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Abstract. — We study some extremal properties of the self-similar solutions of certain one-

dimensional kinetic models of granular flows, usually known with the name of nonlinear friction
equations. This analysis, inspired by some recent results on nonlinear di¤usion equations [6], allows

to obtain various sharp inequalities, which can be fruitfully used to better clarify the large-time
behavior of the solution density.
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1. Introduction

This paper is devoted to the study of various properties of the self-similar solu-
tions to the nonlinear evolution equation

qt f ðv; tÞ ¼ qv

�
f ðv; tÞ

Z
jv� wjðv� wÞ f ðw; tÞ dw

�
;ð1Þ

where the unknown f ðv; tÞ is a time-dependent probability density on R. This
equation, usually referred as nonlinear friction equation, arises in the study of
granular flows, and has been first obtained in [9, 10] in connection with the
quasi-elastic limit of a model Boltzmann equation for rigid spheres with dissipa-
tive collisions. Then, the case of variable coe‰cient of restitution,

qt f ðv; tÞ ¼ qv

�
f ðv; tÞ

Z
jv� wjgðv� wÞ f ðw; tÞ dw

�
;ð2Þ

for a general g < 1, was discussed in [11]. A review of the state of the art of
the mathematical results on kinetic theory of granular media can be found in
[13].

Despite its relatively simple (with respect to the full Boltzmann equation)
structure, the nonlinear friction equation (1,2) exhibits the main properties of
any kinetic model with dissipative collisions, like conservation of mass and
mean velocity and decay of the temperature. Likewise, the equilibrium state
is given by a Dirac mass located at the mean velocity of particles. In addition,
at di¤erence of the full dissipative Boltzmann equation for rigid spheres, this



equation possesses explicit similarity solutions, which are in general of notice-
able importance for understanding the cooling process of the granular flow, and
eventually for constructing reasonable macroscopic equations. These similarity
solutions are given by the sum of two delta functions

f
g
l;Aðv; tÞ ¼

1

2
d
�
v� 1

2
aðtÞ

�
þ 1

2
d
�
vþ 1

2
aðtÞ

�
ð3Þ

where, for a given positive constant A

aðtÞ ¼ 1

Ag þ gt

� �1=g
; 0 < ga 1:ð4Þ

The case g ¼ 1 is considered the most relevant from the physical point of view,
and the main mathematical results related to equation (1) have been obtained
some years ago [2, 3, 4]. Then, the general case has been dealt with in [8]. In
particular, Benedetto, Caglioti, Carrillo and Pulvirenti [3] studied the asymptotic
behavior of (1) via the study of the free energy, proving convergence to equilib-
rium in large time, without obtaining any rate. An important step towards
the understanding of the role of the self-similar solutions has been achieved by
Caglioti and Villani in [4]. The main goal of this paper is to show that the simi-
larity solutions do not represent in a strong sense the intermediate asymptotics of
any other solution with the same mass and momentum. Last, in [8] the asymp-
totic behavior of the solution to the nonlinear friction equation has been studied
on the whole allowed range of the parameter g.

Some related problems linked to dissipative equations containing the non-
linear friction operator in (1) have been also addressed. Indeed, the long-time
behavior of these and more complex equations has been deeply investigated by
Carrillo, McCann and Villani in [5]. In this paper, by means of a suitable gener-
alization of logarithmic Sobolev inequalities and mass transportation inequalities,
the long-time asymptotics of certain nonlocal, di¤usive equations with a gradient
flow structure has been analyzed. In particular, the results of [5] cover the asymp-
totic behavior of the equation (2) when g > 0.

In what follows, we will study equation (1) from a di¤erent point of view. In
particular, we will investigate the (eventual) extremal properties of the self-similar
solutions to (1). Let us fix g ¼ 1, and A ¼ 0 in (4) and let us simply denote from
now on fl the corresponding self-similar solution introduced in (3). Then, the
second moment TðtÞ of the self-similar (source-type) solution (3) can be explicitly
evaluated

Tð flðtÞÞ ¼
Z

v2 flðv; tÞ dv ¼ ð2tÞ�2:

Hence, the second moment of the source-type solution, raised to power �1=2,

grows linearly in time. Hence, the first variation in time of Tð flðtÞÞ�1=2 is
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constant, while the second variation is equal to zero. To see how the second
moment of any other solution to equation (1) behaves in time, it comes natural

to estimate the time variations of Tð f ðtÞÞ�1=2, where the second moment func-
tional (which represents in this context the temperature or the kinetic energy) is
defined by

TðjÞ :¼
Z

v2jðvÞ dv:

This computation will lead to the interesting observation that the second varia-
tion of Tð f ðtÞÞ�1=2 has a fixed negative sign, which implies concavity in t. There-
fore, the first variation is decreasing. It is possible to evaluate its limit for large
time thanks to the asymptotic behavior and to the crucial invariance with respect
to mass preserving dilations. It follows at once that the first variation satisfies
a sharp inequality which connects the second moment to its first variation, and
optimality is achieved by the self-similar profiles.

This idea can also be applied to the study of the behavior of the derivative
of the second moment of a generic solution, performed by using the nonlinear
friction equation. It holds

dTð f ðtÞÞ
dt

¼ �Ið f ðtÞÞ

where, the entropy functional is defined by

IðjÞ :¼
ZZ

jðvÞjðwÞjv� wj3 dv dw:

For the source-type solution (3) one can easily check that Ið flðtÞÞ�1=3 grows
linearly in time. This leads to estimate the time variation of Ið f ðtÞÞ�1=3. As in
the previous case, we will conclude by showing that the second variation in time
of Ið f ðtÞÞ�1=3 has a negative sign which implies concavity. In this case also, the
first variation is invariant with respect to dilations, which implies a sharp in-
equality that links entropy to its first variation, and again optimality is achieved
by source-type profiles.

This new way of looking at the problem has been recently applied to nonlinear
di¤usion equations in [6, 7]. There, the study of the time evolution of a suitable
power of the second moment of the self-similar Barenblatt solution [12, 14],
allowed to discover a delay in the propagation of the second moment of the
Barenblatt profile, with respect to any other solution. Also, the study of the time
evolution of a suitable power of the entropy functional gived raise to Gagliardo–
Nirenberg–Sobolev inequalities in sharp form. In the case of the nonlinear fric-
tion equation (1) a similar delay is proved. This shows that a generic solution
f ðv; tÞ cools down faster than the homogenous cooling state starting with the
same initial temperature. This allows us to get an upper bound for the generic
cooling time.
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The plan of the paper is the following. In Section 2 we recall the main known
results about existence, uniqueness and asymptotic behavior of the solution of
a Cauchy problem for equation (1). In Sections 3 and 4 are gathered the new
results about the extremal properties of the homogenous cooling states with
respect to the temperature and entropy functionals. Moreover in Proposition 6
we collect some sharp functional inequalities which can be interesting by
themselves and have been derived as a byproduct of the previous analysis. Some
further comments are presented in Section 5. A technical proof of an intermediate
result is contained in the Appendix.

2. The nonlinear friction

We will start our analysis by recalling the main results obtained for the nonlinear
friction equation. To this aim, let us consider the initial value problem

qt f ðv; tÞ ¼ qv

�
f ðv; tÞ

Z
jv� wjðv� wÞ f ðw; tÞ dw

�

f ðv; 0Þ ¼ f0ðvÞ:

8<
:ð5Þ

For any pb 0, let us introduce the space of functions

W2p ¼ j a L1ðRÞ : jb 0; kjkL1 ¼ 1;

Z
v2pjðvÞ dv < þl

� �
:ð6Þ

The existence and uniqueness of a solution for any initial data f0 with bounded
second moment have been established by Benedetto, Caglioti and Pulvirenti [2].
They proved the following theorem.

Theorem 1 (Benedetto–Caglioti–Pulvirenti [2]). Let f0 a W2 such that

Z
v2ð1þ logð1þ jvjÞÞ f0ðvÞ dv < þl:

Then for any T > 0 there exists a unique function f a Cð½0;T �;W2ÞB
Cðð0;T �;W2pÞ which satisfies equation (5) in the sense of weak convergence of
measures. Moreover f ð�; tÞ satisfies the following properties for t > 0:

i) suppð f ð�; tÞÞH � 1
t
; 1
t

� �
. In particular f ð�; tÞ a W2p for all pb 0 and for t

large enough

T2pðtÞ ¼
Z

v2pf ðv; tÞ dva 1

t2p
;

ii) T2pðtÞ is decreasing in time and the kinetic energy T2ðtÞ satisfies the bound

T2ðtÞa
T2ð0Þ

ð1þ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2T2ð0Þ

p
Þ2
:ð7Þ
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As a consequence

lim
t!þl

f ð�; tÞ ¼ d0

in the sense of weak convergence of measures.

Remark 2. If the initial data f0 belong to W2p, by using the explicit expression
of the solution f (see [2]) it is also possible to prove that f a Cð½0;T �;W2pÞ setting
in this way the continuity at the origin of the T2pðtÞ functional.

Note that inequality (7) gives a non optimal upper bound for the cooling
process of the dissipative gas. An enlightening deeper analysis of the asymptotic
behavior of the solution has been achieved by resorting to a suitable scaling
of velocity and time. Benedetto, Caglioti and Pulvirenti [2] considered first the
scaling

gðv; tÞ ¼ 1

t
f
� v

t
; t
�
:ð8Þ

If we denote by

GðjðvÞÞ :¼
Z

jv� wjðv� wÞjðwÞ dw;ð9Þ

it is a simple matter to show that the function g satisfies the equation

gðv; tÞ þ tqtgðv; tÞ þ qvgðv; tÞv ¼ qvðgðv; tÞGðgðv; tÞÞÞ:

By changing the time scale through the relation t ¼ log t one shows that the
function ~ggðv; tÞ ¼ gðv; etÞ satisfies

qt~ggðv; tÞ þ qvð~ggðv; tÞðv� Gð~ggðv; tÞÞÞÞ ¼ 0:ð10Þ

The analysis of the large-time behavior of equation (10) carried out in [2] leads to
the conclusion that for t ! þl

~ggðv; tÞ * 1

2
d
�
vþ 1

2

�
þ 1

2
d
�
v� 1

2

�
:¼ glðvÞ:ð11Þ

Since gðv; tÞ ¼ ~ggðv; log tÞ, we also have for t ! þl

gð�; tÞ * gl:ð12Þ

Therefore, coming back to the original variables, one recovers the source-type
self-similar solution measure

flðv; tÞ ¼ 1

2
d
�
vþ 1

2t

�
þ 1

2
d
�
v� 1

2t

�
:ð13Þ
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In a more general setting, for any positive constant A, one can scale the solu-
tion as

gðv; tÞ ¼ 1

tþ A
f
� v

tþ A
; t
�
:

The function gðv; tÞ now satisfies

gðv; tÞ þ ðtþ AÞqtgðv; tÞ þ qvgðv; tÞv ¼ qvðgðv; tÞGðgðv; tÞÞÞ:

Then, choosing t ¼ logðtþ AÞ and ~ggðv; tÞ ¼ gðv; et � AÞ, one obtains again

qt~ggðv; tÞ þ qvð~ggðv; tÞðv� Gð~ggðv; tÞÞÞÞ ¼ 0:

Since ~ggðv; tÞ * 1
2 d


vþ 1

2

�
þ 1

2 d


v� 1

2

�
, back to the original variables it shows that,

for any positive constant A

fl;Aðv; tÞ ¼
1

2
d
�
vþ 1

2ðtþ AÞ

�
þ 1

2
d
�
v� 1

2ðtþ AÞ

�

is also a self-similar solution to equation (5).

3. Extremal properties of self-similar solutions

In what follows, we will consider the time-evolution of various functionals of
the solution to the nonlinear friction equation (5). These functionals are closely
related each other by equation (5), and the chain starts with the second moment
of the solution. We will call them the temperature, the entropy and the entropy
production, respectively,

TðjÞ ¼
Z

v2jðvÞ dv;ð14Þ

IðjÞ ¼
ZZ

jðvÞjðwÞjv� wj3 dv dw;ð15Þ

JðjÞ ¼
Z

jðvÞGðjðvÞÞ2 dv ¼
Z

jðvÞ
�Z

jv� wjðv� wÞjðwÞ dw
�2

dv:ð16Þ

These functionals are well-defined on the space W2p introduced in (6), provided
p > 0 is su‰ciently large that all integrals converge. Note that the temperature
T had been denoted by T2 in Theorem 1.
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The time-decay of the previous functionals for the self-similar solution (13)
can be computed explicitly. One obtains

TlðtÞ ¼ Tð flðv; tÞÞ ¼ 1

4t2
;

IlðtÞ ¼ Ið flðv; tÞÞ ¼ 1

2t3
;

JlðtÞ ¼ Jð flðv; tÞÞ ¼ 1

4t4
:

ð17Þ

If f is a solution of equation (5), we will denote in short

TðtÞ ¼ Tð f ðv; tÞÞ
IðtÞ ¼ Ið f ðv; tÞÞ
JðtÞ ¼ Jð f ðv; tÞÞ

ð18Þ

and also

Gðv; tÞ ¼ Gð f ðv; tÞÞ

for Gð f ðv; tÞÞ as in (9). The following relations hold true.

Proposition 3. Let TðtÞ, IðtÞ and JðtÞ defined as in (14, 15, 16, 18). Then

d

dt
TðtÞ ¼ �IðtÞ

d

dt
IðtÞ ¼ �6JðtÞ:

Proof. The proof is immediate. Indeed

d

dt
TðtÞ ¼

Z
v2qv

�
f ðv; tÞ

Z
jv� wjðv� wÞ f ðw; tÞ dw

�
dv

¼ �2

ZZ
f ðv; tÞ f ðw; tÞvjv� wjðv� wÞ dv dw

¼ �
ZZ

f ðv; tÞ f ðw; tÞjv� wjðv� wÞ2 dv dw

¼ �
ZZ

f ðv; tÞ f ðw; tÞjv� wj3 dv dw

¼ �IðtÞ:
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Likewise

d

dt
IðtÞ ¼ 2

ZZ
qt f ðv; tÞ f ðw; tÞjv� wj3 dv dw

¼ 2

ZZ
qv

�
f ðv; tÞ

Z
jv� zjðv� zÞ f ðz; tÞ dz

�
f ðw; tÞjv� wj3 dv dw

¼ �2

ZZ �
f ðv; tÞ

Z
jv� zjðv� zÞ f ðz; tÞ dz

�
f ðw; tÞ3jv� wjðv� wÞ dv dw

¼ �6

ZZZ
f ðv; tÞjv� wjðv� wÞ f ðw; tÞjv� zjðv� zÞ f ðz; tÞ dv dw dz

¼ �6JðtÞ: r

Proposition 3 shows that the functionals TðtÞ and IðtÞ decay in time at a
precise rate. A further insight into their decay can be obtained by looking at
some particular powers, that, as discussed in the introduction, are induced by
the explicit decay of the functionals when evaluated along the source-type solu-
tion (13). Thanks to (17), both TlðtÞ�1=2 and IlðtÞ�1=3 grow linearly in time.
We prove

Theorem 4. Let f ðv; tÞ denote a solution to (5), corresponding to an initial value

f0 a W2p, with p large enough. Then, TðtÞ�
1
2 and IðtÞ�

1
3 are non decreasing, concave

functions of time, and

lim
t!þl

TðtÞ�
1
2

2t
¼ 1;ð19Þ

lim
t!þl

IðtÞ�
1
3ffiffiffi

23
p

t
¼ 1:ð20Þ

Hence, for large times

TðtÞ�
1
2 PTlðtÞ�

1
2; IðtÞ�

1
3 P IlðtÞ�

1
3:

Proof. Let us begin by considering the evolution of TðtÞ�
1
2. Of course, by (17)

we have TlðtÞ�
1
2 ¼ 2t. We get

d

dt
TðtÞ�

1
2 ¼ � 1

2
TðtÞ�

3
2
d

dt
TðtÞ;

which implies by Proposition 3

d

dt
TðtÞ�

1
2 ¼ 1

2
TðtÞ�

3
2IðtÞb 0:ð21Þ
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Consequently TðtÞ�
1
2 is a non decreasing function. Using again Proposition 3

we get

d 2

dt2
TðtÞ�

1
2 ¼ � 3

4
TðtÞ�

5
2ð�IðtÞÞIðtÞ þ 1

2
TðtÞ�

3
2
d

dt
IðtÞð22Þ

¼ 3

4
TðtÞ�

5
2IðtÞ2 � 3TðtÞ�

3
2JðtÞ

¼ 3

4
TðtÞ�

5
2ðIðtÞ2 � 4TðtÞJðtÞÞ:

To prove concavity, one has to verify that

IðtÞ2 � 4TðtÞJðtÞa 0:ð23Þ

However, by Cauchy-Schwarz inequality we get

IðtÞ ¼
ZZ

f ðv; tÞ f ðw; tÞðv� wÞðv� wÞjv� wj dv dw

¼ 2

ZZ
f ðv; tÞ f ðw; tÞvðv� wÞjv� wj dv dw

¼ 2

Z
f ðv; tÞ

1
2vf ðv; tÞ

1
2

�Z
ðv� wÞjv� wj f ðw; tÞ dw

�
dv

a 2
�Z

f ðv; tÞv2 dv
�1

2
�Z

f ðv; tÞ
�Z

ðv� wÞjv� wj f ðw; tÞ dw
�2

dv
�1

2

¼ 2TðtÞ
1
2JðtÞ

1
2:

This shows that TðtÞ�
1
2 is concave, and that d

dt
TðtÞ�

1
2 is a non increasing function.

Let us further remark that the functional

d

dt
TðtÞ�

1
2 ¼ 1

2
TðtÞ�

3
2IðtÞ

is dilation invariant, namely invariant with respect to the mass-preserving scaling
f ðvÞ 7! faðvÞ ¼ af ðavÞ, for any constant a > 0. Thus, the value of this functional
does not change if at each time t we replace f ðv; tÞ with gðv; tÞ given by (8)

1

2
TðtÞ�

3
2IðtÞ ¼ 1

2
Tðgðv; tÞÞ�

3
2Iðgðv; tÞÞ:

On the other hand, gð�; tÞ * gl in the weak convergence of the measures and
Tðgðv; tÞÞ, Iðgðv; tÞÞ are weakly continuous (see [2] and the proof given in the
Appendix). Therefore

lim
t!þl

d

dt
TðtÞ�

1
2 ¼ lim

t!þl

1

2
TðgðtÞÞ�

3
2IðgðtÞÞ ¼ 1

2
TðglÞ�

3
2IðglÞ ¼ 2ð24Þ
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and this shows (19). Let us now study the evolution in time of IðtÞ�
1
3. Note that

in this case (17) implies IlðtÞ�
1
3 ¼

ffiffiffi
23

p
t. Thanks to Proposition 3 we obtain

d

dt
IðtÞ�

1
3 ¼ � 1

3
IðtÞ�

4
3
d

dt
IðtÞ ¼ 2IðtÞ�

4
3JðtÞb 0:

Moreover

d 2

dt2
IðtÞ�

1
3 ¼ � 8

3
IðtÞ�

7
3ð�6JðtÞÞJðtÞ þ 2IðtÞ�

4
3
d

dt
JðtÞ

¼ 16IðtÞ�
7
3JðtÞ2 þ 2IðtÞ�

4
3
d

dt
JðtÞ

¼ 16IðtÞ�
7
3

�
JðtÞ2 þ 1

8
IðtÞ d

dt
JðtÞ

�
:

To conclude, we need to show that

JðtÞ2 þ 1

8
IðtÞ d

dt
JðtÞa 0:ð25Þ

It holds

d

dt
JðtÞ ¼ �2

�ZZ
f ðv; tÞ f ðw; tÞjv� wjðGðv; tÞ � Gðw; tÞÞ2 dv dw

�
a 0:

Indeed

d

dt
JðtÞ ¼

Z
qt f ðv; tÞGðv; tÞ2 dvþ 2

Z
f ðv; tÞGðv; tÞqtGðv; tÞ dv

¼
Z

qvð f ðv; tÞGðv; tÞÞGðv; tÞ2 dvþ 2

Z
f ðv; tÞGðv; tÞqtGðv; tÞ dv

¼ �2

Z
f ðv; tÞGðv; tÞGðv; tÞqvGðv; tÞ dvþ 2

Z
f ðv; tÞGðv; tÞqtGðv; tÞ dv

¼ �2

Z
f ðv; tÞGðv; tÞ2qvGðv; tÞ dvþ 2

Z
f ðv; tÞGðv; tÞqtGðv; tÞ dv:

Let us compute separately the two derivatives appearing in the previous integrals.
We obtain

qtGðv; tÞ ¼ qt

Z
jv� wjðv� wÞ f ðw; tÞ dw ¼

Z
jv� wjðv� wÞqt f ðw; tÞ dw

¼
Z

jv� wjðv� wÞqw
�
f ðw; tÞ

Z
jw� zjðw� zÞ f ðz; tÞ dz

�
dw
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¼ �
Z �

f ðw; tÞ
Z

jw� zjðw� zÞ f ðz; tÞ dz
�
qwðjv� wjðv� wÞÞ dw

¼ �
Z �

f ðw; tÞ
Z

jw� zjðw� zÞ f ðz; tÞ dz
�
ð�2jv� wjÞ dw

¼ 2

Z
f ðw; tÞjv� wjGðw; tÞ dw;

and

qvGðv; tÞ ¼ qv

Z
jv� wjðv� wÞ f ðw; tÞ dw ¼

Z
qvðjv� wjðv� wÞÞ f ðw; tÞ dw

¼ 2

Z
jv� wj f ðw; tÞ dw:

Hence

d

dt
JðtÞ ¼ �2

Z
f ðv; tÞGðv; tÞ2qvGðv; tÞ dvþ 2

Z
f ðv; tÞGðv; tÞqtGðv; tÞ dv

¼ �4

ZZ
f ðv; tÞ f ðw; tÞjv� wjGðv; tÞ2 dv dw

þ 4

ZZ
f ðv; tÞ f ðw; tÞjv� wjGðw; tÞGðv; tÞ dv dw

¼ �4
� 1

2

ZZ
f ðv; tÞ f ðw; tÞjv� wjGðv; tÞ2 dv dw

þ 1

2

ZZ
f ðv; tÞ f ðw; tÞjv� wjGðw; tÞ2 dv dw

�

þ 4

ZZ
f ðv; tÞ f ðw; tÞjv� wjGðw; tÞGðv; tÞ dv dw

¼ �2
�ZZ

f ðv; tÞ f ðw; tÞjv� wjGðv; tÞ2 dv dw

þ
ZZ

f ðv; tÞ f ðw; tÞjv� wjGðw; tÞ2 dv dw

�
ZZ

f ðv; tÞ f ðw; tÞjv� wj2Gðw; tÞGðv; tÞ dv dw
�

¼ �2
�ZZ

f ðv; tÞ f ðw; tÞjv� wjðGðv; tÞ � Gðw; tÞÞ2 dv dw
�
a 0:
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It remains to prove (25). By writing JðtÞ in a symmetric way

JðtÞ ¼ 1

2

ZZ
f ðv; tÞ f ðw; tÞjv� wjðv� wÞðGðv; tÞ � Gðw; tÞÞ dv dw

and by Cauchy–Schwarz inequality

JðtÞ ¼ 1

2

ZZ
f ðv; tÞ f ðw; tÞjv� wjðv� wÞðGðv; tÞ � Gðw; tÞÞ dv dw

a
1

2

�ZZ
f ðv; tÞ f ðw; tÞjv� wjðv� wÞ2 dv dw

�1
2

�
�ZZ

f ðv; tÞ f ðw; tÞjv� wjðGðv; tÞ � Gðw; tÞÞ2 dv dw
�1

2

;

we finally get

JðtÞ2 a 1

4
IðtÞ

�
� 1

2

d

dt
JðtÞ

�
¼ � 1

8
IðtÞ d

dt
JðtÞ:

In conclusion

d 2

dt2
IðtÞ�

1
3 ¼ 16IðtÞ�

7
3

�
JðtÞ2 þ 1

8
IðtÞ d

dt
JðtÞ

�
a 0;

which shows that IðtÞ�
1
3 is a concave function of time, and d

dt
IðtÞ�

1
3 is a non in-

creasing function. As before, we remark that the functional

d

dt
IðtÞ�

1
3 ¼ 2IðtÞ�

4
3JðtÞ

is dilation invariant. Thus, the value of the functional does not change if at each
time t we replace f ðv; tÞ with gðv; tÞ given by (8)

2IðtÞ�
4
3JðtÞ ¼ 2Iðgðv; tÞÞ�

4
3Jðgðv; tÞÞ:

Since gð�; tÞ * gl in the weak convergence of the measures and Iðgðv; tÞÞ,
Jðgðv; tÞÞ are weakly continuous

lim
t!þl

d

dt
IðtÞ�

1
3 ¼ lim

t!þl
2IðtÞ�

4
3JðtÞ ¼ 2IðglÞ�

4
3JðglÞ ¼

ffiffiffi
2

3
p

ð26Þ

and this shows (20). r

Remark 5. Since TðtÞ�
1
2 is concave and limt!þl

d
dt
ðTðtÞ�

1
2Þ ¼ 2 (see (22), (23),

(24)), we have proved in particular that for all t > 0

d

dt
ðTðtÞ�

1
2Þb 2:ð27Þ
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In the same way,

d

dt
ðIðtÞ�

1
3Þb

ffiffiffi
2

3
p

:ð28Þ

Theorem 4 enlightens extremal properties of the source-type solutions to nonlin-
ear friction equations, as far as suitable functionals of the solution are concerned.
A further consequence of these extremal properties are sharp functional inequal-
ities, which are saturated exactly in the source-type solution. We proved

Proposition 6. Let p > 0 and j a W2p with W2p ¼
�
j a L1ðRÞ : jb 0;

kjkL1 ¼ 1;

Z
v2pjðvÞ dv < þl

�
. Then, for j a W3

�Z
v2jðvÞ dv

�3
2

a
1

4

ZZ
jv� wj3jðvÞjðwÞ dv dw:ð29Þ

If j a W4

�ZZ
jv� wj3jðvÞjðwÞ dv dw

�4
3

a 2
2
3

Z
jðvÞ

�Z
jv� wjðv� wÞjðwÞ dw

�2
dv:ð30Þ

Finally, if j a W5

�Z
jðvÞ

�Z
jv� wjðv� wÞjðwÞ dw

�2
dv
�5

4ð31Þ

a
1

2
3
2

�ZZ
jðvÞjðwÞjv� wjðGðjðvÞÞ � GðjðwÞÞÞ2 dv dw

�
:

Proof. The proof is a direct consequence of the computations leading to
Theorem 4. Indeed, (27) implies, for the solution to equation (5) with intial
data j

1

2
TðtÞ�

3
2IðtÞb 2:ð32Þ

By using the continuity of T2pðtÞ for t ! 0 of the solution with initial data
belonging to W2p (see Remark 2) one can prove that IðtÞ is continuous at the
origin and so by letting t ! 0 we get that inequality (32) holds true for the
initial data. The same argument applies for the second inequality, using (28).
Inequalities (30) and (31) can be obtained directly from (29) and from Cauchy–
Schwarz inequalities (23) and (25), which in fact hold true in general, and not
only for solutions of the nonlinear friction equation (5). Indeed we get from
(29) and (23)

IðjÞ2 a 4TðjÞJðjÞa 2
2
3IðjÞ

2
3JðjÞ;ð33Þ
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that is

IðjÞ
4
3 a 2

2
3JðjÞ

and by (25) and (30)

JðjÞ2 a 1

8
IðjÞ

�
� d

dt
JðjÞ

�
a

1

2
5
2

JðjÞ
3
4

�
� d

dt
JðjÞ

�
;ð34Þ

namely

JðjÞ
5
4 a

1

2
5
2

�
� d

dt
JðjÞ

�
: r

Remark 7. Inequalities analogous to (29), (30) and (31), with non sharp coe‰-
cients could be obtained directly by Cauchy–Schwarz inequality for functions j

satisfying j a W4, and such that

Z
vjðvÞ dv ¼ 0. Indeed, in this case

Z
v2jðvÞ dv ¼ 1

2

ZZ
ðv� wÞ2jðvÞjðwÞ dv dw

which implies

� 1

2

ZZ
ðv� wÞ2jðvÞjðwÞ dv dw

�3
2ð35Þ

¼ 1

2
3
2

�ZZ
ðv� wÞ2j2

3ðvÞj2
3ðwÞj1

3ðvÞj1
3ðwÞ dv dw

�3
2

a
1

2
3
2

ZZ
jv� wj3jðvÞjðwÞ dv dw:

Now, by injecting (35) in (33) and (34) instead of (29), we get weaker inequalities.

The sharp inequalities (27) and (28) provide a sharp control of the evolution in
time of TðtÞ and IðtÞ. We collect this time decay into the following.

Proposition 8. Let f be a solution of the nonlinear friction equation (5), with
initial data in W2p with p large enough. Then, the temperature TðtÞ and the entropy
IðtÞ defined by (14, 15) decay in time, and

TðtÞa Tð0Þ
ð1þ 2tTð0Þ

1
2Þ2

;

IðtÞa Ið0Þ
ð1þ

ffiffiffi
23

p
tIð0Þ

1
3Þ3

:

ð36Þ
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Proof. On TðtÞ we have

d

dt
TðtÞ�

1
2 ¼ � 1

2
TðtÞ�

3
2
d

dt
TðtÞ ¼ 1

2
TðtÞ�

3
2IðtÞb 2 , d

dt
TðtÞa�4TðtÞ

3
2

which implies

�2
� 1

TðtÞ
1
2

� 1

Tð0Þ
1
2

�
a�4t

, 1

TðtÞ
1
2

b
1

Tð0Þ
1
2

þ 2t ¼ 1þ 2tTð0Þ
1
2

Tð0Þ
1
2

, TðtÞ
1
2 a

Tð0Þ
1
2

1þ 2tTð0Þ
1
2

, TðtÞa Tð0Þ
ð1þ 2tTð0Þ

1
2Þ2

:

A weaker estimate had been already obtained by [2] in Theorem 1 through the
classical Cauchy–Schwarz inequality. On IðtÞ in an analogous way,

d

dt
IðtÞ�

1
3 ¼ � 1

3
IðtÞ�

4
3
d

dt
IðtÞb

ffiffiffi
2

3
p

, � d

dt
IðtÞb 3

ffiffiffi
2

3
p

IðtÞ
4
3

, d

dt
IðtÞa�3

ffiffiffi
2

3
p

IðtÞ
4
3

which implies

�
� 1

IðtÞ
1
3

� 1

Ið0Þ
1
3

�
a�

ffiffiffi
2

3
p

t

, 1

IðtÞ
1
3

b
1

Ið0Þ
1
3

þ
ffiffiffi
2

3
p

t ¼ 1þ
ffiffiffi
23

p
tIð0Þ

1
3

Ið0Þ
1
3

, IðtÞ
1
3 a

Ið0Þ
1
3

1þ
ffiffiffi
23

p
tIð0Þ

1
3

, IðtÞa Ið0Þ
ð1þ

ffiffiffi
23

p
tIð0Þ

1
3Þ3

: r

4. Source-type solutions cool slowly

Let us consider the solution of the nonlinear friction equation (5) with initial

data f0 a W2 satisfying

Z
v2 logð1þ jvjÞ f0ðvÞ dv < l and let us denote Tð0Þ ¼
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Z
v2f0ðvÞ dv its initial temperature. If flðv; tÞ ¼ 1

2 d


vþ 1

2t

�
þ 1

2 d


v� 1

2t

�
is the self

similar solution defined in (13), we can denote by A a positive time such that

Z
v2flðv;AÞ dv ¼ Tð0Þð37Þ

which means

A ¼ 1

2Tð0Þ
1
2

:ð38Þ

If we consider now the solution fAðv; tÞ with the self similar profile flðv;AÞ as
initial data, by uniqueness it is

fAðv; tÞ ¼
1

2
d
�
v� 1

2ðtþ AÞ

�
þ 1

2
d
�
vþ 1

2ðtþ AÞ

�
¼ flðv; tþ AÞ ¼ fl;Aðv; tÞ

and therefore

Tð fAðtÞÞ ¼
TðglÞ
ðAþ tÞ2

¼ 1

4ðtþ AÞ2
ð39Þ

for any positive t. Of course the two solutions f ðtÞ and fAðtÞ share the same
initial temperature

Tð0Þ ¼ Tð fAð0ÞÞ:

Let us consider

F ðtÞ ¼ TðtÞ�
1
2 � Tð fAðtÞÞ�

1
2:

We have

Tð fAðtÞÞ�
1
2 ¼ 2tþ Tð0Þ�

1
2:

Since
d

dt
ðTðtÞ�

1
2Þb 2 (see (27)) and F ð0Þ ¼ 0, then FðtÞb 0 for all tb 0. This

implies

TðtÞaTð fAðtÞÞ; tb 0:

Therefore, the temperature at each instant t of the generic solution f ðtÞ starting
with initial temperature Tð0Þ does not match the temperature of the self similar
solution starting with the same temperature at the same instant t, but at an in-
stant tþ d, where the delay d can be found by letting

Tð fAðtþ dÞÞ ¼ TðtÞ
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and so by (39)

1

4ðtþ Aþ dÞ2
¼ TðtÞ , tþ Aþ d ¼ 1

2
TðtÞ�

1
2 , d ¼ 1

2
TðtÞ�

1
2 � ðtþ AÞ:

So, the cooling time of the generic solution is bounded from above by the cooling
time of the self similar solution starting with the same temperature. In other
words, for a fixed initial temperature, the self similar solution has the slowest
cooling time.

5. Conclusions

The finding of the exact rate of cooling of any solution to the dissipative
Boltzmann equation for a granular gas is one of the relevant unsolved physical
problems in dissipative gas dynamics. Among simplified models, the nonlinear
friction equation introduced by McNamara and Young in [9, 10] allows for
precise results in this direction. In this paper, we showed that the temperature
of the self-similar solution (the homogeneous cooling state) has an explicit time
decay which is slower than the time decay of any other solution which starts
with the same temperature at time t ¼ 0. This result, whenever true for the full
Boltzmann equation, would be physically relevant, in that it indicates that the
homogeneous cooling state exhibits a maximal cooling time with respect to any
other solution starting with the same energy.
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6. Appendix

We are going to prove that Tðgðv; tÞÞ, Iðgðv; tÞÞ and Jðgðv; tÞÞ are weakly
continuous.

Proposition 9. Let gðv; tÞ ¼ 1
t
f


v
t
; t
�
where f ðv; tÞ is the solution of the Cauchy

problem (5). Then, gðv; tÞ satisfies

lim
t!þl

Z
y2pgðy; tÞ dy ¼

Z
y2pglðyÞ dy; pb 0

lim
t!þl

Iðgðv; tÞÞ ¼ IðglÞ

lim
t!þl

Jðgðv; tÞÞ ¼ JðglÞ:

ð40Þ

143sharp cooling rates in nonlinear friction equations



Proof. Let us begin by proving the convergence of the moments T2p. Since for
(12) gðtÞ * gl, for all test function j a CcðRÞ we have

lim
t!þl

Z
jðyÞgðt; yÞ dy ¼

Z
jðyÞglðyÞ dy ¼ 1

2
j
� 1

2

�
þ 1

2
j
�
� 1

2

�
:

Since gðv; tÞ has compact support K contained in ½�1; 1�, for all t > 0 we can
write for j a CcðRÞ satisfying jðyÞ ¼ 1 for y a K

lim
t!þl

Z
y2pgðt; yÞ dy ¼ lim

t!þl

Z
y2pjðyÞgðt; yÞ dy

¼
Z

y2pjðyÞglðyÞ dy ¼
Z

y2pglðyÞ dy:

In order to prove the convergence of the entropy Iðgðv; tÞÞ to IðglÞ, we have to
control

ZZ
jx� yj3ðgðx; tÞgðy; tÞ � glðxÞglðyÞÞ dx dy

¼
ZZ

jx� yj3ðgðx; tÞ � glðxÞÞgðy; tÞ dx dy

þ
ZZ

jx� yj3ðgðy; tÞ � glðyÞÞglðxÞ dx dy

¼ AðtÞ þ BðtÞ:

Let us call

hðy; tÞ ¼
Z

jx� yj3ðgðx; tÞ � glðxÞÞ dx

and so

AðtÞ ¼
Z

gðy; tÞhðy; tÞ dy;

BðtÞ ¼
Z

glðyÞhðy; tÞ dy ¼ 1

2
h
� 1

2
; t
�
þ 1

2
h
�
� 1

2
; t
�
:

(in the second integral we have exploited the symmetry between x and y). Since
gð�; tÞ has compact support K H ½�1; 1�, uniformly in t, and gðtÞ * gl, it is easy
to show that for all y a R we have hðy; tÞ ! 0 for t ! þl and so BðtÞ ! 0. As
for AðtÞ, since gðtÞ is a density for all t and has compact support K we can bound

jAðtÞja khðtÞkLlðKÞ

Z
gðy; tÞ dy ¼ khðtÞkLlðKÞ:

144 g. furioli, a. pulvirenti and e. terraneo



Now, for all t > 0 one can consider

hðt; �Þ : KHR ! R:

Due to the uniform bound on the moments of gðv; tÞ (see Theorem 1), the set
fhðt; �Þgt>0 is a bounded set of equicontinuous functions on K. So for Ascoli
Arzelà theorem it is relatively compact in LlðKÞ and since limt!þl hðt; yÞ ¼ 0
for all y it follows that there exists a sequence tn ! þl such that

lim
tn!þl

khðtnÞkLlðKÞ ¼ 0:

Therefore Iðgðv; tnÞÞ ! IðglÞ for a sequence tn ! þl. By a standard argument
this implies that Iðgðv; tÞÞ ! IðglÞ for t ! þl. The proof of the convergence of
Jðgðv; tÞÞ is completely analogous. r
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Università degli studi di Milano

Via Saldini 50

I-20133 Milano, Italy

elide.terraneo@unimi.it

146 g. furioli, a. pulvirenti and e. terraneo


	mk1
	mk10
	mk11
	mk12
	mk13
	mk2
	mk3
	mk4
	mk5
	mk6
	mk7
	mk8
	mk9
	mk14
	mkEnd-page

