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Abstract. — The initial-value problem associated to a maximal monotone operator may be for-

mulated as a minimization principle, on the basis of a theory that was pioneered by Brezis, Ekeland,

Nayroles and Fitzpatrick. This note defines the notions of structural compactness and structural sta-
bility, and reviews results concerning the stability of maximal monotone flows under perturbations

not only of data but also of the operator. This rests upon De Giorgi’ theory of G-convergence, and
on the use of an exotic nonlinear topology of weak type.
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1. Introduction

These pages illustrate a research about structural compactness and structural sta-
bility of flows, on which this author has been working in the last years. At the
focus there is the behaviour of the solution of quasilinear evolutionary PDEs
under perturbations not only of the data but also of the operator, as it is illus-
trated in Section 5.

For stationary models represented by a minimization principle, structural com-
pactness and stability are provided by E. De Giorgi’s notion of G-convergence—
a well-known theory that was introduced in [21] and then studied in a large
number of works, see e.g. the monographs [1], [8], [9], [10], [19]. Indirectly, this
also applies to the corresponding Euler-Lagrange equations.

For equations that are governed by maximal monotone operators, a varia-
tional characterization was pointed out by S. Fitzpatrick in the seminal paper



[24]; see Sections 2 and 3 ahead. By combining that approach with two pioneer-
ing works of Brezis and Ekeland [12] and Nayroles [36] (which actually predated
that of Fitzpatrick), this method led to the extended BEN principle of [43]. This
provides a variational formulation for first-order flows of the form

Dtuþ aðuÞ C h a:e: in time ðDt :¼ q=qtÞ;ð1:1Þ

with a maximal monotone and possibly multi-valued, and with h prescribed; see
Section 4.

This theory is based on the definition of functionals that act on the Cartesian
product V � V 0 of a Banach space V and its dual V 0, that are convex and lower
semicontinuous and dominate the duality pairing. Along with [47], it seems con-
venient to introduce a somehow exotic nonlinear topology of weak type, that we
label by ~pp, see Section 6. This topology is aimed to trade between two opposite
exigences: to provide compactness of the class of functionals, and also to yield
convergence of the perturbed equation. This issue is illustrated in [47] and more
systematically here in Section 7.

In Section 8 we introduce a notion of evolutionary G-convergence of weak type.
Afterwards we state the structural compactness and stability of the initial-value
problem of a large class of first-order equations for maximal monotone opera-
tors; see [51].

2. The Fitzpatrick theory

In this section we show how any maximal monotone operator can be formulated
as a minimization principle, on the basis of Fitzpatrick’s pioneering work [24].
We then extend this formulation to nonmonotone operators.

The Fitzpatrick Theorem. Let V be a real Banach space, and let us denote by
3� ; �4 the duality pairing between V 0 and V . Let a : V ! PðV 0Þ (the set of the
parts of V 0) be a (possibly multi-valued) measurable operator, i.e., such that

g�1ðAÞ :¼ fv a V : gðvÞBAA jgð2:1Þ

is measurable, for any open subset A of V 0. For instance, this condition is ful-
filled if a is maximal monotone. (We shall always assume that a is proper, i.e.,
aðVÞA j.)

In [24] Fitzpatrick defined a function, which nowadays is called the Fitzpatrick
function:

faðv; v�Þ :¼ 3v�; v4þ sup f3v� � v�0 ; v0 � v4 : v�0 a aðv0Þgð2:2Þ
¼ sup f3v�; v04� 3v�0 ; v0 � v4 : v�0 a aðv0Þg Eðv; v�Þ a V � V 0:

He noticed that fa is convex and lower semicontinuous, being the supremum
of a family of a‰ne and continuous functions, and proved the following
assertion.
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Theorem 2.1 ([24]). If a is maximal monotone then

faðv; v�Þb 3v�; v4 Eðv; v�Þ a V � V 0;ð2:3Þ
faðv; v�Þ ¼ 3v�; v4 , v� a aðvÞ:ð2:4Þ

The definition of the function fa and Theorem 2.1 were unnoticed for several
years, and were then rediscovered by Martinez-Legaz and Théra [30] and (inde-
pendently) by Burachik and Svaiter [16]. This started an intense research that
bridges monotone operators and convex functions; see the end of the next section
for references.

Representative functions. Nowadays one says that a function f : V � V 0 !
RA fþlg (variationally) represents a measurable operator a : V ! PðV 0Þ
whenever f : V � V 0 ! RA fþlg is convex and lower semicontinuous,

f ðv; v�Þb 3v�; v4 Eðv; v�Þ a V � V 0;

f ðv; v�Þ ¼ 3v�; v4 , v� a aðvÞ:
ð2:5Þ

One accordingly says that a is representable, and that f is a representative func-
tion. We shall denote byFðVÞ the class of the functions that fulfill the first two of
these properties. Representable operators are monotone, see [24], but need not be
either cyclically or maximal monotone [17].

Let us next assume that the real Banach space V is reflexive. Besides the dual-
ity between V and V 0, let us consider the duality between the spaces V � V 0 and
its dual V 0 � V , and the corresponding convex conjugation. More specifically,
for any function g : V � V 0 ! RA fþlg, let us set

g�ðw�;wÞ :¼ sup f3w�; v4þ 3v�;w4� gðv; v�Þ : ðv; v�Þ a V � V 0gð2:6Þ
Eðw�;wÞ a V 0 � V :

Some examples of representative functions. Here we outline some simple exam-
ples of representative functions of maximal monotone operators related to PDEs.
More may be found e.g. in [46], [47].

Example 2.1. The Fitzpatrick Theorem 2.1 generalizes the following classical
result of Fenchel [23] of convex analysis. Let j : V ! RA fþlg be a convex
and lower semicontinuous proper function (i.e., j2þl), and denote by
j� : V 0 ! RA fþlg and qj : V ! PðV 0Þ respectively the convex conjugate
function and the subdi¤erential of j. Then

jðvÞ þ j�ðv�Þb 3v�; v4 Eðv; v�Þ a V � V 0;

jðvÞ þ j�ðv�Þ ¼ 3v�; v4 , v� a qjðvÞ:
ð2:7Þ

In other terms, the subdi¤erential operator qj : V ! PðV 0Þ is represented by the
Fenchel function ðv; v�Þ 7! jðvÞ þ j�ðv�Þ.
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We shall refer to (2.3), (2.4) ((2.7), resp.) as the Fitzpatrick system (the Fenchel
system, resp.), and to the mapping V � V 0 ! RA fþlg : ðv; v�Þ 7! jðvÞ þ
j�ðv�Þ as a Fenchel function. Incidentally note that the Fenchel function need
not coincide with the Fitzpatrick function fqj.

Example 2.2. Let us denote by IK the indicator function of any set K (i.e.,
IK ¼ 0 in K and IK ¼ þl outside K). If L : V ! V 0 is a linear, monotone and
hemicontinuous operator (i.e., for any u; v a V , Lðuþ lvÞ ! LðuÞ weakly in V 0

as l ! 0), then it is represented by the function

fLðv; v�Þ ¼ ILðv; v�Þ þ 3Lv; v4 Eðv; v�Þ a V � V 0:ð2:8Þ

Example 2.3. Let W be a bounded domain of RN (N > 1), p a �1;þl½, and set
V :¼ W

1;p
0 ðWÞ. Let a maximal monotone mapping ~gg : RN ! PðRNÞ be repre-

sented by a function f a FðRNÞ. If

ba1; a2 a Rþ : E~ww a RN ; E~zz a~ggð~wwÞ; j~zzja a1j~wwj p þ a2;ð2:9Þ

it is well known that then the operator

b̂b : V ! PðV 0Þ : v 7! �‘ �~ggð‘vÞð2:10Þ

is maximal monotone. This includes e.g. the case of the p-Laplacian: b̂bðvÞ ¼
�‘ � ðj‘vj p�2‘vÞ, with 1 < p < þl.

We claim that b̂b may be represented by the function j a FðVÞ that is con-

structed as follows. For any ðv; v�Þ a V � V 0, first let y a H 1
0 ðWÞN be such that

�Dy ¼ v� in D 0ðWÞ, and set ~xxv� ¼ ‘y. Hence

~xxv� a ‘H 1
0 ðWÞN ; �‘ �~xxv� ¼ v� in D 0ðWÞ:ð2:11Þ

Then set

jðv; v�Þ ¼
Z
W

f ð‘v;~xxv� Þ dx:ð2:12Þ

The function j is convex and lower semicontinuous, and

jðv; v�Þ ¼
Z
W

f ð‘v;~xxv�Þ dxð2:13Þ

b
f aFðRN Þ

Z
W

‘v �~xxv� dx ¼ �3v;‘ �~xxv�4 ¼ð2:11Þ 3v; v�4:

Thus j a FðVÞ. Moreover, as f ð‘v;~xxv�Þb‘v �~xxv� pointwise, in (2.13) equality
holds if and only if f ð‘v;~xxv� Þ ¼ ‘v �~xxv� a.e. in W. As f represents~gg, this equality
is equivalent to ~xxv� a~ggð‘vÞ a.e. in W, namely by (2.11)

v� a �‘ �~ggð‘vÞ in D 0ðWÞ:ð2:14Þ
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Incidentally notice that the curl-free field ~xxv� is just one of the many selections
~hh a~ggð‘vÞ such that~hh a L2ðWÞN and �‘ �~hh ¼ v� in D 0ðWÞ.

Example 2.4. Let an operator a : V ! PðV 0Þ be represented by a function
fa a FðVÞ, and L : V ! V 0 be bounded, linear and monotone. The operator
aþ L is then representable, and is represented for instance by the function

f ðv; v�Þ ¼ faðv; v� � LvÞ þ 3Lv; v4 Eðv; v�Þ a V � V 0:ð2:15Þ

This further generalizes what in [43] is named extended BEN principle,
which corresponds to L ¼ Dt (in a space V of time-dependent functions). This
example is at the basis of the construction that we shall illustrate in the next
section.

Example 2.5. Bounded skew-adjoint operators are maximal monotone. For
instance, if W is as above and Nb 1, let us set V ¼ H 1

0 ðWÞ � L2ðWÞN , whence
V 0 ¼ H�1ðWÞ � L2ðWÞN (identifying L2ðWÞ � L2ðWÞN with its dual). By the
Example 2.2, the bounded skew-adjoint operator

L : V ! V 0 :
u

~vv

� �
7! ‘ �~vv

‘u

� �
ð2:16Þ

is represented by the following function (here by IL we denote the indicator func-
tion of the operator L)

f ðU ;U �Þ ¼ ILðU ;U �Þ EðU ;U �Þ a V � V 0:ð2:17Þ

Example 2.6. Let us define V and L as in the previous example, and set
W ¼ L2ð0;T ;VÞBH 1ð0;T ;V 0Þ. Let~gg;~hh : RN ! PðRNÞ be maximal monotone
mappings, and the operator

a : V ! PðV 0Þ : u

~vv

� �
7! �‘ �~ggð‘uÞ

~hhð~vvÞ

� �
ð2:18Þ

be represented by a function fa a FðVÞ. The operator Dt þLþ a : W ! W 0 is
then representable, and is represented for instance by the function

F ðU ;U �Þ ¼
Z T

0

faðU ;U � �DtU �LUÞ dtþ
Z T

0

3DtU ;U4 dtð2:19Þ

EðU ;U �Þ a W �W 0:

(Here by 3� ; �4 we denote the duality pairing between W 0 and W .)
If the operator~hh in (2.18) vanishes identically and (say)

F ¼ ð f ;~ggÞ a H 1ð0;T ;H�1ðWÞÞ � L2ð0;T ;L2ðWÞNÞ;
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then by eliminating~vv it is promptly checked that the vector equation

DtU þLU þ aðUÞ ¼ F in V 0; a:e: in �0;T ½ð2:20Þ

is equivalent to the semilinear third-order scalar equation

D2
t u� Du�Dt‘ �~ggð‘uÞ ¼ Dt f � ‘ �~gg in H�1ðWÞ; a:e: in �0;T ½:ð2:21Þ

Representation of nonmonotone operators. Next we extend the notion of repre-
sentative function to nonmonotone operators. Let us denote by s an interme-
diate topology between the strong and the weak topology of V � V 0. We shall
say that a (possibly nonconvex) function f s-represents a (possibly nonmono-
tone) measurable operator a : V ! PðV 0Þ if

f : V � V 0 ! RA fþlg is s-lower semicontinuous;

f ðv; v�Þb 3v�; v4 Eðv; v�Þ a V � V 0;

f ðv; v�Þ ¼ 3v�; v4 , v� a aðvÞ:
ð2:22Þ

We shall denote by EsðVÞ the class of the functions that fulfill the first two of
these conditions, and in particular by EsðVÞ (EwðVÞ, resp.) the class correspond-
ing to the strong (weak, resp.) topology of V � V 0. Clearly

FðVÞHEwðVÞHEsðVÞHEsðVÞ;

in order to distinguish FðVÞ from these other classes, when needed we shall
refer to the respective elements as convex representatives and possibly-nonconvex
s-representatives.

Nonconvex Fitzpatrick functions. Next we modify the definition of the Fitzpa-
trick function (2.2) to represent a relevant class of nonmonotone operators. Let
us first denote by Xw (Xs, resp.) any Banach space X equipped with the weak
(strong, resp.) topology.

Proposition 2.2. For any z a V, let gz : V ! V 0 be a (single-valued ) maximal
monotone operator, and define the corresponding Fitzpatrick function fgz as in (2.2).
Then:

(i) If the mapping

Vw ! ðV 0Þs : z 7! gzðvÞ Ev a V ;ð2:23Þ

is continuous, then the function j : V � V 0 ! RA fþlg : ðv; v�Þ 7! fgvðv; v�Þ
is an element of EwðVÞ.

(ii) If the mapping

Vs ! ðV 0Þw : z 7! gzðvÞ Ev a V ;ð2:24Þ

is continuous, then j a EsðVÞ.
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Proof. Let us prove part (i). By (2.24),

V � V 0 ! RA fþlg : ðv; v�Þ 7! 3v�;w4� 3gvðwÞ;w� v4ð2:25Þ
is weakly continuous; Ew a V :

The supremum j of this family w.r.t. w a V , namely the Fitzpatrick function fgz ,
is then weakly lower semicontinuous.

By the Fitzpatrick Theorem 2.1, for any z a V

fgzðv; v
�Þb 3v�; v4 Eðv; v�Þ a V � V 0;

fgzðv; v
�Þ ¼ 3v�; v4 , v� a gzðvÞ:

ð2:26Þ

The function j then fulfills (2.22)2 and (2.22)3. Thus j a EwðVÞ.
The proof of part (ii) is analogous, and is left to the reader. Loosely speaking,

here the strong and the weak topologies are exchanged. r

Remarks 2.3. (i) Part (i) of Proposition 2.2 may be applied to pseudo-
monotone di¤erential operators, e.g.

aðuÞ ¼ �‘ � gðu;‘uÞ ð‘� :¼ divÞ;
aðuÞ ¼ ‘� gðu;‘� uÞ ð‘� :¼ curl; in R3Þ:

ð2:27Þ

In either case it is assumed that g is single-valued, continuous w.r.t. the first argu-
ment, and nondecreasing w.r.t. the second one.

Further nonmonotone di¤erential operators are constructed by adding a (typ-
ically lower order) continuous perturbation.

(ii) A surjectivity result for possibly nonmonotone operators a of the form
of Proposition 2.2 was proved in [49]. This may be applied e.g. to several PDEs
expressed in terms of pseudo-monotone operators.

3. Null-minimization

In this section we discuss two di¤erent minimization principles that are associated
to representative functions.

Null-minimization principle. Let a function f represent a (possibly nonmono-
tone) operator a : V ! PðV 0Þ, and define the function

Jðv; v�Þ :¼ f ðv; v�Þ � 3v�; v4 Eðv; v�Þ a V � V 0:ð3:1Þ

By (2.22)2 Jb 0; by (2.22)3, Jðv; v�Þ ¼ 0 if and only if v� a aðvÞ, or equivalently

Jðv; v�Þ ¼ 0 ð¼ inf JÞ , v� a aðvÞ:ð3:2Þ

We shall label ‘‘Jðv; v�Þ ¼ 0 ð¼ inf JÞ’’ as a problem of null-minimization.
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Let us distinguish between two di¤erent minimization principles:
(i) Ordinary minimization. Jðv; v�Þ may be minimized by varying both v and

v�, as it is often the case when one deals with the Fitzpatrick theory. In this case
it is not needed to prescribe the minimum value to vanish, since the construction
of J entails this property.

(ii) Null-minimization. In several cases Jðv; v�Þ is instead minimized varying
just v (so for a fixed v�); this is often the case when one studies a specific problem
(e.g., a boundary-value problem). For instance this occurs for equations including
a maximal monotone operator, and in particular for the (extended) BEN prin-
ciple that we illustrate below.

In this latter case one must prescribe the vanishing of the minimum value.
Indeed, although obviously any null-minimizer is also an ordinary minimizer, a
priori it is not clear whether the former exists (if this were not the case, the infi-
mum would be equal to þl, by convention).

This discussion also applies to nonmonotone representable operators.

An initial-value problem for an elementary ODE. We illustrate the issue that we
just outlined via a simple example, along the lines of Section 7 of [49]; see also the
introduction of [27]. For any h a L2ð0;TÞ, let us consider the trivial initial-value
problem

Dtuþ u ¼ h a.e. in �0;T ½;
uð0Þ ¼ 0:

�
ð3:3Þ

We already know that

uðtÞ ¼
Z t

0

et�thðtÞ dt a:e: in �0;T ½ð3:4Þ

is the unique solution of this problem. However, here we are concerned with the
variational formulation. Defining the functional

Lh : X0 :¼ fv a H 1ð0;TÞ : vð0Þ ¼ 0g ! R;

LhðvÞ :¼
Z T

0

1

2
jvj2 þ 1

2
jh�Dtvj2 � hv

� �
dtþ 1

2
jvðTÞj2;

ð3:5Þ

the BEN principle reads

u a X0; LhðuÞ ¼ inf Lh ¼ 0 , ð3:3Þ:ð3:6Þ

In alternative, let us now consider the ordinary minimization problem

u a X0 LhðuÞ ¼ inf Lh;ð3:7Þ

and wonder whether this entails (3.3).
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As the functional Lh is convex and lower semicontinuous, by varying u with
smooth functions supported in �0;T ½, one gets the Euler-Lagrange equation

u�D2
t uþDth� h ¼ 0 a:e: in �0;T ½:ð3:8Þ

Because of the convexity of the functional, this equation is equivalent to the
equation (3.7). (3.8) also reads ðI �DtÞ½ðI þDtÞu� h� ¼ 0 a.e. in �0;T ½, which
by inverting the operator I �Dt is equivalent to

uþDtu� h ¼ Cet a:e: in �0;T ½; for some C a R:ð3:9Þ

Because of the initial condition, we thus get (displaying the dependence on C)

uCðtÞ ¼
Z t

0

et�t½hðtÞ þ Cet� dt ¼
Z t

0

et�thðtÞ dtþ C sinh tð3:10Þ

a:e: in �0;T ½:

The presence of the undetermined constant C is natural, since we pre-
scribed just an initial condition for a second-order ODE. A second condition
is needed to determine the constant C. This further condition may be the pre-
scription that the minimum value of the functional J is zero. In the present case
we know that a null-minimizer exists, and C ¼ 0 corresponds to the actual
solution (3.4).

Although this was just illustrated on a simple linear example for V ¼ R, anal-
ogous conclusions hold for nonlinear initial-value problems in infinite dimen-
sional spaces: ordinary minimization is not su‰cient to determine the solution
of the initial-value problem, and prescribing the minimum value of the functional
balances the number of side-conditions. Anyway, one should show that this null-
minimizer actually exists.

The present discussion may be extended to the same ODE (3.3)1 coupled with
periodicity conditions: uð0Þ ¼ uðTÞ and u 0ð0Þ ¼ u 0ðTÞ.

4. Monotone flows and extended BEN principle

In this section we illustrate how a family of first-order flows governed by a
maximal monotone operator a may be formulated as a null-minimization prin-
ciple, on the basis of the Example 2.4 above with L ¼ Dt. For fixed u� and u0,
we thus deal with the initial-value problem

Dtuþ aðuÞ C u� in V 0; a:e: in �0;T ½ ðDt :¼ q=qtÞ
uð0Þ ¼ u0:

�
ð4:1Þ

However the present analysis may be extended to the same equation coupled with
conditions of time periodicity.
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Extended BEN principle. Let us assume that we are given a Gelfand triplet of
(real) Banach spaces

V HH ¼ H 0HV 0ð4:2Þ

with continuous and dense injections, and fix any u� a Lp 0 ð0;T ;V 0Þ ð2a p <
þl, p 0 ¼ p=ðp� 1ÞÞ, and u0 a H.

By (3.2), whenever an operator a : V ! PðV 0Þ is represented by a function
fa a FðVÞ, let us define the convex and lower semicontinuous functional

Jðv; u�Þ :¼
Z T

0

½ faðv; u� �DtvÞ � 3u� �Dtv; v4� dtð4:3Þ

¼
Z T

0

½ faðv; u� �DtvÞ � 3u�; v4� dt

þ 1

2
kvðTÞk2H � 1

2
kuð0Þk2H

for any v a Lpð0;T ;VÞBW 1;p 0 ð0;T ;V 0Þ (HC0ð½0;T �;HÞ) and any u� a V 0.
Consistently with the discussion of the previous section, the initial-value prob-

lem (4.1) is equivalent to the null-minimization of Jð�; u�Þ, with uð0Þ replaced by
u0. We shall refer to this equivalence as the extended BEN principle. This result
allows to apply the extended corpus of variational techniques to investigate the
structural properties of compactness and stability of (4.1).

Further spaces. Let V , H be as in (4.2), let us define the measure

mðAÞ ¼
Z
A

ðT � tÞ dt EA a Lð0;TÞ; i:e:; dmðtÞ ¼ ðT � tÞ dt;ð4:4Þ

and introduce the weighted Hilbert spaces

~HH :¼ v : �0;T ½ ! H measurable:

Z T

0

kvðtÞk2H dmðtÞ < þl

� �
;

~VV :¼ v a ~HH :

Z T

0

kvðtÞk2V dmðtÞ < þl

� �
;

~XX :¼ fv a ~VV : Dtv a ~HHg ðHC0ð½0;T ½;HÞÞ:

ð4:5Þ

Identifying ~HH with its dual space, we get the Hilbert triplet

~VVH ~HH ¼ ~HH 0 H ~VV 0;ð4:6Þ

with continuous and dense injections.
Any maximal monotone operator a : V ! PðV 0Þ canonically determines a

corresponding evolutionary operator âa : ~VV ! Pð ~VV 0Þ. It is easy to check that, if
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a is represented by a function f a FðVÞ, then âa is represented by the function

Z T

0

f ð� ; �Þ dmðtÞ ¼
Z T

0

dt

Z t

0

f ð� ; �Þ dt a Fð ~VVÞ:ð4:7Þ

The reader will notice that the further integration does not modify the set of null-
minimizers.

The initial-value problem (4.1) may then also be reformulated as the null-
minimization of the functional

Mðv; v�Þ :¼
Z T

0

Z t

0

faðv; v� �DtvÞ dt�
Z t

0

3v� �Dtv; v4 dt

� �
dtð4:8Þ

¼
Z T

0

faðv; v� �DtvÞ dmðtÞ �
Z T

0

3v� �Dtv; v4 dmðtÞ

Eðv; v�Þ a ~VV� ~VV 0 such that Dtv a ~VV 0:

The same applies if FðVÞ and Fð ~VVÞ are respectively replaced by EsðVÞ and
Esð ~VVÞ (s being an intermediate topology between the strong and the weak topol-
ogy of V � V 0).

Original BEN principle. The equivalence between the equation (4.1)1 and the
null minimization of the functional (4.3) generalizes an approach that was pio-
neered by Brezis and Ekeland [12] and by Nayroles [36], prior to the Fitzpatrick
theory. These authors assumed a to be cyclically maximal monotone (namely, the
subdi¤erential of a convex lower semicontinuous function), did not use the
weight function T � t, and already pointed out the need of prescribing the mini-
mum value (null in our case) in the minimization w.r.t. u. More specifically, they
noticed that, for any convex lower semicontinuous function c : V ! RA fþlg
and any u� a L2ð0;T ;V 0Þ, the gradient flow

Dtuþ qcðuÞ ¼ u� in V 0; a:e: in �0;T ½ð4:9Þ

is tantamount to the null-minimization of the functional

FðvÞ :¼
Z T

0

½cðvÞ þ cðu� �DtvÞ� dt� 3u� �Dtv; v4ð4:10Þ

¼
Z T

0

½cðvÞ þ cðu� �DtvÞ� dt� 3u�; v4

þ 1

2
kvðTÞk2H � 1

2
kuð0Þk2H

as v ranges in H 1ð0;T ;V 0ÞBL2ð0;T ;VÞ (HC0ð½0;T �;HÞ). This equivalence
directly stems from the Fenchel system (2.7).
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Remarks. (i) The operator Dtuþ a is maximal monotone in the a‰ne space

fv a Lpð0;T ;VÞBW 1;p 0 ð0;T ;V 0Þ : vð0Þ ¼ u0g;

and the functional J of (4.3) may be interpreted as a representative function
of this operator. A similar remark applies to the functional F of (4.10). In the
framework of the Fitzpatrick theory the significance of the BEN principle is
thus well understood.

(ii) Setting

gðv; tÞ :¼ faðv; u�ðtÞ �DtvÞ � 3u�ðtÞ �Dtv; v4b 0 a:e: in �0;T ½;ð4:11Þ

the null-minimization of the time-integrated functional J of (4.3) is equivalent to
the pointwise null-minimization:

gðuðtÞ; tÞ ¼ 0 ð¼ inf gð�; tÞÞ a:e: in �0;T ½;ð4:12Þ

in fv a Lpð0;T ;VÞBW 1;p 0 ð0;T ;V 0Þ : vð0Þ ¼ u0g.
(iii) In the initial-value problem (4.1) we may assume u0 ¼ 0. If this is not the

case, it su‰ces to replace u by ~uu ¼ u� u0 and a by ~aa ¼ að� þ u0Þ, so that (4.1) is
equivalent to

Dt~uuþ ~aað~uuÞ C u� in V 0; a:e: in �0;T ½
~uuð0Þ ¼ 0:

�
ð4:13Þ

Thus ~uu is an element of the real Banach space

X
p
0 :¼ fv a Lpð0;T ;VÞBW 1;p 0 ð0;T ;V 0Þ : vð0Þ ¼ 0g;ð4:14Þ

whereas u belongs to the a‰ne function space associated to the initial condition
uð0Þ ¼ u0. Henceforth we shall drop the tilde, and write u instead of ~uu.

(iv) Whenever c : V ! RA fþlg is a proper, convex and lower semicontin-
uous function(al) and a ¼ qc, the problem (4.1) is a gradient flow, and may also
be set in the following form.

Find u a Lpð0;T ;VÞBW 1;p 0 ð0;T ;V 0Þ such that uð0Þ ¼ u0, and

Z T

0

½cðuÞ þ 3Dtu� u�; u4� dta
Z T

0

½cðvÞ þ 3Dtu� u�; v4� dtð4:15Þ

Ev a Lpð0;T ;VÞ:

Defining the right-hand side of this inequality as MuðvÞ, (4.15)2 also reads as a
quasi-variational inequality:

MuðuÞaMuðvÞ Ev a Lpð0;T ;VÞ:ð4:16Þ

This variational structure is not in the direction of the Fitzpatrick theory. This
set-up was investigated in [29] in 1978, and more recently e.g. in [6].
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Methods to prove existence of a solutions. For a representable operator a, the
extended BEN principle may be used to prove existence of a solution for the
initial-value problem (4.1).

(i) The problem (4.1) may be approximated by a sequence of initial-value
problems for which existence of a solution is already known by the classical
theory, and this approximated problem may be represented as an equivalent
null-minimization principle. One may then prove existence of a solution of the
limit problem (4.1) by passing to the limit in this formulation, provided that
appropriate uniform estimates are available. Whenever the operator a is also
approximated, the use of De Giorgi’s G-convergence is in order.

(ii) The inclusion (4.1)1 may be reformulated via a self-dual representative
function, that is, a function V � V 0 ! RA fþlg that coincides with its con-
jugate in the duality between V � V 0 and its dual V 0 � V ; see e.g. [5]. This may
be compared with the approach that was extensively investigated by Ghoussoub
and coworkers; see e.g. [25], [26] and references therein.

(iii) Existence of a null-minimizer for the original BEN principle was directly
proved by Auchmuty in [2], and for the extended BEN principle in [49], as we
next illustrate.

Existence of a null-minimizer. Via representative functions, next we retrieve a
variant of a classical result, namely, the surjectivity of coercive maximal mono-
tone operators acting on a reflexive Banach space; see e.g. [3], [11], [13], [52].
The assumptions of the classical theory are weaker than those of the following
result, but this does not seem to be due to any intrinsic obstruction.

Theorem 4.1 ([49]). Let us assume that

V is a real reflexive Banach space; u� a V 0;

a : V ! PðV 0Þ is maximal monotone:
ð4:17Þ

Let a mapping fa a FðVÞ represent a, and be such that

inf
v� AV 0

faðv; v�Þ
kvkV

! þl as kvkV ! þl:ð4:18Þ

Then there exists u a V such that

faðu; u�Þ ¼ 3u�; u4:ð4:19Þ

This equation is equivalent to the inclusion aðuÞ C u� in V 0.

(The condition (4.18) is related to the coerciveness of the operator a.)
This theorem may be proved by reformulating the equation (4.19) as a mini-

max problem, and then applying the classical Ky Fan inequality, see [49].
The next statement extends this theorem to a class of nonmonotone

operators.

163on fitzpatrick’s theory and stability of flows



Theorem 4.2 ([49]). Assume that

V is a real reflexive Banach space; u� a V 0;

az : V ! PðV 0Þ is maximal monotone Ez a V ;
ð4:20Þ

and let az be represented by the restriction cz : V � V 0 ! RA fþlg of a measur-
able function V � V � V 0 ! RA fþlg : ðz; v; v�Þ 7! czðv; v�Þ such that

inf
v� AV 0

cvðv; v�Þ
kvkV

! þl as kvkV ! þl;

inf
v AV

cvðv; v�Þ
kv�kV 0

! þl as kv�kV 0 ! þl;

ð4:21Þ

V � V 0 ! RA fþlg : ðv; v�Þ 7! cvðv; v�Þ is weakly lower semicontinuous.
For any u� a V 0, then there exists u a V such that

cuðu; u�Þ ¼ 3u�; u4:ð4:22Þ

This equation is equivalent to the inclusion auðuÞ C u� in V 0.

We refer the reader to [49] for the argument and for applications of this result.

Remarks. (i) By combining the extended BEN principle with Theorem (4.1),
one gets existence of a solution of the initial-value problem associated with a
maximal monotone operator, see [49]. Similarly Theorem 4.2 provides existence
of a solution for the initial-value problem associated with a pseudomonotone
operator.

(ii) These methods may be extended to integro-di¤erential equations of the
form

DtuþL

Z t

0

uðtÞ dtþ aðuÞ C u� in V 0; a:e: in �0;T ½;ð4:23Þ

with L : V ! V 0 linear and monotone and a : V ! PðV 0Þ maximal monotone.
The same holds for the analogous equation with a pseudo-monotone term auðuÞ
in place of aðuÞ; for instance,

Dtu� D

Z t

0

uðtÞ dt� ‘ � ðkðuÞj‘uj p�2‘uÞ ¼ hð4:24Þ

in H�1ðWÞ; a:e: in �0;T ½ ð1 < p < þlÞ:

for a positive and continuous prescribed function k.

A look at the literature. After the pioneering work of Fitzpatrick [24] and the
rediscovery of those results by Martinez-Legaz and Théra [30] and by Burachik
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and Svaiter [16],1 a recent but rapidly expanding literature has been devoted to
this theory in the last fifteen years; see e.g. [4], [5], [7], [17], [15], [25], [26], [31],
[32], [37], [38], and the related notion of bipotential [14].

We already sketched the origin of the extended BEN principle. The original
formulation was applied in several works. For the study of doubly-nonlinear evo-
lutionary PDEs, it was used e.g. in [39] and [41], and the extended formulation
was applied in [46]. In [47] the second of the above existence methods (the one
based on approximation) was used; in particular the dependence on data and op-
erators for the solution of quasilinear maximal monotone equations was studied,
by applying G-convergence to the null-minimization problem. This method was
also used for the homogenization of evolutionary quasilinear PDEs in [44], [45]
and [47].

5. Structural properties: compactness and stability

In this section we introduce the concepts of structural compactness and of struc-
tural stability, distinguishing equations from minimization principles.

5.1. Well-posedness and stability of equations

Let us consider a rather general set-up. Let X , Y be topological spaces,2
A : X ! Y be a (possibly nonlinear and multi-valued) operator, f a Y be pre-
scribed, and consider the problem

PA; f : Find u a X such that Au C f :ð5:1Þ

Following Hadamard, one says that this problem is well-posed if, for any
f a Y , PA; f has a solution u, this is unique, and it depends continuously on the
datum f . In other terms, the inverse operator A�1 : f 7! u is single-valued and
continuous.

If the solution is not assumed to be unique, this condition may be replaced
by the following one, which also includes a form of compactness. If f fng is any
sequence in the range AðX Þ and fn ! f in Y , then it is required that any corre-
sponding sequence of solutions fung (i.e., such that Aun C fn for any n) has an
accumulation point u, and that Au C f . In other terms,

ðiÞ the ðpossibly multi-valuedÞ inverse operator A�1 is sequentially compact;

in the sense that it maps any bounded set to a sequentially relatively compact set,
and

ðiiÞ the graph of A�1 is sequentially closed:

1 [Note added in proofs.] Ulisse Stefanelli just brought to the attention of this author the follow-
ing note, that introduces what would then be called the Fitzpatrick function, and derives some of its

properties:

N. V. Krylov: Some properties of monotone mappings. Litovsk. Mat. Sb. 22 (1982), no. 2, 80–87.
2Topological spaces will always be assumed Hausdor¤ spaces.
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Whenever this closure property holds, we shall say that problem PA; f is (sequen-
tially) stable.3

5.2. Structural well-posedness and structural stability of equations

So far the operator A was kept fixed; next we let it vary, too. As the operator
defines the structure of the system that is modelled by Problem (5.1), we shall
speak of structural properties.

Let X , Y be topological spaces as above, and FðX ;Y Þ be a family of (possi-
bly multi-valued) operators X ! Y equipped with a suitable topology, or at least
a notion of convergence. We shall say that Problem (5.1) is structurally well-posed
whenever, for any A a FðX ;YÞ and any f a Y , problem PA; f has a solution u,
this is unique, and this depends (sequentially) continuously on both the operator
A and the datum f ; that is,

fn ! f in Y

An ! A in FðX ;Y Þ
) A�1

n fn ! A�1f in PðX Þ:ð5:2Þ

This presumes the convergence of data and of operators. For data it su‰ces to
assume that the topological space Y is sequentially compact. For operators a
suitable notion of sequential compactness is also needed: this must be su‰ciently
strong, in order to guarantee the implication above.

Whenever the solution of the nth problem is not unique, i.e. the operators
A�1

n are not single-valued, this picture must be amended. We shall say that Prob-
lem (5.1) is structurally compact if, whenever A and f respectively range through
any subfamily of FðX ;Y Þ and any subset Y that are (sequentially) compact in
the respective topologies, A�1ð f Þ is confined to a (sequentially) relatively com-
pact subset of X . (For formal reasons we do not exclude A�1ð f Þ ¼ j.)

We shall say that Problem (5.1) is structurally stable if

Anun C fn En

un ! u in X

fn ! f in Y

An ! A in FðX ;Y Þ

) Au C f :ð5:3Þ

Incidentally, notice that the assumption ‘‘Anun C fn for all n’’ may be replaced
by the weaker condition limn!lðAnun � fnÞ C 0 in Y .

The selection of the operator space FðX ;Y Þ and of its topology are the key
points. This topology must strike a balance between two conflicting exigences:
to be su‰ciently weak in order to allow for compactness, and at the same time
to be so strong to provide stability (i.e., passage to the limit in the perturbed
problems).

3As we shall be concerned with applications involving weak-type topologies, we shall always

refer to sequential compactness and continuity. For the sake of brevity, sometimes we shall omit
this qualification.
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Although stability might appear as the key requirement, compactness is also
relevant, since it provides the existence of sequences that fulfill the hypotheses of
(5.3). (Stability without compactness risks of being empty . . .)

Remark. The above definitions depend on the functional set-up of the problem.
We shall search for the weakest spaces that guarantee existence of a solution, in
order to allow for the extension of our results to equations as general as possible.
This stipulation will induce us to deal with weak topologies; this turns out to be
one of the main sources of di‰culty of this analysis.

5.3. Well-posedness and stability of minimization problems

Next we formulate analogous issues for variational problems. In this case the
structure of the problem is determined by a functional, rather than an operator,
and first we keep it fixed.

Let X be a topological space, J be a functional X ! RA fþlg, and consider
the minimization problem

MJ : Find u a X such that JðuÞ ¼ inf J:ð5:4Þ

One says that

MJ is well-posed in the sense of Tychonov ifð5:5Þ
any minimizing sequence converges to a minimum point;

or equivalently,
(i) a minimum point exists, and
(ii) any minimizing sequence is convergent.
This definition is rather restrictive, and in particular requires the uniqueness of

the minimizer. One then defines a weaker notion:

MJ is well-posed in the generalized sense of Tychonov ifð5:6Þ
any minimizing sequence has a subsequence

that converges to a minimum point;

or equivalently,
(i) any minimizing sequence has a convergent subsequence, and
(ii) the limit of any convergent minimizing sequence is a minimum point.
These concepts are illustrated e.g. in [22]. The two notions of well-posedness

and generalized well-posedness for minimization may respectively be regarded
as the pendant of the well-posedness and stability for equations that we defined
above. In this case the functional J is kept fixed, as we did above for the operator
A. Next we extend these notions letting J vary.

5.4. Structural compactness and structural stability of minimization problems

Let X be a topological space as above, and G be a family of functionals
X ! RA fþlg, that we shall equip with a suitable topology. We shall deal
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with the corresponding family of minimization problems fMJ : J a Gg. We shall
say that this family is structurally compact if

(i) the family G is (sequentially) compact, that is, any sequence fJng in G has a
convergent subsequence,

(ii) the sequence fung of minimizers is confined to a (sequentially) relatively
compact subset of X .

We shall say that Problem (5.1) is structurally stable if

JnðunÞ ¼ inf Jn En

un ! u in X

Jn ! J in G

8<
: ) JðuÞ ¼ inf J:ð5:7Þ

If this holds one often says that G is equipped with a variational convergence.
Incidentally, notice that the assumption JnðunÞ ¼ inf Jn for all n may be re-

placed by the weaker condition JnðunÞ � inf Jn ! 0.
In the next section we shall see that De Giorgi’s notion of G-convergence pro-

vides natural results of structural compactness and structural stability.
For a large class of functionals, there is a natural relation between compact-

ness and stability of a minimization problem and compactness and stability of the
corresponding Euler-Lagrange equation. In this sense the minimized functional
accounts for both the operator and the data of the associated equation.

Analogously to what we saw for equations, the selection of the topology of the
space of functionals G is crucial, and may not be an obvious choice. Here also
the requirements of structural compactness and structural stability are in compe-
tition, and a trade is needed. In the next section we shall see that G-convergence
with respect to a nonstandard weak-type topology is especially appropriate, ap-
parently more than other variational convergences, like Mosco-convergence.

6. A nonlinear weak topology

In this section we introduce the concepts of structural compactness and of struc-
tural stability, distinguishing equations from minimization principles.

In this section we deal with G-compactness and G-stability of the class FðVÞ
of representative functions, that we defined in Section 2. This analysis is based
on introducing what we shall refer to as a nonlinear weak topology of the space
V � V 0. In this section we revisit Sections 4 and 5 of [47] and Section 5 of [51],
wherein the reader may find the proofs of the results that are here stated.

Motivation. Let V be a real reflexive and separable Banach space, a : V !
PðV 0Þ be a maximal monotone operator, and fa be a representative function of
a. We are concerned with the structural properties of the null-minimization of
functionals of the form (3.1), viz.,

Jðv; v�Þ :¼ faðv; v�Þ � 3v�; v4 Eðv; v�Þ a V � V 0:ð6:1Þ
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On the other hand, dealing with flows, we first define the following spaces of
time-dependent functions:

V :¼ L2ð0;T ;VÞ; X :¼ L2ð0;T ;VÞBH 1ð0;T ;V 0Þ:

On the basis of the extended BEN principle of Section 4, we consider the null-
minimization of functionals of the form

~JJðv; v�Þ :¼
Z T

0

faðv; v� �DtvÞ dt�
Z T

0

3v� �Dtv; v4 dtð6:2Þ

Eðv; v�Þ a V�V 0 such that Dtv a V;

that is, for any v a X and any v� a L2ð0;T ;V 0Þ.
In particular we are concerned with the G-convergence of sequences of func-

tionals fJng and f ~JJng, associated to sequences fang. Dealing with the sequence
fJng, let us consider the weak topology of V � V 0, and concentrate our atten-
tion on the duality pairing 3v�; v4. Because of the definition of (sequential)
G-convergence in the weak topology of V � V 0, the exigence arises of passing to
the limit in 3v�n ; vn4 whenever vn * v in V and v�n * v� in V 0.4 This di‰culty may
simply be removed by confining v�n to a compact subset of V 0: for instance, a
bounded subset of H, if

V HH ¼ H 0HV 0 is a Hilbert triple with compact embeddings:ð6:3Þ

For the functional (6.2) the problem of passing to the limit in the integral

�
Z T

0

3v�n �Dtvn; vn4 dt ¼ �
Z T

0

3v�n ; vn4 dtþ
Z T

0

3Dtvn; vn4 dtð6:4Þ

looks less easy. For the first integral on the right it su‰ces to assume that v�n
varies in a compact subset of X 0: for instance, a bounded subset of L2ð0;T ;HÞ
if (6.3) holds. To pass to the limit in the second integral is more challenging.
Incidentally notice that, even assuming that vnð0Þ ! vð0Þ in H, the lower semi-
continuity property

lim inf
n

Z T

0

3Dtvn; vn4 dt ¼ lim inf
n

1

2
kvnðTÞk2H � lim

n

1

2
kvnð0Þk2Hð6:5Þ

b
1

2
kvðTÞk2H � 1

2
kvð0Þk2H ¼

Z T

0

3Dtv; v4 dt

is not su‰cient: for the purpose of G-convergence, the convergence of the inte-
grals is needed.

4We denote the strong, and weak convergence respectively by ! and *.
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Remark. If we prescribe the solution v to be T-periodic in time, thenZ T

0

3Dtvn; vn4 dt ¼ 0 for any n, and there is no di‰culty in passing to the limit in

this integral.

A possible answer. In order to overcome the di‰culty that we just pointed out,
one might assume a stronger form of convergence for the sequence fvng. For the
G-stability it is then necessary that the null-minimizers, that is the solutions of the
initial-value problems, converge in this stronger sense; to this purpose further a
priori estimates are needed. This is feasible, and was performed in Sect. 8 of [47].

However this is not fully satisfactory, since it puts a severe restriction on the
extension of this method to more general equations, like for instance: equations
including maximal monotone operators that explicitly depend on time, pseudo-
monotone operators, doubly nonlinear parabolic equations, and so on.

In alternative, one may modify the variational formulation by applying a fur-
ther time-integration, as here we briefly outline. Let us first define the measure m
as in (4.4), and the functional

Mðv; v�Þ :¼
Z T

0

Z t

0

faðv; v� �DtvÞ dt�
Z t

0

3v� �Dtv; v4 dt

� �
dtð6:6Þ

¼
Z T

0

faðv; v� �DtvÞ dmðtÞ �
Z T

0

3v� �Dtv; v4 dmðtÞ

Eðv; v�Þ a V�V 0 such that Dtv a V:

As ~JJb 0 (see (6.2)), it is clear that

a pair ðv; v�Þ a V�V 0 is a null-minimizer of ~JJð6:7Þ
if and only it is a null-minimizer of M:

Dealing with the null-minimization of M, the necessity arises of passing to the
limit in the integral

�
Z T

0

dt

Z t

0

3v�n �Dtvn; vn4 dt ¼ �
Z T

0

3v�n ; vn4 dmðtÞ þ
Z T

0

3Dtvn; vn4 dmðtÞ:

Under the assumption (6.3), one may pass to the limit in the first integral when-
ever v�n * v� in L2ð0;T ;HÞ. On the other hand, assuming that vnð0Þ ! vð0Þ in H,

Z T

0

3Dtvn; vn4 dmðtÞ ¼
1

2

Z T

0

Dtðkvnk2HÞ dmðtÞð6:8Þ

¼
Z T

0

kvnk2H dt� T

2
kvnð0Þk2H

! 1

2

Z T

0

kvk2H dt� T

2
kvð0Þk2H ¼

Z T

0

3Dtv; v4 dmðtÞ:

170 a. visintin



(This explains why we applied a further time-integration to our functional.) This
approach was pursued in Section 8 of [47].

A nonlinear topology of weak type. We have seen the role of the convergence
of

3v�n ; vn4 and

Z T

0

3v�n �Dtvn; vn4 dt

when dealing with the functionals (6.1) and (6.2), respectively. This prompts us
to complement the weak topology of V � V 0 with the convergence 3v�n ; vn4 !
3v�; v4 when dealing with the functional (6.1), and similarly to complement the

weak topology of V�V 0 with the convergence

Z T

0

3v�n ; vn4 dt !
Z T

0

3v�; v4 dt
when dealing with the functional (6.2).

More specifically, with reference to the space V � V 0, let us first define the
mapping associated to the duality pairing:

p : V � V 0 ! R : ðv; v�Þ 7! 3v�; v4:ð6:9Þ

Let us name nonlinear weak topology of V � V 0, and denote by ~pp, the coarsest
among the topologies of this space that are finer than the product of the weak
topology of V by the weak topology of V 0, and for which the mapping p is con-
tinuous. For any sequence fðvn; v�n Þg in V � V 0, thus

ðvn; v�n Þ !
~pp
ðv; v�Þ in V � V 0 ,ð6:10Þ

vn * v in V ; v�n * v� in V 0; 3v�n ; vn4 ! 3v�; v4;

and similarly for nets. (The nonlinearity is obvious: a linear combination of two
converging sequences need not converge.)

This construction is extended to the space V�V 0 in an obvious way, by

defining the mapping p : V�V 0 ! R : ðv; v�Þ 7!
Z T

0

3v�; v4 dt:

ðvn; v�n Þ !
~pp
ðv; v�Þ in V�V 0 ,ð6:11Þ

vn * v in V; v�n * v� in V 0;

Z T

0

3v�n ; vn4 dt !
Z T

0

3v�; v4 dt;

and similarly for nets.

7. G-compactness and G-stability of representative functions

In this section we review and discuss some results of G-compactness and G-
stability with respect to the nonlinear topology of weak type that we introduced
in the previous section.
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G-compactness and G-stability. As the weak topology and the nonlinear weak
topology ~pp are nonmetrizable, one must be cautious in dealing with sequential
G-convergence of the functionals Jns with respect to either topology.5 However,
it is known that bounded subsets of spaces equipped with the weak topology are
metrizable; the same applies to the weak star topology if the space has a pre-dual.
This also holds for the nonlinear weak topology ~pp of V � V 0; see Section 4 of
[47], where it is proved that, if V is a separable real Banach space, then bounded
subsets of V � V 0 equipped with the nonlinear weak topology ~pp are metrizable.6

We remind the reader that we denote by FðVÞ the class of the convex repre-
sentative functions f : V � V 0 ! RA fþlg, see (2.5).

Theorem 7.1 (G~pp-compactness and G~pp-stability) ([47], [51]). Let V be a real
reflexive and separable Banach space, and fcng be an equi-coercive sequence in
FðVÞ in the sense that, for any C a R,

sup
n AN

fkvkV þ kv�kV 0 : ðv; v�Þ a V � V 0;cnðv; v�ÞaCg < þl:ð7:1Þ

Then: (i) there exists c : V � V 0 ! RA fþlg such that, up to extracting a sub-
sequence, cn G~pp-converges to c both topologically and sequentially;7

(ii) this entails that c a FðVÞ;
(iii) if an (a, resp.) is the operator that is represented by cn (c, resp.), then for

any sequence fðvn; v�n Þg in V � V 0

v�n a anðvnÞ En; ðvn; v�n Þ !
~pp
ðv; v�Þ ) v� a aðvÞ:ð7:2Þ

The first part of this theorem rests upon two main issues:
(i) the equivalence between topological and sequential G~pp-convergence, which

stems from the metrizability of bounded subsets of V � V 0 equipped with the
topology ~pp;

(ii) the following classical result of compactness:

Lemma 7.2 ([21]). If a topological space Z has a countable basis, then every
sequence f fng of functions Z ! RA felg has a G-convergent subsequence.

5We remind the reader that, for functions defined on a topological space, the definition of
G-convergence involves the filter of the neighborhoods of each point; see e.g. [1], [19]. If the space

is metrizable, that notion may equivalently be formulated in terms of the family of converging
sequences, but this does not apply in general. We shall refer to these two notions as topological and

sequential G-convergence, respectively. If not otherwise specified, reference to the topological notion
should be understood.

A di¤erent approach consists in the following: (i) to embed compactly the domain (here e.g.
V � V 0) into a larger space Z; (ii) to extend the functionals by the value þl in ZnðV � V 0Þ; (iii)
to deal with G-convergence w.r.t. the strong topology of Z.

6We shall often refer to the space V � V 0, but for time-dependent functions almost all of our

discussion will take over to V�V 0.
7By Gs-convergence we mean the G-convergence with respect to a topology s.
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The G-closedness of FðVÞ plays a key role in the analysis of the structural
stability of initial-value problems, see [47]. We stress that this rests upon the def-
inition of ~pp-convergence, and for instance fails for weak convergence.

The case of time-dependent functions. The above results that were stated in V
take over verbatim to spaces of time-dependent functions, by replacing the space
V with V ¼ L2ð0;T ;VÞ. The next assertion bridges the two set-ups.

Proposition 7.3 ([47]). Let a function c a FðVÞ be such that

EC a R; sup fkvkV þ kv�kV 0 : ðv; v�Þ a V � V 0;cðv; v�ÞaCg < þl:ð7:3Þ

Then the functional

Cðv; v�Þ :¼
Z T

0

cðvðtÞ; v�ðtÞÞ dt Eðv; v�Þ a V�V 0ð7:4Þ

is an element of FðVÞ. Moreover, c represents an operator a : V ! PðV 0Þ if and
only if C represents the corresponding operator

âa : V ! PðV 0Þ : v 7! aðvð�ÞÞ:ð7:5Þ

Remark. Although FðVÞ is stable by G~pp-converge, a major question arises: if

a sequence of integral functionals of the memoryless form

Z T

0

fa;nðv; v� �DtvÞ dt

G~pp-converges, is the limit a memoryless integral functional, too?
This question found a positive answer in [51].

Alternative topologies. Besides the nonlinear weak topology ~pp, let us define the
following linear topologies:

— o is the product of the weak topology of V by the weak star topology of V 0,
— ws is the product of the weak topology of V by the strong topology of V 0,
— sw� is the product of the strong topology of V by the weak star topology

of V 0,
— s is the strong topology of V � V 0.

Let us briefly discuss G-compactness and G-stability of representative func-
tions with respect to these topologies. The G-compactness (i.e., part (i) of Theo-
rem 7.1) is extended verbatim to the four topologies above; on the other hand the
G-stability (i.e., parts (ii) and (iii) of Theorem 7.1) is only extended to the topolo-
gies ws, sw� and s and fails for o, because of the occurrence of the duality-
product term in the definition of FðVÞ. Among the weak-type topologies above,
the nonlinear weak topology ~pp is thus the only one for which Corollary 7.1 holds.
(This is the main reason why we introduced this topology.)

The next statement concerns the structural stability of the class of Fenchel
functions.
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Proposition 7.4 ([47]). Let us denote by t any of the topologies o, ~pp, ws, sw�.
Any equi-coercive sequence fcng of Fenchel functions Gt-converges to some func-
tion c, up to extracting a subsequence. If t ¼ ws or t ¼ sw� then c is a Fenchel
function, whereas if t ¼ o or t ¼ s then c need not belong to that class. [There
are counterexamples; the question instead is open for t ¼ ~pp.]

In any case c is a representative function in the sense of (2.5).

Proofs, examples and counterexamples are provided in Section 5 of [47].

About Mosco-convergence. After [35], a sequence of functionals is called Mosco-
convergent whenever it simultaneously Go- and Gs-converges to the same func-
tion. This notion is rich of properties, and is often assumed in the study of stabil-
ity. We do not consider it in this paper, nor we did in [47] and [51], because in this
research we are concerned not only with structural stability but also with struc-
tural compactness, and results of Mosco-compactness are rather rare, as far as
this author can see.

For instance, it is known that monotone sequences of lower semicontinuous
convex functionals Mosco-converge, see e.g. [1] p. 298. But monotonicity is a
rather restrictive assumption, especially in the present context. For instance, it
does not apply to Fenchel functions V � V 0 ! RA fþlg : ðv; v�Þ 7! jðvÞ þ
j�ðv�Þ, since these functions are self-dual (in the sense that we already specified),
and conjugation inverts inequalities, that is, j1 a j2 entails j

�
2 a j�

1 . The applica-
tion of this result to the larger class of representative functions a priori is not
excluded, although it may look unlikely.

8. Evolutionary G-convergence of weak-type, and structural

stability of maximal monotone flows

In preparation for Theorem 8.3, first we announce an extension of De Giorgi’s
notion of G-convergence to operators (rather than functionals) that act on time-
dependent functions ranging in a Banach space X , and state a related result of
compactness, see [51]. Successively we claim a result of structural compactness
and stability for the initial-value problem for equations governed by maximal
monotone operators, see [47] and [51]. This may be regarded as a first step to-
wards more general problems, like doubly-nonlinear flows (see Sections 7, 8 of
[51]) and pseudo-monotone flows (see e.g. [49]).

Let X be a real separable and reflexive Banach space, and p a ½1;þl½. For
any operator f : Lpð0;T ;X Þ ! L1ð0;TÞ : w 7! fw, let us set

½ f ; x�ðwÞ ¼
Z T

0

fwðtÞxðtÞ dmðtÞ Ew a Lpð0;T ;X Þ; Ex a Llð0;TÞ:ð8:1Þ

It is of particular interest to deal with memoryless operators of the form

fwðtÞ ¼ jðt;wðtÞÞ Ew a Lpð0;T ;X Þ; for a:e: t a �0;T ½;
j : �0;T ½ � X ! Rþ being a normal function;

ð8:2Þ
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i.e., j is globally measurable and jðt; �Þ is lower semicontinuous for a.e.
t a �0;T ½.

Theorem 8.1 ([51]). Let X, p be as above, and fjng be a sequence of normal
functions �0;T ½ � X ! Rþ. Assume that

bC1;C2;C3 > 0 : En; Ew a X ;

C1kwk p
X a jnðt;wÞaC2kwk p

X þ C3 for a:e: t a �0;T ½; En;
ð8:3Þ

jnðt; 0Þ ¼ 0 for a:e: t a �0;T ½; En:ð8:4Þ

Then: (i) There exists a normal function j : �0;T ½ � X ! Rþ such that, defining
the operators f ; fn : L

2
mð0;T ;XÞ ! L1

mð0;TÞ for any n as in (8.2), possibly extract-

ing a subsequence, (denoting by Ll
þ ð0;TÞ the cone of the nonnegative functions of

Llð0;TÞ)

½ fn; x� sequentially weakly G-converges to ½ f ; x�ð8:5Þ
in L pð0;T ;X Þ; Ex a Ll

þ ð0;TÞ:

(ii) If jn does not explicitly depend on t for any n, then the same holds for j.

The argument of [51] rests upon the classical Lemma 7.2 of G-compactness, on
other properties of the ordinary G-convergence, and on Theorem 5.1 of [28].

Remarks 8.2. (i) Whenever (8.5) holds, we shall say that

fn sequentially G-converges to fð8:6Þ
in the weak topology of Lpð0;T ;X Þ and
in the weak topology of L1ð0;TÞ:

This definition of evolutionary G-convergence is not equivalent to that of [40],
nor to that of [20], [33], [34]. In those works G-convergence is assumed for almost
any t a �0;T ½, whereas here it is set just weakly in L1ð0;TÞ.

(ii) The present definition of parameter-dependent G-convergence is based on
testing on functions of time, but it might equivalently be reformulated in terms of
set-valued functions. The present set-up fits that of Chap. 16 of [19], see also
references therein. However here we deal with functions of time that are integra-
ble w.r.t. the ordinary Lebesgue measure, rather than more general measures as
in [19]. Anyway, [19] does not encompass the above theorem, which is based on
[28].

A quasilinear parabolic equation in abstract form. Let V and H be real separable
Hilbert spaces, with

V HH ¼ H 0HV 0ð8:7Þ

with continuous, compact and dense embeddings.
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Let a sequence fang of operators and one fhng of functions be such that

En; an : V ! PðV 0Þ is maximal monotone;ð8:8Þ
ba; b > 0 : En; Eðv; v�Þ a graphðanÞ; 3v�; v4b akvk2V � b;ð8:9Þ

bC1;C2 > 0 : En; Eðv; v�Þ a graphðanÞ; kv�kV 0 aC1kvkV þ C2;ð8:10Þ
anð0Þ C 0 En;ð8:11Þ
u0n ! u0 in H;ð8:12Þ

hn ! h in L2ð0;T ;V 0Þ:ð8:13Þ

Notice that the condition (8.11) is not restrictive: if it is not satisfied, it may be
recovered by selecting any v�n a anð0Þ for any n, and then replacing an by anð�Þ ¼
anð�Þ � v�n .

For instance, if W is a bounded Lipschitz domain of RN (Nb 1), and f~ggng is a
sequence of maximal monotone mappings RN ! PðRNÞ, one may take

H ¼ L2ðWÞ; V ¼ H 1
0 ðWÞ; anðvÞ ¼ �‘ �~ggnð‘vÞ in D 0ðWÞ:ð8:14Þ

If N ¼ 3, denoting the outward-oriented unit normal vector-field on qW by~nn,
one may also deal with

H ¼ f~vv a L2ðWÞ3 : ‘ �~vv ¼ 0 a:e: in WÞg;
V ¼ f~vv a H : ‘�~vv a L2ðWÞ3;~nn�~vv ¼~00 in H�1=2ðqWÞ3g;
~aanð~vvÞ ¼ ‘�~ggnð‘�~vvÞ in D 0ðWÞ3; E~vv a V :

ð8:15Þ

We are concerned with the structural properties of the following sequence of
flows in weak form:

un a L2ð0;T ;VÞBH 1ð0;T ;V 0Þ;
Dtun þ anðunÞ C hn in V 0; a:e: in �0;T ½;
uð0Þ ¼ u0:

8<
:ð8:16Þ

It is well known, see e.g. [3], [11], [52], that, under the above assumptions, for
any n this initial-value problem has one and only one solution un, and that the
sequence fung is bounded in X.

Several regularity results are also known to hold for this problem. At variance
with [47], here we do not use them since their assumptions are somehow restric-
tive.

Notice that any operator an : V ! PðV 0Þ canonically induces a global-in-
time operator âan : V ! PðV 0Þ. We may thus reformulate the equation (8.16)1
globally-in-time. The structural compactness and stability of the corresponding
initial-value problem were proved in Theorem 8.3 of [47]. However a priori this
allows for the onset of long-memory e¤ects. The following more satisfactory
result is proved in Theorem 6.3 of [51] for the pointwise-in-time formulation.
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Theorem 8.3 ([51]) (Structural compactness and stability). Let (8.7)–(8.13) be
fulfilled, and for any n let un be the solution of problem (8.16). Then:

(i) There exists u a V such that, possibly extracting a subsequence,

un * u in V:ð8:17Þ

(ii) There exists a function j a FðVÞ such that, setting

jn ¼ ðpþ IanÞ
�� ða FðVÞÞ;ð8:18Þ

cn;wðtÞ ¼ jnðwðtÞÞ; cwðtÞ ¼ jðwðtÞÞ;ð8:19Þ
for a:e: t a �0;T ½; Ew a L2

mð0;T ;V � V 0Þ; En;

then cn;c : L2
mð0;T ;V � V 0Þ ! L1

mð0;TÞ and, possibly extracting a sub-
sequence,

cn sequentially G-converges to cð8:20Þ
in the topology ~pp of L2

mð0;T ;V � V 0Þ and
in the weak topology of L1

mð0;TÞ ðcf : ð8:5ÞÞ:

(iii) Denoting by a : V ! PðV 0Þ the monotone operator that is represented by j, u
solves the corresponding initial-value problem

u a V;

Dtuþ aðuÞ C h in V 0; a:e: in �0;T ½;
uð0Þ ¼ u0:

8<
:ð8:21Þ

This result may also be extended to more general flows, including doubly non-
linear flows of the form

DtqgðuÞ þ aðuÞ C u�;ð8:22Þ
aðDtuÞ þ qgðuÞ C u�;ð8:23Þ

for a maximal monotone operator a and a convex and lower semicontinuous
function g; see [51].
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