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Abstract. — A local notion of directional-curvature vector is proposed, which admits a nonlocal

version that turns out to be the key ingredient to define both nonlocal mean curvature in the manner

of [1] and [4] and nonlocal Gaussian curvature, a new notion.
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1. Introduction

There is a triple point of geometry, mechanics and mathematical analysis, where
three notions are met, namely, the geometrical notion of mean curvature of a sur-
face, the mechanical notion of di¤usion of a substance, and the analytical notion
of Laplacian of a scalar-valued function. The many connections among these
notions are well known; all three are local, in that they specify a property at a
chosen position in space (and at a chosen time, but I here concentrate on spatial
locality) in terms of information items gathered at that position. In recent years,
Luis Ca¤arelli and others [5, 6, 7, 8, 9, 10] have found many good reasons to
develop nonlocal versions of those notions. It seems to me that the interconnec-
tions of such nonlocal notions are far from being completely elucidated, espe-
cially with regard to the mechanical coté. This paper deals with the geometrical
notion of nonlocal curvature.

Recently, a notion of nonlocal mean curvature (NMC) has been proposed
and carefully analyzed in [1] and [4]. Moreover, in [1], a notion of nonlocal direc-
tional curvature (NDC) has also been proposed and it has been shown that such
NMC is nothing but a circular average of NDCs. Both NMC and NDC are sca-
lar objects, both tend to their local counterparts in an appropriate limit. I move
from the latter to introduce a nonlocal directional-curvature vector (NDCV) and
make it the essential ingredient not only, as expected, to define both NMC and
NDC but also to define a new notion of nonlocal Gaussian curvature (NGC).
I believe that both concepts, NMC and NGC, will prove relevant for certain
applications in mechanics di¤erent from those which motivated Ca¤arelli and
coworkers, e.g., to capture the nonlinear behavior of thin structures in general



and, in particular, the behavior of those ‘soft’ structures made of polymeric gels
that may swell.

Sections 2, 3 and 4 are meant to motivate why there are good reasons to say
that mean curvature plays a pivotal role at a triple point of geometry, mechanics
and analysis. Firstly, in Section 2, I quickly recap the reasons why this is the case
for local mean curvature; that the role of nonlocal mean curvature is the same is
argued in Section 4; Section 3, where local and nonlocal di¤usion is considered,
bridges between the two adjacent sections. In Section 5, the bulk of this paper,
the geometrical notion of directional-curvature vector is introduced and it is
shown how, in both its versions, local and not, it allows to define both curvatures,
mean and Gaussian; the notion of nonlocal Gaussian curvature I here propose is,
to my knowledge, new.

2. Minimal surfaces, motion by mean curvature, and diffusion

A classic problem in calculus of variations is to find a minimal-area surface sup-
ported on an assigned boundary curve. Minimal surfaces, the critical points of the
minimum-area functional, are surfaces with constant mean curvature (spheres, if
closed).

Motion by mean curvature is the motion of a material but massless surface
(possibly identified with the complete boundary qE of a bounded set EHRn),
driven by surface tension, assumed proportional to mean curvature H, and
opposed by a dissipative force, assumed proportional to normal velocity V :

V ¼ H:ð1Þ

As is well-known, this nonlinear parabolic equation is likely to develop singular-
ities. It was proposed in [12] to approximate motion by mean curvature of qE, in
a short time interval, by evolving the function

~wwEðxÞ :¼
þ1 if x a E;

�1 if x a CE;

�
ð2Þ

according to the linear heat equation:

qtuðx; tÞ ¼ Duðx; tÞ; uðx; 0Þ ¼ ~wwEðxÞð3Þ

(in (2), CE :¼ RnnE); to approximate mean-curvature evolution by a process of
Fickian di¤usion brings in the prototypical elliptic operator, the Laplacian.

We now see why the three standard notions of minimal surfaces, motion by
mean curvature, and di¤usion, sit at the triple point of mathematical analysis,
geometry, and mechanics we mentioned in the Introduction. When consistently
generalized, those three notions continue to be interlinkable in the same manner:
mean curvature is the link.
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3. Diffusion

Modelling di¤usion is a central issue in mechanics, both continuum and statisti-
cal. While all standard models are local, hereafter I take freely from an inspiring
lecture by Luis Ca¤arelli [6] both to o¤er an interesting interpretation of the
Laplacian, the di¤erential operator associated with standard local di¤usion, and
to introduce the integral operators associated with nonlocal di¤usion; needless to
say, possible mistakes and misconceptions are all mine.

3.1. Local di¤usion

Let BeðxÞ be a ball of radius e centered at a point x of a region where a smooth
scalar-valued field u is defined. In view of the Mean Value Theorem, of the fact
that Dð�Þ ¼ Divð‘ð�ÞÞ, and of the divergence lemma, there is a point x a BeðxÞ for
which

DuðxÞ ¼
Z
BeðxÞ

Du ¼ 1

volðBeðxÞÞ

Z
qBeðxÞ

qnu;

here, qnuðyÞ ¼ ‘uðyÞ � nðyÞ is the derivative of u at a point y ¼ xþ enðyÞ of
qBeðxÞ, in the direction of the outer normal nðyÞ. Now, given that

volðBeðxÞÞ ¼
1

3
e areaðqBeðxÞÞ;

lim
e!0

DuðxÞ ¼ DuðxÞ and lim
e!0

�uðyÞ � uðxÞ
e

� qnuðyÞ
�
¼ 0;

we have that

DuðxÞ ¼ 3 lim
e!0

e�2 1

areaðqBeðxÞÞ

Z
qBeðxÞ

ððuðyÞ � uðxÞÞð4Þ

¼ 3 lim
e!0

e�2
�Z

qBeðxÞ
u� uðxÞ

�
;

this shows that the Laplacian is the limit of a scaled mean. Here is how this
analytical finding is interpreted in [6]: ‘‘The density at the point x compares itself
with its values in a tiny surrounding ball. The di¤erence between the surrounding
average and the value at x, properly scaled, is the Laplacian.’’

Moreover, according to a stripped-to-the-bone evolution equation of type (3),
we see that, within a local descriptive framework, the di¤usion phenomenon is
such that asymptotically (that is, provided qtu ! 0 for t ! l) the field of interest
takes at any given point the value of its average over the boundary of any of its
neighbourhoods.
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3.2. Nonlocal di¤usion

In [6], Ca¤arelli terms ‘‘integral-di¤usion’’ processes the solutions of evolution
equations of the following type:

qtuðx; tÞ ¼ L½u�ðx; tÞ; L½u�ðx; tÞ ¼
Z

½ðuðy; tÞ � ðuðx; tÞ�kðx; yÞ dy;ð5Þ

where k is a positive and symmetric kernel; along such processes, uðxÞ compares
itself with uðyÞ over a fixed region, weighting discrepancies with kðx; yÞ; an
asymptotic behavior similar to that of the solutions of the heat equation is
expected.

Ca¤arelli gives two examples of an equation of type (5): the geostrophic equa-
tion, a model for the evolution of ocean temperature due to the ocean-atmosphere
interaction; and the Lévy-Khintchine equation:

qtuðx; tÞ ¼
Z

½ðuðxþ y; tÞ þ ðuðx� y; tÞ � 2uðx; tÞ� dmðyÞ;ð6Þ

whose solutions are processes during which particles jump randomly in space, in
a manner independent of their past path (note that ½ðuðxþ y; tÞ þ ðuðx� y; tÞ �
2uðx; tÞ� may be regarded as an approximation of the second gradient of u at x,
sort of a Laplacian in disguise).

The operator

ðð�DÞsuÞðxÞ :¼ cn; s PV

Z
Rn

ðuðxÞ � uðyÞÞjx� yj�ðnþ2sÞ
dy; s a ð0; 1Þ;ð7Þ

is called the s-Laplacian (aka fractional Laplacian); the principal value PV of the
improper integral

Z
Rn

f ðxÞ dmðxÞ; dmðxÞ ¼ kðxÞ dx; with k a singular integral kernel;

is defined as follows:

PV

Z
Rn

f ðxÞ dmðxÞ :¼ lim
e!0

Z
RnnBeð0Þ

f ðxÞ dmðxÞ:

This definition has the integral-di¤usion format given in (5), provided one sets:

kðx; yÞ ¼ cn; sjx� yj�ðnþ2sÞ:

Another essentially equivalent definition, which has the format of equation (6), is:

ðð�DÞsuÞðxÞ ¼ cn; s PV

Z
Rn

ðuðxþ yÞ þ uðx� yÞ � 2uðxÞÞjx� yj�ðnþ2sÞj dy;
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where again s a ð0; 1Þ; both definitions are taken from the website
www.ma.utexas.edu/mediawiki/index.php/Fractional_Laplacian.

No matter what definition one takes, the limit for s ! 1 restitutes the standard
local Laplacian. Indeed, with reference to the fractional evolution equation

qtuþ ð�DÞsu ¼ 0;ð8Þ

the Fourier-Transform symbol of the fractional Laplacian is jxj2s; for s ! 1, the

standard Laplacian ð�DÞ, whose F-T symbol is jxj2, is recovered (but no integral
representation of the form (7) is possible for it); moreover, for s ! 0, the limit
operator is minus the identity, whence (8) reduces to

quþ u ¼ 0 ) uðx; tÞ ¼ u0ðxÞ expð�tÞ:

We see that the s-dependence induces a sort of uncertainty-principle situation:
a substance can achieve a continuum of states in between maximal di¤usion
accompanied by ever changing position of all its particles (the Fickian model,
for s ¼ 1) and no di¤usion and hence no positional changes (for s ¼ 0).

4. Sets of minimal s-perimeter, motions by s-nonlocal mean

curvature, and s-diffusion

We learn in Section 2.2 of [1] about a recent generalization of the classic minimal
surface problem, that is, the minimization of the so-called s-perimeter functional
PersðE;UÞ:

for a given set U HRn, to find a measurable set EHRn such that (i) EnU is not
modifiable (so that U plays a role of boundary datum, analogous to the role of
the support curve in the classical case); (ii) the s-perimeter of E is minimal, in the
sense that E minimizes the functional

PersðE;UÞ :¼ FðEBU ;UnEÞ þFðEBU ;CU BCEÞ þFðEnU ;UnEÞ;

where

FðA;BÞ :¼ 1

on�1

Z
A

dx

Z
B

dy
1

jy� xjnþ2s
; s a ð0; 1=2Þ;

mimics a mutual distance interaction between sets A and B.
The reasons why the term ‘‘perimeter’’ is used in place of the classical term

‘‘area’’ are neatly explained in [2]; apparently, what prompts the change in no-
menclature is that surfaces are regarded as (part of ) the (boundaryC)perimeter
of a set.

The critical points of the s-perimeter functional satisfy in a suitable weak sense
the Euler-Lagrange equation:

Z
Rn

~wwEðyÞjx� yj�ðnþ2sÞ
dy ¼ 0;ð9Þ
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moreover, it can be shown [3, 10] that the classical setting of this minimization
problem is recovered in the following limit:

lim
s!1=2

ð1� 2sÞPersðE;BrÞ ¼ PerðE;BrÞ for a:e: r > 0:ð10Þ

On recalling that the critical points of the minimum-area functional are surfaces
with constant mean curvature, the above results justify the idea of making use of
the left side of equation (9) to introduce a s-dependent notion of nonlocal mean
curvature.

When this is done, it is only natural to study motion by s-nonlocal mean
curvature, both as is and in its short-time approximation obtained by evolving
the function ~ww defined in (2) according to the s-Laplacian (see [6] and [1]); that
is, to approximate motions by s-nonlocal mean curvature by means of related
motions by s-di¤usion.

5. Curvatures, mean and Gaussian

The typical surface S we consider is a part of the complete boundary qE of a
simply-connected bounded subset E of the three-dimensional Euclidean point
space, that we identify for convenience with R3: SH qE; we denote by TEðxÞ
the tangent plane of S at its point x. Were we working in a continuum mechani-
cal context and would it be important to distinguish between the referential and
current placements of a body of interest, then we would think of E as the space
region occupied by a typical body part at the current time.

5.1. Local notions

5.1.1. Algebraic definitions. In classical di¤erential geometry of C2-surfaces
embedded in R3 [11], for

R2 C ðz1; z2Þ $ x ¼ x̂xðz1; z2Þð11Þ

the equation of an orientable and oriented surface S in terms of the curvilinear
coordinates za,

• the vector

nðxÞ :¼ e1ðxÞ � e2ðxÞ
je1 � e2j

; ea :¼ qzax ða ¼ 1; 2Þ;ð12Þ

is the unit normal at a typical point x;

• the curvature tensor K is the surface gradient of the normal field:

KðxÞ :¼ �s‘nðxÞ :¼ �n;a ðxÞn eaðxÞ; ea :¼ qxz
a ða ¼ 1; 2Þð13Þ

(here the symboln denotes dyadic product of vectors); note that KðxÞ is a lin-
ear map of TEðxÞ into itself;
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• the mean curvature H and the Gaussian curvature G are defined as follows in
terms of the orthogonal invariants of K :

HðxÞ :¼ 1

2
trKðxÞ; GðxÞ :¼ detKðxÞ;ð14Þ

and are therefore independent of any representation of type (11) of surface S.
On using normal coordinates centered at anyone of its regular points, a
C2-surface can be specified locally as the graph of a smooth mapping whose
Hessian can be identified (to within its sign) with the curvature tensor, so
that in particular, as observed in [1], the mean curvature is measured by the
Laplacian.

Definitions (14) are algebraic in nature; they cannot be carried over to nonlocal
situations. There are however alternative ‘transportable’ definitions, which can be
imitated to define nonlocal mean and Gaussian curvatures when a direct imita-
tion of the above algebraic definitions turns out to be impracticable.

5.1.2. Geometric definitions. For e a TEðxÞ,

KeðxÞ :¼ KðxÞ � en eð15Þ

is the curvature of the so-called e-normal section of S, that is, of the curve
obtained by intersecting S with the plane through x containing both nðxÞ and e
(Figure 1); in [1], Ke is called the directional curvature of S in the direction e, a
scalar field over S.

It is the matter of an elementary calculation to compute the circular average
of the directional curvature, and find it equal to the mean curvature:

Z
KeðxÞ ¼

Z
KðxÞ � en e ¼ HðxÞ;ð16Þ

Figure 1
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because Z
en e :¼ 1

2p

Z 2p

0

eðjÞn eðjÞ dj ¼ 1

2
ðI � nn nÞ

(cf. Theorem 4 of [1]; here I denotes the identity mapping of V 3, the translation
vector space associated with R3, onto itself ). Furthermore, for

~KK :¼ K þ nn n;

we have that

GðxÞ ¼ detKðxÞ ¼ ~KKðxÞea � ~KKðxÞeb � ~KKðxÞnðxÞð17Þ
¼ n;a ðxÞ � n;b ðxÞ � nðxÞ:

We are now in a position to introduce a geometric notion that not only allows
for expressions of the local mean and Gaussian curvatures alternative to (16) and
(17), and hence to the standard algebraic expressions (14), but also allows to
define nonlocal mean and Gaussian curvatures in integral forms that reduce to
the corresponding local di¤erential forms in an appropriate limit. Such notion is
that of directional-curvature vector in the direction e at point x a S:

KðxÞe ¼: keðxÞ;ð18Þ

with which, as we shall show shortly, the following alternatives to definitions (14)
can be formulated:

H :¼
Z

ðke � eÞ; G :¼ kea � keb � n:ð19Þ

Note that, given (11), the two directional-curvature vectors

keaðxÞ :¼ �n;a ðxÞ ða ¼ 1; 2Þ

carry an information content about the surface S at its point x which is com-
pletely equivalent to that of the curvature tensor KðxÞ; moreover,

KðxÞ ¼ 2

Z
keðxÞn e:

As we shall see next, the local notion of directional-curvature vector can be given
a nonlocal version that turns out to be the key ingredient to define nonlocal mean
and Gaussian curvatures.

5.2. Nonlocal notions

5.2.1. NMC and NDC. We begin by reproducing the definitions of nonlocal
mean and directional curvatures given in [1].
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– (NMC) For E an open set of Rn (nb 3Þ with a C2 boundary, the nonlocal
mean curvature at x a qE is:

HsðxÞ :¼
1

on�2

Z
Rn

~wwEðyÞjx� yj�ðnþ2sÞ
dy; s a ð0; 1=2Þ;ð20Þ

where taking the principal value of the integral is implied and on�2 is the
Hausdor¤ measure of the Sn�2 unit sphere. The definition given in [4] is the
same, to within a multiplicative constant.

– (NDC) Let

pðx; eÞ :¼ fy a Rn j y ¼ reþ hnðxÞ; r > 0; h a Rg

denote the half-plane through a point x a qE defined by the unit vector
e a TEðxÞ and the normal nðxÞ (Figure 2); moreover, let

y 0 ¼ xþ re; x 0 ¼ x:

The nonlocal directional curvature at x in the direction e is:

Ks; eðxÞ :¼
Z
pðx; eÞ

jy 0 � x 0jn�2~wwEðyÞjx� yj�ðnþ2sÞ
dy; s a ð0; 1=2Þ;ð21Þ

where again taking the principal value of the integral is implied: precisely, here

PV

Z
pðx; eÞ

C lim
e!0

Z
pðx; eÞnBeðxÞ

:

It is proved in [1] that

Figure 2
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• the circular average of the NDC is equal to the NMC:

Hs ¼
1

on�2

Z
S n�2

Ks; e dH
n�2ð22Þ

(recall the corresponding local relation in (16));

• nonlocal directional and mean curvatures tend to their local counterparts in the
limit when s ! 1=2; precisely,

lim
s!1=2

ð1� 2sÞKs; e ¼ Ke; lim
s!1=2

ð1� 2sÞHs ¼ Hð23Þ

(cf. (10)).

5.2.2. NDCV. To arrive at my definition of nonlocal directional-curvature vec-
tor, I find it expedient to reconstruct in part the proof of (22) given in [1]; for sim-
plicity, I concentrate on the case of interest in applications, and take n ¼ 3.

With reference to Figure 3, a point y a R3 is assigned cylindrical (not polar!)
coordinates ðr; h; jÞ with respect to the origin x, a point of the tangent plane
TEðxÞ, which serves as the coordinate plane h ¼ 0; j is the angle of the unit vec-
tor eðjÞ to an arbitrarily fixed vector in TEðxÞ; the volume measure is r dr dh dj,
and Z

R3
gðyÞ dy ¼

Z
S 1

dj

Z þl

0

dr

Z þl

�l
dh rgðr; h; jÞ:

Figure 3
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Now, having fixed x, pick gðyÞ ¼ jy� xj�ð3þ2sÞ~wwEðyÞ, so that, in view of defini-
tion (20),

PV

Z
R3

gðyÞ dy ¼ o1Hs:

Whatever s a ð0; 1=2Þ, (21) can be written as

Ks; eðxÞ ¼ PV

Z
pðx; eÞ

ððy� xÞ � eÞgðyÞ dy ¼
�
PV

Z
pðx; eÞ

gðyÞðy� xÞ dy
�
� e:ð24Þ

Then, on setting

ks; eðxÞ :¼ ðI � nðxÞn nðxÞÞPV
Z
pðx; eÞ

gðyÞðy� xÞ dy;

we have that, whatever x a qE,

Ks; eðxÞ ¼ ks; eðxÞ � e:ð25Þ

I propose to call ks; eðxÞ the nonlocal directional-curvature vector (NVDC) at a
point x a qE. Importantly, with the use of (25) and (18), the first limit result in
(23) implies that

lim
s!1=2

ð1� 2sÞks; eðxÞ ¼ keðxÞ;

whatever x a qE and e a TEðxÞ. Note, moreover, that

HsðxÞ ¼
Z

ðks; eðxÞ � eÞ;

a relation to be compared with the first of (19).

5.2.3. NGC. I propose the following definition of nonlocal Gaussian curvature at
x a qE:

GsðxÞ :¼ ks; emðxÞ � ks; eM ðxÞ � nðxÞ; s a ð0; 1=2Þ;ð26Þ

where em and eM denote the unit vectors in TEðxÞ for which the NDC is, respec-
tively, minimal and maximal (recall the second of the local definitions (19)).

Needless to say, this definition works fine provided that, for a chosen pair
ðx; sÞ a ðqE � ð0; 1=2Þ, the extremals of the mapping

S1 a e 7! Ks; e a R

are uniquely determined. This might not to be the case even for sets E with a
smooth boundary (recall that here, as is done in the quoted literature, the surfaces
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under exam are of class C2), whence the need for an ‘unconditionally robust’
definition of NGC, possibly di¤erent from (26). In this connection, it is worth
recalling Theorem 11 of [1], which states that for whatever disjoint subsets of S1

a smooth surface can be found whose NDC takes its minimal value in one of the
two subsets and its maximal value in the other.

Acknowledgement. I am grateful to an anonymous reviewer for a comment that prompted me
to add the last paragraph of this writing.
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