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Functional Analysis — Erratum on “Spectral analysis and long-time behaviour of
a Fokker—Planck equation with a non-local perturbation”, by DOMINIK STURZER
and ANTON ARNOLD, communicated on 13 November 2015.!
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In Section 4 of the article [2] the choice of the weight function w(x) is incorrect.
Therefore the norms || - ||, and ||| - |||, are not equivalent. This can be resolved by
replacing w(x) by the new weight function

d
o(x) =Y cosh fx,,
/=1

with > 0. Now || - ||, and ||| - |||, are equivalent norms in & = L*(w).

Except for the Poincaré inequality (Lemma 4.2) all results of Section 4 remain
true. However, Lemma 4.2 is not correct for the new weight. A counterexample
on R’ is the sequence {f,},.n = {exp(— (%)2 —(x2—n?)?)}, _ <6, fork=
[1,0] ". Hence, Lemma 4.2 needs to be replaced by:

LEMMA 4.2. There exists a constant C > 0 such that for all f € & with |Vf]| € &
there holds:
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Proor. We use the norm ||| - || ,, and compute
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! This note is the erratum of the paper [2] in the references.



148 D. STURZER AND A. ARNOLD

L2(RY)

BY7(s B
+ H(éj _1§>f(é_1§ej) LZ(RE’)>
p 12
= (5) e,
where we used |f] +i8 > | g in the last step. ]

Most proofs of §4 are not affected by this change of w(x), only the proof of
the decay estimates of (e'*),., on the spaces & needs to be done differently.
Actually, the Poincaré inequality is not needed for this. We still estimate
llef]|l,,» using the following representation from [2]:

Faile 8

—exp(— 52 (1—e ) (&™), 120,

But instead of considering the terms

%5", with |k| = k

in the norm ll - |ll, (similar to the proof of Proposition 2.17), we use that
(&) = @(|§| ). locally around the origin for f € &. We then use the Taylor
expansion of f around the origin with remainder in Lagrange form: For every
& € Q) there holds

Z ] fk(Vé‘f)(Ké) for some « € [0, 1].
K=k

For every 0 < ' < f we can show that, for every k € N, the derivative ka &)
can be uniformly bounded in Q4 /, by || f]l|,,- Hence, from the Taylor expansion
we obtain

(4.1) f@)] < Clz"llIfll Vze Qpp.

We now use this to estimate the integrals in [|e’“f]||2, for all 7> 1 and
/ed{l,....d}:
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where y = 1 — e~2. Extensions to a wider class of Fokker—Planck equations and
a more detailed proof are given in the follow-up paper [1].
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