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Calculus of Variations — A new nonautonomous chain rule in BV, by Virginia

De Cicco, communicated on 13 November 2015.1

Abstract. — The aim of this note is to present a new nonautonomous chain rule formula for the

distributional derivative of the composite function vðxÞ ¼ Bðx; uðxÞÞ, where u : RN ! R is a scalar
function of bounded variation and B admits a special integral form in terms of a locally bounded

function bðx; tÞ, with bð�; tÞ of bounded variation. It is an useful tool especially in view to applica-
tions to semicontinuity results for integral functional (see [1, 8, 9, 10]) and to conservation laws

(see [5, 6]).
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1. Introduction

In this note we present a new nonautonomous chain rule formula in the
scalar case for the distributional derivative of the composite function vðxÞ ¼
Bðx; uðxÞÞ, with u : RN ! R a scalar function of bounded variation and

Bðx; tÞ ¼
Z t

0

bðx; sÞ ds, where bðx; tÞ is locally bounded (which implies that Bðx; �Þ

is Lipschitz continuous) and bð�; tÞ has bounded variation.
In 1967, A. I. Vol’pert in [13] considers a general B in the autonomous case

and by requiring the Lipschitz continuity of B, proved that the following identity
holds in the sense of measures:

Dv ¼ ‘BðuÞ‘uLN þ ‘Bð~uuÞDcuþ ½BðuþÞ � Bðu�Þ�nuHN�1
KJu;ð1Þ

where

Du ¼ ‘uLN þDcuþ nuH
N�1

KJuð2Þ

is the usual decomposition of Du in its absolutely continuous part ‘u with respect
to the Lebesgue measure LN , its Cantor part Dcu and its jumping part, which
is represented by the restriction of the ðN � 1Þ-dimensional Hausdor¤ measure
to the jump set Ju. Moreover, nu denotes the measure theoretical unit normal to
Ju, ~uu is the approximate limit and uþ, u� are the approximate limits from both
sides of Ju.

1This paper is related to a talk given by the author at ‘‘XXV Convegno Nazionale di Calcolo
delle Variazioni’’—Levico, 2–6 February 2015.



The validity of (1) is stated also in the vectorial case (see Theorem 3.96 in
[4] for B a C1). The situation is significantly more complicated if B is only a
Lipschitz continuous function. In this case, the general chain rule is false, while
a weaker form of the formula was proved by Ambrosio and Dal Maso in [3]
(see also [12]).

On the other hand, in some recent papers a remarkable e¤ort is devoted to
establish chain rule formulas with an explicit dependence on the space variable
x (see [1, 5, 8, 9, 10]). Notice that the new term of derivation with respect to x
needs a particular attention. The proofs are achieved by regularizing Bð�; tÞ with
fixed t, by applying the Ambrosio–Dal Maso formula to the regularized func-
tions and finally by passing to the limit in each term.

More recently, a very general nonautonomous formula is proven in [2] for
vector functions u a BV . Here, the first assumption is a C1 dependence of
Bðx; �Þ with an uniform bound on qtBðx; tÞ. Concerning the x-derivative, it is
required the existence of a Radon measure s bounding from above all measures
jDxBð�; tÞj, uniformly with respect to t a R.

The aim of this note is to consider the special case of

Bðx; tÞ ¼
Z t

0

bðx; sÞ ds:

In the spirit of Theorem 3.1 below proved in [9] we find a chain rule in this
situation. We assume that b is BV in x and it is locally bounded (then Bð�; tÞ is
BV and Bðx; �Þ is Lipschitz continuous) and we find an explicit form for the term
involving the x-derivation, which is described in [9] by a Fubini’s type inversion
of integration order.

In the spirit of [2] we require the existence of a Radon measure s bounding
from above all measures jDxbð�; tÞj, uniformly with respect to t a R. We prove
that for any u a BVloc the composite function vðxÞ ¼ Bðx; uðxÞÞ belongs to BVloc

and it is shown the existence of a countably HN�1-rectifiable set N, independent
of u and containing the jump set of Bð�; tÞ for every t a R, such that the jump
set of v is contained in NA Ju. A chain rule is obtained (see Theorem 4.2) by
requiring further uniformity conditions, but without assuming any continuity
assumptions. The result here presented will be proven in a forthcoming paper.

2. Definitions and preliminaries

In this section we recall some preliminary results and basic definitions (see [4]
and [11]).

Let E be a measurable subset of RN . The density DðE; xÞ of E at a point
x a RN is defined by

DðE; xÞ ¼ lim
%!0

LNðEBBrðxÞÞ
oNrN

;

whenever this limit exists, where oN is the measure of the unit ball and BrðxÞ
denotes the ball centered at x with radius r.
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Let WJRN be an open set and let u : W ! R be a measurable function. The
upper and lower approximate limits of u at a point x a W are defined as

uþðxÞ ¼ infft a R : Dðfu > tg; xÞ ¼ 0g;
u�ðxÞ ¼ supft a R : Dðfu < tg; xÞ ¼ 0g;

ð3Þ

respectively. The quantities uþðxÞ, u�ðxÞ are well defined (possibly equal toel)
at every x a W, and u�ðxÞa uþðxÞ. The functions uþ; u� : W ! ½�l;l� are
Borel measurable.

We say that u is approximately continuous at a point x a W if uþðxÞ ¼
u�ðxÞ a R. In this case, we set ~uuðxÞ ¼ uþðxÞ ¼ u�ðxÞ and call ~uuðxÞ the ap-
proximate limit of u at x. The set of all points in W where u is approximately
continuous is a Borel set which will be denoted by Cu and called the set of
approximate continuity of u. The set Su ¼ WnCu will be referred to as the set
of approximate discontinuity of u.

Finally, by u� we denote the precise representative of u which is defined by

u�ðxÞ ¼ uþðxÞ þ u�ðxÞ
2

if uþðxÞ; u�ðxÞ a R, u�ðxÞ ¼ 0 otherwise.
A locally integrable function u is said to be approximately di¤erentiable at a

point x a Cu if there exists ‘uðxÞ a RN such that

lim
r!0

1

rNþ1

Z
BrðxÞ

juðyÞ � ~uuðxÞ � 3‘uðxÞ; y� x4j dy ¼ 0:ð4Þ

Here, 3� ; �4 stands for scalar product in RN . The vector ‘uðxÞ is called the
approximate di¤erential of u at x.

A function u a L1ðWÞ is said to be of bounded variation if its distributional
gradient Du is an RN-valued Radon measure in W and the total variation jDuj
of Du is finite in W. The space of all functions of bounded variation in W is
denoted by BVðWÞ, while the notation BVlocðWÞ will be reserved for the space
of those functions u a L1

locðWÞ such that u a BVðW 0Þ for every open set W 0HHW.
Let u a BVðWÞ. Then it can be proved that

lim
r!0

Z
BrðxÞ

juðyÞ � ~uuðxÞj dy ¼ 0 for HN�1-a:e: x a Cu

and that u is approximately di¤erentiable for LN -a.e. x. Moreover, the functions
u� and uþ are finite HN�1-a.e. and for HN�1-a.e. x a Su there exists a unit vec-
tor nuðxÞ such that

lim
r!0

Z
Be
r ðx; nuðxÞÞ

juðyÞ � ueðxÞj dy ¼ 0;ð5Þ
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where Bþ
r ðx; nuðxÞÞ ¼ fy a BrðxÞ : 3y� x; nuðxÞ4 > 0g, and B�

% ðx; nuðxÞÞ is de-
fined analogously. The set of all points in Su where the equalities in (5) are
satisfied is called the jump set of u and is denoted by Ju.

If u is a BV function, we denote by Dau the absolutely continuous part of Du
with respect to Lebesgue measure. The singular part, denoted by Dsu, is split into
two more parts, the jump part D ju and the Cantor part Dcu, defined by

D ju ¼ DsuKJu; Dcu ¼ Dsu�D ju:

Finally, we denote by ~DDu the di¤use part of Du, defined by

~DDu ¼ DauþDcu:

3. The chain rule in BVðRNÞ proven in [9]

In the paper [9] the authors deal with a general chain rule formula in BVðRNÞ for
functions whose dependence in x is BV . More precisely, the following theorem is

proved for particular functions of the type Bðx; tÞ ¼
Z t

0

bðx; sÞ ds.

Theorem 3.1. Let b : RN � R ! R be a Borel function. Assume that

(a) the function bðx; tÞ is locally bounded;
(b) for every t a R the function bð�; tÞ a BVðRNÞ;
(g) for any compact set HHR,Z

H

jDxbð�; tÞjðRNÞ dt < þl;

where Dxbð�; tÞ is the distributional gradient of the map x 7! bðx; tÞ.

Then for every u a BVðRNÞBLl
locðRNÞ, the function v : RN ! R, defined by

vðxÞ :¼
Z uðxÞ

0

bðx; tÞ dt;

belongs to BVlocðRNÞ and for any f a C1
0 ðRNÞ we haveZ

RN

‘fðxÞvðxÞ dx ¼ �
Z þl

�l
dt

Z
RN

sgnðtÞw�
Wu; t

ðxÞfðxÞ dDxbðx; tÞð6Þ

�
Z
RN

fðxÞbðx; uðxÞÞ‘uðxÞ dx�
Z
RN

fðxÞ~bbðx; ~uuðxÞÞ dDcu

�
Z
Ju

fðxÞ
Z uþðxÞ

u�ðxÞ
b�ðx; tÞ dt

" #
nuðxÞ dHN�1;
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where Ju is the jump set of u, Wu; t ¼ fx a RN : t belongs to the segment of end-
points 0 and uðxÞg and w�

Wu; t
and b�ð�; tÞ are, respectively, the precise representatives

of wWu; t
and bð�; tÞ.

Remark 3.2. Notice that b�ðx; tÞ ¼ ðbþðx; tÞ þ b�ðx; tÞÞ=2, where bþðx; tÞ and
b�ðx; tÞ are the upper and lower approximate limits of bð�; tÞ at a point x. The
function bð�; tÞ is approximately continuous at a point x if bþð�; tÞ ¼ b�ð�; tÞ a R.

In this case, we set ~bbð�; tÞ ¼ bþð�; tÞ ¼ b�ð�; tÞ. By Lemma 3.1 in [9] the functions
~bbðx; tÞ, bþðx; tÞ, b�ðx; tÞ and b�ðx; tÞ are locally bounded Borel functions. More-
over, if bðx; tÞC bðtÞ, then (6) reduces to the well known chain rule formula for
the composition of BV functions with a Lipschitz function, while, in the special
case that bðx; tÞC bðxÞ, (6) gives the formula for the derivative of the product of
two BV functions.

4. An explicit chain rule

In this section we will present the result and we will write more explicitly the first
term appearing in the right hand side of formula (6).

Let b : RN � R ! R be a Borel function. Assume that

(i) the function bðx; tÞ is locally bounded;
(ii) for every t a R the function bð�; tÞ a BVðRNÞ;
(iii) the measure

s :¼ 4
t AR

jDxbð�; tÞj

is a Radon measure, where 4 denotes the least upper bound in the space of
nonnegative Borel measures.

Remark 4.1. As in Remark 3.5 in [2], since we will consider u a Ll
locðRNÞ, con-

dition (iii) can be replaced by the following local version

(iii)loc for every compact set HHR the measure

sH :¼ 4
t AH

jDxbð�; tÞj

is a Radon measure.

For simplicity we will omit the explicit dependence of s on H. By (iii), we have
that sfHN�1 and, if we define

N ¼ x a RN : lim inf
r!0

sðBrðxÞÞ
rN�1

> 0

� �
;
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then N is a HN�1-rectifiable set. We omit the dependence of N of H in the local
version (see Remark 3.5 in [2]).

Moreover we consider the following assumptions:

(iv) there exists a Borel set N0 HRN with LNðN0Þ ¼ 0 such that the approxi-
mate di¤erential ‘xbðx; tÞ of the function y 7! bðy; tÞ at x exists for every
x a RNnN0 and for every t a R and

dDxbð�; tÞ
dLN

ðxÞ ¼ ‘xbðx; tÞ

for every x a RNnN0 and for every t a R;
(v) there exists a Borel setN1 JRN with sðN1Þ ¼ 0 such that the following limit

lim
r#0

Dc
xbð�; tÞðBrðxÞÞ
sðBrðxÞÞ

¼ dDc
xbð�; tÞ
ds

ðxÞ

exists for every x a RNnN1 and for every t a R and this equality holds,
where

dDc
xbð�; tÞ
ds

ðxÞ is Radon–Nikodým derivative at x of the Cantor part of
the measure Dxbð�; tÞ w.r.t. s;

(vi) there exists a Borel set N2 HRN with HN�1ðN2Þ ¼ 0 such that the one-
sided limits bþðx; tÞ and b�ðx; tÞ defined by

lim
r#0

Z
Be
r ðxÞ

jbðy; tÞ � beðx; tÞj dy ¼ 0

exist for every x a RNnN2 and for every t a R, where Be
r ðxÞ are the two half

balls determined by the normal nN, and

dD j
xbð�; tÞ

dHN�1
ðxÞ ¼ ½bþðx; tÞ � b�ðx; tÞ�nNðxÞ

for every x a RNnN2 and for every t a R.

By (vi) the functions be : ðRNnN2Þ � R ! R are locally bounded Borel func-
tions.

Moreover for all x a RNnðNAN2Þ and t a R there exists the limit

~bbðx; tÞ ¼ lim
r!0

Z
BrðxÞ

bðy; tÞ dy:

For all x a RNnðNAN2Þ the function t 7! ~bbðx; tÞ is a locally bounded Borel
functions. If assumptions (i)–(vi) hold, then for every t a R the following decom-
position formula holds
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ðDxbÞð�; tÞ ¼ ð‘xbÞðx; tÞLN þ dDc
xbð�; tÞ
ds

ðxÞsð7Þ

þ ½bþðx; tÞ � b�ðx; tÞ�nNðxÞHN�1
KN;

in the sense of measures.

Theorem 4.2. Let b : RN � R ! R be a Borel function satisfying (i)–(vi). Then,
for every u a BVðRNÞBLl

locðRNÞ, the function v : RN ! R, defined by

vðxÞ :¼
Z uðxÞ

0

bðx; tÞ dt;

belongs to BVlocðRNÞ and for any f a C1
0 ðRNÞ we have

Z
RN

‘fðxÞvðxÞ dxð8Þ

¼ �
Z
RN

fðxÞ
Z uðxÞ

0

‘xbðx; tÞ dt
" #

dx�
Z
RN

fðxÞbðx; uðxÞÞ‘uðxÞ dx

�
Z
RN

fðxÞ
Z ~uuðxÞ

0

dDc
xb

ds
ðx; tÞ dt

" #
ds�

Z
RN

fðxÞ~bbðx; ~uuðxÞÞ dDcu

�
Z
NAJu

fðxÞ
Z uþðxÞ

0

bþðx; tÞ dt�
Z u�ðxÞ

0

b�ðx; tÞ dt
" #

nNAJu
ðxÞ dHN�1;

where it is understood that for HN�1-a.e. x a NB Ju the normal nNAJu
is choosen

equal to nN.

Corollary 4.3. Let b : RN � R ! R be a Borel function satisfying

(i) the function bðx; tÞ is locally bounded;
(ii) for every t a R the function bð�; tÞ a W 1;1ðRNÞ and there exists a Borel set

N1 JRN such that HN�1ðN1Þ ¼ 0 such that

bðx; tÞ ¼ ~bbðx; tÞ

for every x a RNnN1 and every t a R;
(iii) for every compact set HJR the function

gHðxÞ :¼ sup
t AH

j‘xbðx; tÞj

belongs to L1
locðRNÞ;
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(iv) there exists a Borel set N2 JRN such that LNðN2Þ ¼ 0 such that the ap-
proximate gradient ‘xbðx; tÞ of the function y 7! bðy; tÞ at x exists for every
x a RNnN2 and every t a R.

Then, for every u a BVðRNÞBLl
locðRNÞ, the function v : RN ! R, defined by

vðxÞ :¼
Z uðxÞ

0

bðx; tÞ dt;

belongs to BVlocðRNÞ and for any f a C1
0 ðRNÞ we have

Z
RN

‘fðxÞvðxÞ dx ¼
Z
RN

fðxÞ
Z uðxÞ

0

‘xbðx; tÞ dt
" #

dx

�
Z
RN

fðxÞbðx; uðxÞÞ‘uðxÞ dx�
Z
RN

fðxÞ~bbðx; ~uuðxÞÞ dDcu

�
Z
Ju

fðxÞ
Z uþðxÞ

u�ðxÞ
~bbðx; tÞ dt

" #
nuðxÞ dHN�1:

Remark 4.4. This corollary improves Proposition 1.2 in [8] where N2 ¼ j and
bðx; �Þ is continuous for a.e. x a RN .
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