.

PROOF. Assume that #(¢, x) is convergent for |7| < T locally uniformly in Q.
Then for any compact set K € Q and ¢ > 0 there exists C, = C(K,¢) < oo such
that

1 m
sup |A™up(x)| < Cg(—+8) -m!  for m € N.
xekK T

So for any m € Ny, we have

sup |A" ()| < Cg(%+ e)m(zll o) @imp

C(QIT) ™ )™ . (20m)1/,

Hence, 1 is of /-Laplacian growth (2/ T, (20T) 1@ ) on Q and by Theorem 4,
le(uo, x,z) and Ny(up; x, z) extend holomorphically to entire functions of expo-
nential growth (525 ,21211 (2lT)1 21) locally uniformly in Q.

Conversely, suppose that Moy (up; x,r) or Noy(up;x,r) can be holomorphi-
cally extended to entire functions of exponential growth (52,21 (2IT )1’21)
locally uniformly in Q. Then by Theorem 5, uy is of /-Laplacian growth
(25, 2i7)""®) on Q. Fix KEQ and |f| < T. Then for ¢ > 0 sufficiently

small, we get

Ay (x)] 20T) VD gy2m (2 ) 11721 g
sup 3O o ¢ QT 4 g
m! m

<G, Z (%H) 21+ &)

<CZ{( +8>|Z|] < 0.
Since K € Q was arbitrary, #(¢,x) is convergent for |¢| < T locally uniformly
in Q. O

REMARK 1. The summability of the formal power series solution (14) of the
equation (13) is studied by Michalik [14].
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