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Abstract. — In this paper we consider the problem

u a H 1
0 ðWÞ;

�divðAðxÞDuÞ ¼ Hðx; u;DuÞ þ f ðxÞ þ a0ðxÞu in D 0ðWÞ;

�

where W is an open bounded set of RN , Nb 3, AðxÞ is a coercive matrix with coe‰cients in LlðWÞ,
Hðx; s; xÞ is a Carathéodory function which satisfies for some g > 0

�c0AðxÞxxaHðx; s; xÞ signðsÞa gAðxÞxx a:e: x a W; Es a R; Ex a RN ;

f belongs to LN=2ðWÞ and a0 b 0 to LqðWÞ, q > N=2. For f and a0 su‰ciently small, we prove the

existence of at least one solution u of this problem which is such that e d0 juj � 1 belongs to H 1
0 ðWÞ for

some d0 b g. This solution satisfies some a priori estimate.
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1. Introduction

In this paper, we consider the quasilinear problem

u a H 1
0 ðWÞ;

�divðAðxÞDuÞ ¼ Hðx; u;DuÞ þ f ðxÞ þ a0ðxÞu in D 0ðWÞ;

�
ð1:1Þ

where W is a bounded open set of RN, Nb 3, where A is a coercive matrix with
bounded measurable coe‰cients, where Hðx; s; xÞ is a Carathéodory function
which has quadratic growth in x, and more precisely which satisfies for some
g > 0 and c0 b 0

�c0AðxÞxxaHðx; s; xÞ signðsÞa gAðxÞxx; a:e: x a W; Es a R; Ex a RN ;ð1:2Þ



where f a LN=2ðWÞ, f A 0, and where a0 a LqðWÞ, q > N
2 , with

a0 b 0; a0A 0:ð1:3Þ

When f and a0 are su‰ciently small (and more precisely when f and a0 satisfy
the two smallness conditions (2.14) and (2.15), we prove in the present paper that
problem (1.1) has a least one solution, which is moreover such that

ed0juj � 1 a H 1
0 ðWÞ;ð1:4Þ

with

ed0juj � 1

d0

����
����
H 1

0
ðWÞ

aZd0 ;ð1:5Þ

where d0 b g and Zd0 are two constants which depend only on the data of the
problem (see (6.13), (6.16), (6.17) and (6.18) for the definitions of d0 and Zd0 ).

The main originality of our result is the fact that we assume that a0 satisfies
(1.3), namely that a0 is a nonnegative function.

Let us begin with some review of the literature.
Problem (1.1) has been studied in many papers in the case where a0 a 0.
Among these papers is a series of papers [8], [9], [10] and [11] by L. Boccardo,

F. Murat and J.-P. Puel (see also the paper [23] by J.-M. Rokotoson), which are
concerned with the case where

a0ðxÞa�a0 < 0:ð1:6Þ

In these papers (which also consider nonlinear monotone operators and not only
the linear operator �divðAðxÞDuÞ), the authors prove that when a0 satisfies (1.6)
and when f belongs to LqðWÞ, q > N

2 , then there exists at least one solution
of (1.1) which moreover belongs to LlðWÞ and which satisfies some a priori
estimates. The uniqueness of such a solution has been proved, under some
further structure assumptions, by G. Barles and F. Murat in [4], by G. Barles,
A.-P. Blanc, C. Georgelin and M. Kobylanski in [3] and by G. Barles and
A. Porretta in [5].

The case where

a0 ¼ 0ð1:7Þ

was considered, among others, by A. Alvino, P.-L. Lions and G. Trombetti
in [1], by C. Maderna, C. Pagani and S. Salsa in [21], by V. Ferone and
M.-R. Posteraro in [16], and by N. Grenon-Isselkou and J. Mossino in [17]. In
these papers (which also consider nonlinear monotone operators), the authors
prove that when a0 satisfies (1.7) and when f belongs to LqðWÞ, q > N

2 , with

k f kLqðWÞ su‰ciently small, then there exists at least one solution of (1.1) which
moreover belongs to LlðWÞ and which satisfies some a priori estimates.

The case where a0 satisfies (1.7) but where f only belongs to LN=2ðWÞ for
Nb 3 (and no more to LqðWÞ with q > N

2 ) was considered by V. Ferone and
F. Murat in [13] (and in [14] in the nonlinear monotone case). These authors
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proved that when k f kLN=2ðWÞ is su‰ciently small, then there exists at least one
solution of (1.1) which is moreover such that edjuj � 1 a H 1

0 ðWÞ for some d > g,
and that such a solution satisfies some a priori estimate. Similar results were
obtained in the case where f a LN=2ðWÞ by A. Dall’Aglio, D. Giachetti and
J.-P. Puel in [12] for possibly unbounded domains when a0 satisfies (1.6); in this
case no smallness condition is required on f . Finally, in [15], V. Ferone and
F. Murat considered (also in the case of nonlinear monotone operators) the case
where a0 satisfies a0 a 0 and where f belongs to the Lorentz space LN=2;lðWÞ; in
this case two smallness conditions have to be fulfilled.

To finish with the case where a0 satisfies a0 a 0, let us quote the paper [22] by
A. Porretta, where the author studies the asymptotic behaviour of the solution u
of (1.1) when a0 is a strictly positive constant which tends to zero, and proves that
an ergodic constant appears at the limit a0 ¼ 0. Let us also mention the case
where the nonlinearity Hðx; s; xÞ has the ‘‘good sign property’’, namely satisfies

�Hðx; s; xÞ signðsÞb 0;ð1:8Þ

in this case, when a0 a 0 and when f belongs to H�1ðWÞ, L. Boccardo, F. Murat
and J.-P. Puel in [7] and A. Bensoussan, L. Boccardo and F. Murat in [6] proved
the existence of at least one solution of (1.1) which belongs to H 1

0 ðWÞ.
In contrast with the cases (1.6) and (1.7), the present paper is concerned with

the case (1.3) where a0 b 0 and a0A 0.
In this setting we are only aware of four papers, which are recent1. In [20],

L. Jeanjean and B. Sirakov proved a result similar to the one of the present paper
when f a LqðWÞ, q > N

2 , in place of f a L
N
2 ðWÞ; they also proved the existence

of at least two solutions of (1.1) (which moreover belong to LlðWÞ) when
AðxÞ ¼ Id, Hðx; s; xÞ ¼ mjxj2, m > 0, f a LqðWÞ, q > N

2 , f b 0 and a0 a LqðWÞ,
a0 b 0, a0A 0, with k f kLqðWÞ and ka0kLqðWÞ su‰ciently small. In [2], D. Arcoya,
C. De Coster, L. Jeanjean and K. Tanaka proved the existence of a continuum
ðu; lÞ of solutions (with u which moreover belongs to LlðWÞ) when AðxÞ ¼ Id,
Hðx; s; xÞ ¼ mðxÞjxj2, with m a LlðWÞ, mðxÞb m > 0, f a LqðWÞ, q > N

2 , f b 0,
f A 0 and a0ðxÞ ¼ la?

0 ðxÞ with a?
0 a LqðWÞ, a?

0 b 0 and a?
0 A 0; moreover, under

some further conditions on f , these authors proved that this continuum is de-
fined for l a ��l; l0� with l0 > 0, and that there are at least two nonnegative
solutions of (1.1) when l > 0 is su‰ciently small. In [24], in a similar setting,
assuming only that mðxÞb 0 but that the supports of m and of a?

0 have a non-
empty intersection and that Na 5, P. Souplet proved the existence of a con-
tinuum ðu; lÞ of solutions, and that there are at least two nonnegative solutions
of (1.1) when l > 0 is su‰ciently small. In [19], L. Jeanjean and H. Ramos
Quoirin proved the existence of two positive solutions (which moreover belong
to LlðWÞ) when AðxÞ ¼ Id, Hðx; s; xÞ ¼ mjxj2, m > 0, f a LqðWÞ, q > N

2 , f b 0,
f A 0 and a0 a CðWÞ which can change sign with aþ0 A 0, when either the first
eigenvalue of the operator �D� mf in H 1

0 ðWÞ is positive and aþ0 is su‰ciently

1See also the recent preprint by C. De Coster and L. Jeanjean, Multiplicity results in the non-

coercive case for an elliptic problem with critical growth in the gradient.
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small, or when the first eigenvalue of the operator �D� a0 f in H 1
0 ðWÞ is positive

and mf is su‰ciently small.
With respect to the results obtained in the four latest papers, we prove in the

present paper, as said above, the existence of (only) one solution of (1.1) in the case
(1.3) (a0 b 0) when a0 and f satisfy the two smallness conditions (2.14) and (2.15),
but our result is obtained in the general case of a nonlinearity Hðx; s; xÞ which
satisfies only (1.2), with f a LN=2ðWÞ and with a0 a LqðWÞ, q > N

2 . Moreover, the
method which allows us to prove this result continues mutatis mutandis to work in
the nonlinear monotone case where the linear operator �divðAðxÞDuÞ is replaced
by a Leray-Lions operator �divðaðx; u;DuÞÞ working in W

1;p
0 ðWÞ, for some

1 < p < N, and where the quasilinear term Hðx; u;DuÞ has p-growth in jDuj.

Let us now describe the contents of the present paper.
The precise statement of our result is given in Section 2 (Theorem 2.1), as well

as the precise assumptions under which we are able to prove it. These conditions
in particular include the two smallness conditions (2.14) and (2.15).

Our method for proving Theorem 2.1 is based on an equivalence result (see
Theorem 3.5) that we state in Section 3 once we have introduced the functions
Kdðx; s; zÞ and gdðsÞ (see (3.6) and (3.7)) and made some technical remarks on
them. This result is very close to the equivalence result given in the paper [13]
by V. Ferone and F. Murat.

This equivalence result implies that in order to prove the existence of a
solution u of (1.1) which satisfies (1.4) and (1.5), it is equivalent to prove (see
Theorem 3.8) the existence of a function w defined by (3.31), i.e.

w ¼ 1

d0
ðed0juj � 1Þ signðuÞ;ð1:9Þ

which satisfies (3.33), i.e.

w a H 1
0 ðWÞ;

�divðAðxÞDwÞ þ Kd0ðx;w;DwÞ signðwÞ
¼ ð1þ d0jwjÞ f ðxÞ þ a0ðxÞwþ a0ðxÞgd0ðwÞ signðwÞ in D 0ðWÞ;

8><
>:ð1:10Þ

and the estimate (3.34), i.e.

kwkH 1
0
ðWÞ aZd0 ;ð1:11Þ

(which is nothing but (1.5)).
Our goal thus becomes to prove Theorem 3.8, namely to prove the existence

of a solution w which satisfies (1.10) and (1.11).
Problem (1.10) is very similar to problem (1.1), since it involves a term

�Kd0ðx;w;DwÞ signðwÞ which has quadratic growth in Dw as well as a zeroth
order term d0jwj f ðxÞ þ a0ðxÞwþ a0ðxÞgd0ðwÞ signðwÞ. But this problem is also very
di¤erent from (1.1), since the term �Kd0ðx;w;DwÞ signðwÞ with quadratic growth
in jDwj has now the ‘‘good sign property’’ (see (1.8)), since Kd0ðx; s; xÞ satisfies

Kd0ðx; s; xÞb 0;
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while the zeroth order term is now no more a linear but a semilinear term with
jwj1þy growth in w (see (6.20)) due to presence of the term a0ðxÞgd0ðwÞ signðwÞ.

We will prove Theorem 3.8 essentially by applying Schauder’s fixed point
theorem. But there are some di‰culties to do it directly, since the term with qua-
dratic growth Kd0ðx;w;DwÞ signðwÞ only belongs to L1ðWÞ in general. We there-
fore begin by defining an approximate problem (see (4.1)) where Kdðx;w;DwÞ is
remplaced by its truncation at height k, namely TkðKdðx;w;DwÞÞ, and we prove
(see Theorem 4.1) that if f and a0 satisfy the two smallness conditions (2.14) and
(2.15), this approximate problem has at least one solution wk which satisfies the a
priori estimate

kwkkH 1
0
ðWÞ aZd0 :ð1:12Þ

This result, which is proved in Section 4, is obtained by applying Schauder’s fixed
point theorem in a classical way.

We then pass to the limit as k tends to infinity and we prove in Section 5 that
(for a subsequence of k) wk tends to some w? in H 1

0 ðWÞ strongly (see (5.3)) and
that this w? is a solution of (1.10) which also satisfies (1.11) (see End of the proof
of Theorem 3.8).

This completes the proof of Theorem 3.8, and therefore proves Theorem 2.1,
as announced.

This proof follows along the lines of the proof used by V. Ferone and
F. Murat in [13] in the case where a0 ¼ 0. As mentionned above, this method
can be applied mutatis mutandis to the nonlinear case where the linear operator
�divðAðxÞDuÞ is replaced by a Leray-Lions operator �divðaðx; u;DuÞÞ working
in W 1

0 ðWÞ for some 1 < p < N, and where the quasilinear term Hðx; u;DuÞ has
p-growth in jDuj, as it was done in [14] by V. Ferone and F. Murat in this non-
linear setting when a0 ¼ 0. This will be the goal of our next paper [18].

2. Main result

In this paper we consider the quasilinear problem

u a H 1
0 ðWÞ;

�divðAðxÞDuÞ ¼ Hðx; u;DuÞ þ a0ðxÞuþ f ðxÞ in D 0ðWÞ;

�
ð2:1Þ

where the set W satisfies (note that no regularity is assumed on the boundary
of W)

W is a bounded open subset of RN ; Nb 3;ð2:2Þ

where the matrix A is a coercive matrix with bounded measurable coe‰cients, i.e.

A a ðLlðWÞÞN�N ;

ba > 0; AðxÞxxb ajxj2 a:e: x a W; Ex a RN ;

(
ð2:3Þ
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where the function Hðx; s; xÞ is a Carathéodory function with quadratic growth in
x, and more precisely satisfies

H : W� R� RN ! R is a Carathéodory function such that

�c0AðxÞxxaHðx; s; xÞ signðsÞa gAðxÞxx;
a:e: x a W; Es a R; Ex a RN ; where g > 0 and c0 b 0;

8><
>:ð2:4Þ

where sign : R ! R denotes the function defined by

signðsÞ ¼
þ1 if s > 0;

0 if s ¼ 0;

�1 if s < 0;

8<
:ð2:5Þ

where the coe‰cient a0 satisfies

a0 a LqðWÞ for some q >
N

2
; a0 b 0; a0A 0;ð2:6Þ

as well as the technical assumption (note that, since
N

2
<

2N

6�N
when 3aNa 6

and since W is bounded, this assumption can be made without loss of generality
once hypothesis (2.6) is assumed)

N

2
< q <

2N

6�N
when 3aNa 6;ð2:7Þ

and finally where

f a LN=2ðWÞ; f A 0:ð2:8Þ

Since Nb 3, let 2� be the Sobolev’s exponent defined by

1

2� ¼
1

2
� 1

N
;

and let CN be the Sobolev’s constant defined as the best constant such that

kjk2� aCNkDjk2; Ej a H 1
0 ðWÞ:ð2:9Þ

We claim that in view of (2.6) and (2.7), one has

0 <
2�

q 0 � 2 < 1;ð2:10Þ

where q 0 the Hölder’s conjugate of the exponent q, i.e.

1

q 0 þ
1

q
¼ 1;

200 b. hamour and f. murat



indeed easy computations show that

0 <
2�

q 0 � 2 , q >
N

2
;

2�

q 0 � 2 < 1 , 1

q
>

6�N

2N
;

where the latest inequality is satisfied when N > 6 and is equivalent to q <
2N

6�Nwhen Na 6 (see (2.7)).
We now define the number y by

y ¼ 2�

q 0 � 2:ð2:11Þ

In view of (2.10) we have

0 < y < 1:ð2:12Þ

Since W is bounded, we equip the space H 1
0 ðWÞ with the norm

kukH 1
0
ðWÞ ¼ kDukL2ðWÞN :ð2:13Þ

We finally assume that f and a0 are su‰ciently small (see Remark 2.2), and
more precisely that

a� C2
Nka0kN=2 � gC2

Nk f kN=2 > 0;ð2:14Þ

k f kH�1ðWÞ a
y

1þ y

ða� C2
Nka0kN=2 � gC2

Nk f kN=2Þ
ð1þyÞ=y

ðð1þ yÞGC2þy
N ka0kqÞ

1=y
;ð2:15Þ

where the constant G is defined by (6.14).
Observe that in place of (2.14) we could as well have assumed that

a� C2
Nka0kN=2 � gC2

Nk f kN=2 b 0;

but that when equality takes places in the latest inequality, inequality (2.15)
implies that f ¼ 0, and then u ¼ 0 is a solution of (2.1), so that the result of
Theorem 2.1 becomes trivial.

Our main result is the following Theorem.

Theorem 2.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant d0 with d0 b g, and a constant Zd0 , which are defined
in Lemma 6.2 (see (6.13), (6.16), (6.17)) and (6.18)), such that there exists at least
one solution u of (2.1) which further satisfies

ðed0juj � 1Þ a H 1
0 ðWÞ;ð2:16Þ
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with

ked0jujDukL2ðWÞN ¼ ed0juj � 1

d0

����
����
H 1

0
ðWÞ

aZd0 :ð2:17Þ

Our proof of Theorem 2.1 is based on an equivalence result (Theorem 3.5)
which will be stated and proved in Section 3. This equivalence Theorem will
allows us to replace proving Theorem 2.1 by proving Theorem 3.8 which is
equivalent to Theorem 2.1.

Remark 2.2. In this Remark, we consider that the open set W, the matrix A and
the function H are fixed (and therefore in particular that the constants a > 0 and
g > 0 are fixed), and we consider the functions a0 and f as parameters.

Our first set of assumptions on these parameters (assumptions (2.6) and (2.7))
is that a0 belongs to LqðWÞ with q > N

2 (and that q < 2N
N�6 when 3aNa 6; as

said above this assumption can be made without loss of generality). This first set
of assumptions is essential to ensure (see (2.10)) that the exponent y defined by
(2.11) satisfies 0 < y < 1 (see (2.12)). We also assume a0 b 0 and a0A 0.

Our second set of assumptions on these parameters is made of the two small-
ness conditions (2.14) and (2.15).

Indeed, if, for example, a0 is su‰ciently small such that it satisfies

a� C2
Nka0kN=2 > 0;

then the two smallness conditions (2.14) and (2.15) are satisfied if k f kN=2 (and
therefore k f kH�1ðWÞ, since L

N=2ðWÞHH�1ðWÞ) is su‰ciently small.
Similarly, if, for example, f is su‰ciently small such that it satisfies

a� gC2
Nk f kN=2 > 0;

then the two smallness conditions (2.14) and (2.15) are satisfied if ka0kq is su‰-
ciently small (which implies, since LqðWÞHLN=2ðWÞ, that ka0kN=2 is su‰ciently
small), since ka0kq appears in the denominator of the right-hand side of (2.15).

r

Remark 2.3. The definitions of the two constants d0 and Zd0 which appear
in Theorem 2.1 are given in (the technical) Appendix 6 (see Lemma 6.2). These
definitions are based on the properties of the family of functions Fd (see (6.13))
which look like convex parabolas (see Figure 2 and Remark 6.3): the constant d0
is the unique value of the parameter d for which the function Fd0 has a double
zero, and Zd0 is the value of this double zero. The two smallness conditions
(2.14) and (2.15) ensure that d0 satisfies d0 b g, a condition which is essential in
our proof.

In Remark 3.9 we try to explain where the two smallness conditions (2.14) and
(2.15) come from.
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In Remark 3.10, we explain why we have chosen to state Theorem 3.8 with
d ¼ d0 rather than with a fixed d with ga da d0. r

Remark 2.4. In assumption (2.2) we have assumed that Nb 3, because we
will use the Sobolev’s embedding (2.9). All the proofs of the present paper can
nevertheless be easily adapted to the cases where N ¼ 1 and N ¼ 2, providing
similar results, by using the fact that H 1

0 ðWÞHLlðWÞ when N ¼ 1 and that
H 1

0 ðWÞHLpðWÞ for every p < þl when N ¼ 2, and by replacing the assump-
tion q > N

2 made in (2.6) when Nb 3 by q ¼ 1 when N ¼ 1 and by q > 1 when
N ¼ 2, and the assumption f a LN=2ðWÞ made in (2.8) when Nb 3 by f a L1ðWÞ
when N ¼ 1 and by f a LmðWÞ with m > 1 when N ¼ 2 (and also replacing the
norm k f kN=2 by the corresponding norm).

In assumptions (2.6) and (2.8) we have assumed that a0A 0 and that f A 0.
Indeed the case where a0 ¼ 0 has been treated by V. Ferone and F. Murat in
[13], and in the case where f ¼ 0, then u ¼ 0 is a solution of (2.1) and the results
of the present paper become trivial. r

3. An equivalence result

The main results of this Section are Theorems 3.5 and 3.8. In contrast, Remarks
3.1, 3.2 and 3.4 and Lemma 3.3 can be considered as technical results.

Indeed, as said above, the proof of Theorem 2.1 is based on the equivalence
result of Theorem 3.5 that we state and prove in this Section. This equivalence
Theorem in particular implies that Theorem 3.8, which we state at the end of
this Section, is equivalent to Theorem 2.1. Theorem 3.8 will be proved in Sections
4 and 5.

This Section also includes Remark 3.9 in which we try to explain where the
two smallness conditions (2.14) and (2.15) come from, as well as Remark 3.10
where we explain why we have chosen to state Theorem 3.8 for d ¼ d0.

In this Section (as well as in the whole of the present paper) we always assume
that

d > 0:ð3:1Þ

Let us first proceed with a formal computation.
If u is a solution of

�divðAðxÞDuÞ ¼ Hðx; u;DuÞ þ f ðxÞ þ a0ðxÞu in W;

u ¼ 0 on qW;

�
ð3:2Þ

and if we formally define the function wd by

wd ¼
1

d
ðedjuj � 1Þ signðuÞ;ð3:3Þ

203quasilinear problems involving a noncoercive zeroth order term



where the function sign is defined by (2.5), we have, at least formally,

edjuj ¼ 1þ djwdj; juj ¼ 1

d
logð1þ djwdjÞ; signðuÞ ¼ signðwdÞ;

Dwd ¼ edjujDu; AðxÞDwd ¼ edjujAðxÞDu;

�divðAðxÞDwdÞ ¼ �dedjujAðxÞDuDu signðuÞ � edjujðdivðAðxÞDuÞÞ;

8>>><
>>>:

ð3:4Þ

and therefore wd is, at least formally, a solution of

�divðAðxÞDwdÞ ¼ �dedjujAðxÞDuDu signðuÞ þ edjujHðx; u;DuÞ
þ edjuj f ðxÞ þ edjuja0ðxÞu

¼ �Kdðx;wd;DwdÞ signðwdÞ
þ ð1þ djwdjÞ f ðxÞ þ a0ðxÞwd

þ a0ðxÞgdðwdÞ signðwdÞ in W;

wd ¼ 0 on qW;

8>>>>>>>><
>>>>>>>>:

ð3:5Þ

whenever the functions Kd : W� R� RN ! R and gd : R ! R are defined by the
formulas

Kdðx; t; zÞ ¼
d

1þ djtjAðxÞzz

� ð1þ djtjÞH
�
x;
1

d
logð1þ djtjÞ signðtÞ; z

1þ djtj

�
signðtÞ;

a:e: x a W; Et a R; Ez a RN ;

8>>>>><
>>>>>:

ð3:6Þ

and

gdðtÞ ¼ �jtj þ 1

d
ð1þ djtjÞ logð1þ djtjÞ; Et a R;ð3:7Þ

which is equivalent to

tþ gdðtÞ signðtÞ ¼ ð1þ djtjÞ 1
d
logð1þ djtjÞ signðtÞ; Et a R:ð3:8Þ

Conversely, if wd is a solution of (3.5), and if we formally define the function u
by

u ¼ 1

d
logð1þ djwdjÞ signðwdÞ;ð3:9Þ

the same formal computation easily shows that u is a solution of (3.2).
The main goal of this Section is to transform this formal equivalence into a

mathematical result, namely Theorem 3.5. We begin with three remarks on the
functions Kd and gd, namely Remarks 3.1, 3.2 and 3.4.

Remark 3.1. Observe that, because of the inequality (2.4) on the function H,
and because of the coercivity (2.3) of the matrix A, one has
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ðc0 þ dÞAðxÞzzb c0 þ d

ð1þ djtjÞAðxÞzz

¼ d

ð1þ djtjÞAðxÞzzþ ð1þ djtjÞ c0

ð1þ djtjÞ2
AðxÞzz

bKdðx; t; zÞ

b
d

ð1þ djtjÞAðxÞzz� ð1þ djtjÞ g

ð1þ djtjÞ2
AðxÞzz

¼ ðd� gÞ
ð1þ djtjÞAðxÞzzb�jd� gjAðxÞzz;

a:e: x a W; Et a R; Ez a RN ; Ed > 0:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð3:10Þ

When db g, this computation in particular implies that

ðc0 þ dÞAðxÞzzbKdðx; t; zÞb 0

a:e: x a W; Et a R; Ez a RN if db g:

�
ð3:11Þ r

Remark 3.2. In this technical Remark we prove that the functions Kdðx;w;DwÞ
and Kdðx;w;DwÞ signðwÞ are correctly defined and are measurable functions when
w a H 1ðWÞ, and we prove their continuity with respect to the almost everywhere
convergence of w and Dw (see Lemma 3.3).

Note that the functions Kdðx; t; zÞ defined by (3.6) and Kdðx; t; zÞ signðtÞ are not
Carathéodory functions, because their definitions involve the function signðtÞ,
which it is not a Carathéodory function since is not continuous at t ¼ 0. This
lack of continuity in t ¼ 0 is however the only obstruction for the functions
Kdðx; t; zÞ and Kdðx; t; zÞ signðtÞ to be Carathéodory functions, and

for every w a H 1ðWÞ;
the functions Kdðx;w;DwÞ and Kdðx;w;DwÞ signðwÞ are well defined
and are measurable functions;

8<
:ð3:12Þ

as it immediately results from the two formulas

Kdðx; t; zÞ ¼
d

1þ djtjAðxÞzz

� ð1þ djtjÞH
�
x;
1

d
logð1þ djtjÞ signðtÞ; z

1þ djtj

�
signðtÞ

¼ d

1þ djtjAðxÞzz

þ wft<0gðtÞð1þ djtjÞH
�
x;� 1

d
logð1þ djtjÞ; z

1þ djtj

�
� wft¼0gðtÞ0

� wft>0gðtÞð1þ djtjÞH
�
x;
1

d
logð1þ djtjÞ; z

1þ djtj

�
;

a:e: x a W; Et a R; Ez a RN ;

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð3:13Þ
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Kdðx; t; zÞ signðtÞ

¼ signðtÞ d

1þ djtjAðxÞzz

� ð1þ djtjÞH
�
x;
1

d
logð1þ djtjÞ signðtÞ; z

1þ djtj

�

¼ �wft<0gðtÞ
d

1þ djtjAðxÞzzþ wft¼0gðtÞ0þ wft>0gðtÞ
d

1þ djtjAðxÞzz

� wft<0gðtÞð1þ djtjÞH
�
x;� 1

d
logð1þ djtjÞ; z

1þ djtj

�
� wft¼0gðtÞHðx; 0; zÞ

� wft>0gðtÞð1þ djtjÞH
�
x;
1

d
logð1þ djtjÞ; z

1þ djtj

�
;

a:e: x a W; Et a R; Ez a RN :

8>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:14Þ

Moreover, in view of (3.10) one has

Kdðx;w;DwÞ a L1ðWÞ; Kdðx;w;DwÞ signðwÞ a L1ðWÞ;
Ew a H 1ðWÞ; Ed > 0:

�
ð3:15Þ

r

One also has the following convergence result.

Lemma 3.3. Consider a sequence wn such that

wn a H 1ðWÞ; w a H 1ðWÞ;
wn ! w a:e: in W; Dwn ! Dw a:e: in W:

�
ð3:16Þ

Then

Kdðx;wn;DwnÞ ! Kdðx;w;DwÞ a:e: in W;

Kdðx;wn;DwnÞ signðwnÞ ! Kdðx;w;DwÞ signðwÞ a:e: in W:

�
ð3:17Þ

Proof. On the first hand, we have the following almost everywhere convergences

d

1þ djwnj
AðxÞDwnDwn !

d

1þ djwjAðxÞDwDw a:e: in W;

ð1þ djwnjÞH
�
x;� 1

d
logð1þ djwnjÞ;

Dwn

1þ djwnj

�

! ð1þ djwjÞH
�
x;� 1

d
logð1þ djwjÞ; Dw

1þ djwj

�
a:e: in W;

Hðx; 0;DwnÞ ! Hðx; 0;DwÞ a:e: in W;

ð1þ djwnjÞH
�
x;
1

d
logð1þ djwnjÞ;

Dwn

1þ djwnj

�

! ð1þ djwjÞH
�
x;
1

d
logð1þ djwjÞ; Dw

1þ djwj

�
a:e: in W:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð3:18Þ
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On the other hand, for almost every x fixed in the set fy a W : wðyÞ > 0g, the
assertion wnðxÞ ! wðxÞ implies, since wðxÞ > 0, that one has wnðxÞ > 0 for n
su‰ciently large (depending on x), and therefore that, for some n > n?ðxÞ, one
has

wfwn<0gðwnðxÞÞ ¼ 0 ¼ wfw<0gðwðxÞÞ for n > n?ðxÞ;
wfwn¼0gðwnðxÞÞ ¼ 0 ¼ wfw¼0gðwðxÞÞ for n > n?ðxÞ;
wfwn>0gðwnðxÞÞ ¼ 1 ¼ wfw>0gðwðxÞÞ for n > n?ðxÞ:

8><
>:ð3:19Þ

These convergences and (3.18) imply, in view of (3.13) and (3.14), that

Kdðx;wn;DwnÞ ! Kdðx;w;DwÞ a:e: in fy a W : wðyÞ > 0g;
Kdðx;wn;DwnÞ signðwnÞ ! Kdðx;w;DwÞ signðwÞ a:e: in fy a W : wðyÞ > 0g:

�

The same proof gives the similar result in the set fy a W : wðyÞ < 0g.
The proof in the set fy a W : wðyÞ ¼ 0g is a little bit more delicate. Let us first

observe that for w a H 1ðWÞ one has

Dw ¼ 0 a:e: in fy a W : wðyÞ ¼ 0g;ð3:20Þ

and since inequality (2.4) on the function H implies that

Hðx; s; 0Þ ¼ 0 a:e: x a W; Es a R; sA 0;ð3:21Þ

and therefore by continuity in s that

Hðx; 0; 0Þ ¼ 0 a:e: x a W:ð3:22Þ

Then, on the first hand, these results and formulas (3.13) and (3.14) imply that

Kdðx;w;DwÞ ¼ Kdðx;w;DwÞ signðwÞ ¼ 0 a:e: in fy a W : wðyÞ ¼ 0g:ð3:23Þ

On the other hand, in view of (3.20) and (3.22), the four functions which appear in
the four limits in (3.18) vanish almost everywhere in the set fy a W : wðyÞ ¼ 0g.
Even if we do not know anything about the pointwise limits of the functions
wfwn<0gðwnðxÞÞ, wfwn¼0gðwnðxÞÞ and wfwn>0gðwnðxÞÞ in the set fy a W : wðyÞ ¼ 0g,
this fact and formulas (3.13) and (3.14) prove that

Kdðx;wn;DwnÞ ! 0 a:e: in fy a W : wðyÞ ¼ 0g;
Kdðx;wn;DwnÞ signðwnÞ ! 0 a:e: in fy a W : wðyÞ ¼ 0g:

�
ð3:24Þ

From (3.23) and (3.24) we deduce that

Kdðx;wn;DwnÞ ! Kdðx;w;DwÞ a:e: in fy a W : wðyÞ ¼ 0g;
Kdðx;wn;DwnÞ signðwnÞ ! Kdðx;w;DwÞ signðwÞ

a:e: in fy a W : wðyÞ ¼ 0g:

8><
>:ð3:25Þ

This completes the proof of (3.17). r
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Remark 3.4. Observe that the function gdðsÞ signðsÞ is a Carathéodory function
since in view of (6.4) this function is continuous at s ¼ 0. This allows one to
define gdðwÞ signðwÞ as a measurable function for every w a H 1ðWÞ. r

The main result of this Section is the following equivalence Theorem.

Theorem 3.5. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true, and
let d > 0 be fixed. Let the functions Kd and gd be defined by (3.6) and (3.7).

If u is any solution of (2.1) which satisfies

ðedjuj � 1Þ a H 1
0 ðWÞ;ð3:26Þ

then the function wd defined by (3.3), namely by

wd ¼
1

d
ðedjuj � 1Þ signðuÞ;

satisfies

wd a H 1
0 ðWÞ;

�divðAðxÞDwdÞ þ Kdðx;wd;DwdÞ signðwdÞ
¼ ð1þ djwdjÞ f ðxÞ þ a0ðxÞwd þ a0ðxÞgdðwdÞ signðwdÞ in D 0ðWÞ:

8><
>:ð3:27Þ

Conversely, if wd is any solution of (3.27), then the function u defined by (3.9),
namely by

u ¼ 1

d
logð1þ djwdjÞ signðwdÞ;

is a solution of (2.1) which satisfies (3.26).

Remark 3.6. Every term of the equation in (3.27) has a meaning in the sense of
distributions: indeed the first term of the left-hand side of the equation in (3.27)
belongs to H�1ðWÞ; on the other hand, the four other terms of the equation are
measurable functions (see Remarks 3.2 and 3.4); the second term of the left-hand
side of the equation in (3.27) belongs to L1ðWÞ in view of (3.10), while the three
terms of the right-hand side of the equation in (3.27) can be proved to belong to
ðL2?ðWÞÞ0 (see e.g. the proof of (3.40) in Remark 3.9 and the proof of (4.8) in the
proof of Lemma 4.2). r

Remark 3.7. Observe that the equivalence Theorem 3.5 holds true without
assuming the two smallness conditions (2.14) and (2.15); moreover one could
even have removed in (2.3) the assumption that the matrix A is coercive, and still
obtain the same equivalence result.

Note however that Theorem 3.5 is an equivalence result which does not proves
neither the existence of a solution of (2.1) nor the existence of a solution of (3.27),
but which assumes as an hypothesis either the existence of a solution of (2.1)
which also satisfies (3.26), or the existence of a solution of (3.27). r
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Proof of Theorem 3.5. Define the function f̂f by

f̂f ðxÞ ¼ f ðxÞ þ a0ðxÞuðxÞ;ð3:28Þ

In view of (3.3) and of the definition (3.7) of gdðsÞ, one has (see (3.8) and (3.4))

ð1þ djwdjÞ f ðxÞ þ a0ðxÞwd þ a0ðxÞgdðwdÞ signðwdÞ

¼ ð1þ djwdjÞ
�
f ðxÞ þ a0ðxÞ

1

d
logð1þ djwdjÞ signðwdÞ

�
¼ ð1þ djwdjÞð f ðxÞ þ a0ðxÞuðxÞÞ ¼ ð1þ djwdjÞ f̂f ðxÞ:

8>>><
>>>:

ð3:29Þ

Then Theorem 3.5 becomes an immediate application of Proposition 1.8 of
[13], once one observes that

f̂f a LN=2ðWÞ;ð3:30Þ

such is the case in the setting of Theorem 3.5: indeed f̂f ¼ f þ a0u, where f
belongs to LN=2ðWÞ by assumption (2.8), and where a0u also belongs to LN=2ðWÞ,
since a0 is assumed to belong to LqðWÞ, q > N

2 (see assumption (2.6)), while
u belongs to LrðWÞ for every r < þl, since by (3.26) ðedjuj � 1Þ is assumed to
belong to H 1

0 ðWÞ, hence in particular to L1ðWÞ, which implies that edjuj belongs
to L1ðWÞ. Theorem 3.5 is therefore proved. r

From the equivalence Theorem 3.5 one immediately deduces, setting

w ¼ 1

d0
ðed0juj � 1Þ signðuÞð3:31Þ

and equivalently

u ¼ 1

d0
logð1þ d0jwjÞ signðwÞ;ð3:32Þ

that Theorem 2.1 is equivalent to the following Theorem.

Theorem 3.8. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant d0 with d0 b g, and a constant Zd0 , which are defined
in Lemma 6.2 (see (6.13), (6.16), (6.17) and (6.18)), such that there exists at least
one solution w of

w a H 1
0 ðWÞ;

�divðAðxÞDwÞ þ Kd0ðx;w;DwÞ signðwÞ
¼ ð1þ d0jwjÞ f ðxÞ þ a0ðxÞwþ a0ðxÞgd0ðwÞ signðwÞ in D 0ðWÞ;

8><
>:ð3:33Þ

which satisfies

kwkH 1
0
ðWÞ aZd0 :ð3:34Þ
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The rest of this paper will therefore be devoted to the proof of Theorem 3.8.
This will be done in two steps: first, in Section 4, we will prove the existence of a
solution satisfying (3.34) for a problem which approximates (3.33), see Theorem
4.1; second, in Section 5, we will pass to the limit in this approximate problem
and prove that for a subsequence the limit satisfies (3.33) and (3.34).

Remark 3.9. In this Remark we assume that (2.2), (2.3), (2.4), (2.6), (2.7) and
(2.8) hold true. We also assume that the two smallness conditions (2.14) and
(2.15) hold true, and we try to explain how these two conditions come from an
‘‘a priori estimate’’ that one can obtain on the solutions of (3.27).

If wd is any solution of (3.27), using TkðwdÞ a H 1
0 ðWÞBLlðWÞ as test func-

tion, where Tk : R ! R is the usual truncation at height k defined by

TkðsÞ ¼
�k if sa�k;

s if �ka saþk;

þk if þka s;

8<
:ð3:35Þ

one has Z
W

AðxÞDwdDTkðwdÞ dxþ
Z
W

Kdðx;wd;DwdÞjTkðwdÞj dx

¼
Z
W

f ðxÞTkðwdÞ dxþ
Z
W

df ðxÞjwdjTkðwdÞ dx

þ
Z
W

a0ðxÞwdTkðwdÞ dxþ
Z
W

a0ðxÞgdðwdÞjTkðwdÞj dx:

8>>>>>>>><
>>>>>>>>:

ð3:36Þ

In this Remark we will assume that d satisfies

ga da d1;ð3:37Þ

where d1 is defined by (6.11) (note that one has g < d1, see (6.12)). Since db g by
(3.37), we deduce from (3.11) that Kdðx; s; zÞb 0, and therefore that the second
term of the left-hand side of (3.36) is nonnegative. Using this fact and passing to
the limit as k tends to þl in the five other terms of (3.36) (since jTkðwdÞja jwdj,
this is easy using Lebesgue’s dominated convergence theorem and the Hölder’s
inequalities that we will use just below), we obtainZ

W

AðxÞDwdDwd dx

a

Z
W

f ðxÞwd dxþ
Z
W

df ðxÞjwdj2 dx

þ
Z
W

a0ðxÞjwdj2 dxþ
Z
W

a0ðxÞgdðwdÞjwdj dx:

8>>>>>>>><
>>>>>>>>:

ð3:38Þ

In (3.38) we use in the left-hand side the fact that the matrix A is coercive (see
(2.3)), in the first term of the right-hand side the fact that f a LN=2ðWÞ (see (2.8)),
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which implies that f a H�1ðWÞ, in the second and in the third terms of the right-
hand side Hölder’s inequality with

1
N
2

þ 1

2?
þ 1

2?
¼ 1;

and finally in the fourth term of the right-hand side the second statement of
(6.19), namely

0a gdðtÞ < Gjtj1þy; Et a R; tA 0; Ed; 0 < da d1;ð3:39Þ

(note that here we use da d1, see (3.37)) and Hölder’s inequality with

1

q
þ 1þ y

2?
þ 1

2?
¼ 1

(which results from the definition (2.11) of y). We obtain

akDwdk22 < k f kH�1ðWÞkDwdk2 þ dk f kN=2kwdk22?

þ ka0kN=2kwdk22? þ Gka0kqkwdk2þy
2? if wdA 0;

(
ð3:40Þ

(note that in view of (3.39), inequality (3.40) is actually a strict inequality). Using
Sobolev’s inequality (2.9) and dividing by kDwdk2 this implies that (note that in
view of (2.8), the result remains true even in the case where wd ¼ 0)

akDwdk2 < k f kH�1ðWÞ þ dC2
Nk f kN=2kDwdk2

þ C2
Nka0kN=2kDwdk2 þ GC2þy

N ka0kqkDwdk1þy
2 :

(
ð3:41Þ

In view of the definition (6.13) of the function Fd (see also Figure 2), we have
proved that if wd is any solution of (3.27), one has

FdðkDwdk2Þ > 0 if ga da d1:ð3:42Þ

But by the definition of d0, one has

FdðXÞ > 0; EX b 0; Ed; d0 < da d1;

and therefore inequality (3.42) does not give any information on kDwdk2 when d
satisfies d0 < da d1. In contrast, when d < d0, the strict inequality (3.42) implies
that

either kDwdk2 < Y�
d or kDwdk2 > Yþ

d if d < d0;ð3:43Þ

where Y �
d < Y þ

d are the two distinct zeros of the function Fd (see Remarks 6.3
and 6.5 and Figure 2), while when d ¼ d0, the strict inequality (3.42) implies that

either kDwd0k2 < Zd0 or kDwd0k2 > Zd0 if d ¼ d0:ð3:44Þ

Inequalities (3.43) and (3.44) are not a priori estimates, since they do not
imply any bound on kDwdk2. Nevertheless these inequalities exclude the closed
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interval ½Y�
d ;Y

þ
d � or the point Zd0 for kDwdk2, and they give the hope to prove

the existence of a fixed point in the set kDwdk2 aY�
d , when d < d0, or in the set

kDwd0k2 aZd0 , when d ¼ d0.
These inequalities also explain where the two smallness conditions (2.14) and

(2.15) come from. Indeed (see Remark 6.3), these two smallness conditions imply
that the value d0 of d for which Fd has a double zero satisfies d0 b g, which is the
case where, as said just above, some hope is allowed. r

Remark 3.10. In the present paper, we have chosen to prove the existence of a
function w which is a solution of (3.33) (or in other terms of a function w ¼ wd0

which is a solution of (3.27) with d ¼ d0) which satisfies kwkH 1
0
ðWÞ aZd0 (see

(3.34)). When g < d0, i.e. when the inequality (2.15) is a strict inequality, we could
as well have chosen to prove that for every fixed d with ga d < d0, there exists
a function ŵwd which is a solution of (3.27) which satisfies kŵwdkH 1

0
ðWÞ aY�

d ,

where Y �
d is the smallest zero of the function Fd (see Remark 6.5 and Figure 2):

indeed the proofs made in Sections 4 and 5 continue to work in this framework
and allow one to prove this result.

In this framework, if we define, for any fixed d with ga d < d0, the function ûud
by

ûud ¼
1

d
logð1þ djŵwdjÞ signðŵwdÞð3:45Þ

(compare with the definition (3.32) of u, where d ¼ d0), the existence of a solu-
tion ŵwd of (3.27) which satisfies kŵwdkH 1

0
ðWÞ aY�

d proves (see the equivalence
Theorem 3.5) that ûud defined by (3.45) is a solution of (2.1) which satisfies

kedjûudjDûudk2 ¼ kDŵwdk2 aY�
d :

But the function u which is defined by (3.32) from the function w given by
Theorem 3.8 satisfies (2.1) (by the equivalence Theorem 3.5 with d ¼ d0) and
(see (3.4) again)

ked0jujDuk2 ¼ kDwk2 aZd0 :

When d < d0, we therefore have

kedjujDuk2 a ked0jujDuk2 aZd0 ; if d < d0;

and therefore edjuj � 1 a H 1
0 ðWÞ. By the equivalence Theorem 3.5, the function

wd defined from u by

wd ¼
1

d
ðedjuj � 1Þ signðuÞð3:46Þ

is a solution of (3.27). Moreover, since Dwd ¼ edjujDu and since Zd0 < Yþ
d for

d < d0 (see (6.25)), one has in particular

kDwdk2 < Y þ
d ; if d < d0;
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which implies by (3.43) that wd satisfies

kDwdk2 < Y�
d :ð3:47Þ

Therefore the result of Theorem 3.8 (which is concerned with the case d ¼ d0)
provides us with a function w, and then with a function u defined by (3.32), and
finally with a function wd defined by (3.46) which is a solution of (3.27) and
which satisfies (3.47). This function wd is a solution ŵwd of (3.27) which satisfies
kŵwdkH 1

0
ðWÞ aY�

d . Therefore the result of Theorem 3.8 (where d ¼ d0) also pro-

vides us for every d with ga d < d0 with an alternative proof of the result stated
in the second paragraph of the present Remark. r

4. Existence of a solution for an approximate problem

In this Section we introduce an approximation (see (4.1)) of problem (3.33).
Under the two smallness conditions (2.14) and (2.15), we prove by applying
Schauder’s fixed point theorem that this approximate problem has at least one
solution which satisfies the estimate (3.34).

Let d0 be defined by (6.13), (6.16), (6.17) and (6.18). For every k > 0, we con-
sider the approximate problem of finding a solution wk of (compare with (3.33))

wk a H 1
0 ðWÞ;

�divðAðxÞDwkÞ þ TkðKd0ðx;wk;DwkÞÞ signkðwkÞ
¼ ð1þ d0jwkjÞ f ðxÞ þ a0ðxÞwk þ a0ðxÞgd0ðwkÞ signðwkÞ in D 0ðWÞ;

8><
>:ð4:1Þ

where Tk is the usual truncation at height k defined by (3.35) and where
signk : R ! R is the approximation of the function sign which is defined by

signkðsÞ ¼
ks; if jsja 1

k
;

signðsÞ; if jsjb 1

k
:

8>><
>>:ð4:2Þ

Theorem 4.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.
Let d0 and Zd0 be defined in Lemma 6.2 by (6.13), (6.16), (6.17) and (6.18), and
let k > 0 be fixed.

Then there exists at least one solution of (4.1) such that

kwkkH 1
0
ðWÞ aZd0 :ð4:3Þ

The proof of Theorem 4.1 consists in applying Schauder’s fixed point theorem.
First we prove the two following lemmas.

Lemma 4.2. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true,
and let k > 0 be fixed.
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Then, for every w a H 1
0 ðWÞ, there exists a unique solution W of the following

semilinear problem

W a H 1
0 ðWÞ;

�divðAðxÞDW Þ þ TkðKd0ðx;w;DwÞÞ signkðW Þ
¼ ð1þ d0jwjÞ f ðxÞ þ a0ðxÞwþ a0ðxÞgd0ðwÞ signðwÞ in D 0ðWÞ:

8><
>:ð4:4Þ

Moreover W satisfies

akDWk2 a k f kH�1ðWÞ þ d0C
2
Nk f kN=2kDwk2

þ C2
Nka0kN=2kDwk2 þ GC2þy

N ka0kqkDwk1þy
2 ;

(
ð4:5Þ

where CN and G are the constants given by (2.9) and (6.14).

Proof. Problem (4.4) is of the form

W a H 1
0 ðWÞ;

�divðAðxÞDW Þ þ b̂bðxÞ signkðW Þ ¼ F̂F ðxÞ in D 0ðWÞ;

(
ð4:6Þ

where b̂bðxÞ and F̂FðxÞ are given. Since b̂bðxÞ ¼ TkðKd0ðx;w;DwÞÞ belongs to LlðWÞ
and is nonnegative in view of (3.11) and of d0 b g (see (6.16)), since the func-
tion signk is continuous and nondecreasing, and since F̂F belong to H�1ðWÞ (see
e.g. the computation which allows one to obtain (4.8) below), this problem has a
unique solution.

Since W a H 1
0 ðWÞ, the use of W as a test function in (4.4) is licit. Since the

function TkðK dðx; t; zÞÞ is nonnegative, this gives
Z
W

AðxÞDWDW dxa

Z
W

ð1þ d0jwjÞ f ðxÞW dx

þ
Z
W

a0ðxÞwW dxþ
Z
W

a0ðxÞgd0ðwÞ signðwÞW dx:

8>>><
>>>:

ð4:7Þ

As in the computation made in Remark 3.9 to obtain the inequality (3.40),
we use in (4.7) the coercivity (2.3) of the matrix A, Hölder’s inequality with
1
N
2

þ 1

2?
þ 1

2?
¼ 1, inequality (6.20) on gd0 , Hölder’s inequality with

1

q
þ 1þ y

2?
þ 1

2?

¼ 1 (which results from the definition (2.11) of y), and finally Sobolev’s inequality
(2.9). We obtain

akDWk22 a k f kH�1ðWÞkDWk2 þ d0k f kN=2kwk2?kWk2?

þ ka0kN=2kwk2?kWk2? þ Gka0kqkwk
1þy
2? kWk2?

a k f kH�1ðWÞkDWk2 þ d0C
2
Nk f kN=2kDwk2kDWk2

þ C2
Nka0kN=2kDwk2kDWk2 þGC2þy

N ka0kqkDwk1þy
2 kDWk2;

8>>>>><
>>>>>:

ð4:8Þ

which immediately implies (4.5). r
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Lemma 4.3. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let
k > 0 be fixed.

Let wn be a sequence such that

wn * w in H 1
0 ðWÞ weakly and a:e: in W:ð4:9Þ

Define Wn as the unique solution of (4.4) for w ¼ wn, i.e.

Wn a H 1
0 ðWÞ;

�divðAðxÞDWnÞ þ TkðKd0ðx;wn;DwnÞÞ signkðWnÞ
¼ ð1þ d0jwnjÞ f ðxÞ þ a0ðxÞwn þ a0ðxÞgd0ðwnÞ signðwnÞ in D 0ðWÞ:

8><
>:ð4:10Þ

Assume moreover that for a subsequence, still denoted by n, and for some
W ? a H 1

0 ðWÞ, Wn satisfies

Wn * W ? in H 1
0 ðWÞ weakly and a:e: in W:ð4:11Þ

Then for the same subsequence one has

Wn ! W ? in H 1
0 ðWÞ strongly:ð4:12Þ

Proof. Since Wn �W ? a H 1
0 ðWÞ, the use of ðWn �W ?Þ as test function in

(4.10) is licit. This givesZ
W

AðxÞDðWn �W ?ÞDðWn �W ?Þ dx

¼ �
Z
W

AðxÞDW ?DðWn �W ?Þ dx

�
Z
W

TkðKd0ðx;wn;DwnÞÞ signkðWnÞðWn �W ?Þ dx

þ
Z
W

ð1þ d0jwnjÞ f ðxÞðWn �W ?Þ dxþ
Z
W

a0ðxÞwnðWn �W ?Þ dx

þ
Z
W

a0ðxÞgd0ðwnÞ signðwnÞðWn �W ?Þ dx:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð4:13Þ

We claim that every term of the right-hand of (4.13) tends to zero as n tends to
infinity.

For the first term, we just use the fact that Wn �W ? tends to zero in H 1
0 ðWÞ

weakly.
For the second term, we use the fact TkðKd0ðx;wn;DwnÞÞ signkðWnÞ is bounded

in LlðWÞ, since k is fixed, while Wn �W ? tends to zero in L1ðWÞ strongly.
For the last three terms we observe that, since wn and Wn respectively con-

verge almost everywhere to w and to W � (see (4.9) and (4.11)), we have

ð1þ d0jwnjÞ f ðxÞðWn �W ?Þ ! 0 a:e: in W;

a0ðxÞwnðWn �W ?Þ ! 0 a:e: in W;

a0ðxÞgd0ðwnÞ signðwnÞðWn �W ?Þ ! 0 a:e: in W:

8><
>:ð4:14Þ
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We will now prove that each of the three sequences which appear in (4.14) is
equiintegrable. Together with (4.14), this will imply that these sequences converge
to zero in L1ðWÞ strongly, and this will prove that the three last terms of the right-
hand side of (4.13) tend to zero as n tends to infinity.

In order to prove that the sequence ð1þ d0jwnjÞ f ðxÞðWn �W ?Þ is equiinte-

grable, we use Hölder’s inequality with
1

2?
þ 1

N
2

þ 1

2?
¼ 1. For every measurable

set E, EHW, we haveZ
E

jð1þ d0jwnjÞ f ðxÞðWn �W ?Þj dx

a

�Z
E

j f ðxÞjN=2
dx

�2=N
kð1þ d0jwnjÞk2?kWn �W ?k2?

a c
�Z

E

j f ðxÞjN=2
dx

�2=N
;

8>>>>>>><
>>>>>>>:

where c denotes a constant which is independent of n.
Proving that the sequence a0ðxÞwnðWn �W ?Þ is equiintegrable is similar,

since for every measurable set E, EHW, we haveZ
E

ja0ðxÞwnðWn �W ?Þj dx

a

�Z
E

ja0ðxÞjN=2
dx

�2=N
kwnk2?kWn �W ?k2? a c

�Z
E

ja0ðxÞjN=2
dx

�2=N
:

8>>><
>>>:

Finally, in order to prove that the sequence a0ðxÞgd0ðwnÞ signðwnÞðWn �W ?Þ
is equiintegrable, we use as in (4.8) inequality (6.20) and Hölder’s inequality

with
1

q
þ 1þ y

2?
þ 1

2?
¼ 1; for every measurable set E, EHW, we have

Z
E

ja0ðxÞgd0ðwnÞ signðwnÞðWn �W ?Þj dx

a

Z
E

ja0ðxÞjGjwnj1þyjWn �W ?j dx

a

�Z
E

ja0ðxÞjq dx
�1=q

Gkwnk1þy
2? kWn �W ?k2? a c

�Z
E

ja0ðxÞjq dx
�1=q

:

8>>>>>>><
>>>>>>>:
We have proved that the right-hand side of (4.13) tends to zero. Since the

matrix A is coercive (see (2.3)), this proves that Wn tends to W ? in H 1
0 ðWÞ

strongly. Lemma 4.3 is proved. r

Proof of Theorem 4.1. Recall that in this Theorem k > 0 is fixed.
Consider the ball B of H 1

0 ðWÞ defined by

B ¼ fw a H 1
0 ðWÞ : kDwk2 aZd0g;ð4:15Þ

where Zd0 is defined from d0 by (6.18).
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Consider also the mapping S : H 1
0 ðWÞ ! H 1

0 ðWÞ defined by

SðwÞ ¼ W ;ð4:16Þ

where for every w a H 1
0 ðWÞ, W is the unique solution of (4.4) (see Lemma 4.2).

We will apply Schauder’s fixed point theorem in the Hilbert space H 1
0 ðWÞ to

the mapping S and to the ball B.

First step. In this step we prove that S maps B into itself.
Indeed by Lemma 4.2,W ¼ SðwÞ satisfies (4.5); therefore, when kDwk2 aZd0 ,

one has, in view of the definition (6.13) the function Fd and of the property (6.17)
of Zd0 ,

akDWk2 a k f kH�1ðWÞ þ d0C
2
Nk f kN=2kDwk2

þ C2
Nka0kN=2kDwk2 þ GC2þy

N ka0kqkDwk1þy
2

a k f kH�1ðWÞ þ d0C
2
Nk f kN=2Zd0

þ C2
Nka0kN=2Zd0 þ GC2þy

N ka0kqZ1þy
d0

¼ aZd0 þFd0ðZd0Þ ¼ aZd0 ;

8>>>>>>><
>>>>>>>:

ð4:17Þ

i.e. kDWk2 aZd0 , or in other terms W a B, which proves that SðBÞHB.

Second step. In this step we prove that S is continuous from H 1
0 ðWÞ strongly

into H 1
0 ðWÞ strongly.

For this we consider a sequence such that

wn a B; wn ! w in H 1
0 ðWÞ strongly;ð4:18Þ

and we define Wn as Wn ¼ SðwnÞ, i.e. as the solution of (4.10).
The functions wn belong to B, and therefore the functions Wn belong to B in

view of the first step. We can therefore extract a subsequence, still denoted by n,
such that for some W ? a H 1

0 ðWÞ,

Wn * W ? in H 1
0 ðWÞ weakly and a:e: in W:ð4:19Þ

We can moreover assume that for a further subsequence, still denoted by n,

wn * w a:e: in W and Dwn * Dw a:e: in W:ð4:20Þ

Since the assumptions of Lemma 4.3 are satisfied by the subsequences wn andWn,
the subsequence Wn converges to W ? in H 1

0 ðWÞ strongly.
We now pass to the limit in equation (4.10) as n tends to infinity by using the

fact that signkðsÞ and gd0ðsÞ signðsÞ are Carathéodory functions, and the first
result of (3.17) as far as TkðKd0ðx;wn;DwnÞÞ is concerned (this point is the only
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point of the proof of Theorem 4.1 where the assumption of strong H 1
0 ðWÞ con-

vergence in (4.18), or more exactly its consequence (4.20), is used). This implies
that W ? is a solution of (4.4). Since the solution of (4.4) is unique, one has
W ? ¼ SðwÞ.

In view of the fact that W ? is uniquely determined, we conclude that it was
not necessary to extract a subsequence in (4.19) and (4.20), and that the whole
sequence Wn ¼ SðwnÞ converges in H 1

0 ðWÞ strongly to W ? ¼ SðwÞ. This proves
the continuity of the mapping S.

Third step. In this step we prove that SðBÞ is precompact in H 1
0 ðWÞ.

For this we consider a sequence wn a B and we define Wn as Wn ¼ SðwnÞ; in
other terms Wn is the solution of (4.10). Since wn and Wn belong to B, they are
bounded in H 1

0 ðWÞ, and we can extract a subsequence, still denoted by n, such
that

wn * w in H 1
0 ðWÞ weakly and a:e: in W;

Wn * W ? in H 1
0 ðWÞ weakly and a:e: in W:

Since wn and Wn satisfies the assumptions of Lemma 4.3, we have

Wn ! W ? in H 1
0 ðWÞ strongly:

This proves that SðBÞ is precompact in H 1
0 ðWÞ (note that in contrast with the

second step, we do not need here to prove that W ? ¼ SðwÞ).

End of the proof of Theorem 4.1. We have proved that in the Hilbert
space H 1

0 ðWÞ the mapping S and the ball B satisfy the assumptions of Schauder’s
fixed point theorem. Therefore there exists at least one wk a B such that
SðwkÞ ¼ wk. This proves Theorem 4.1. r

5. Proof of Theorem 3.8

Theorem 4.1 asserts that for every k > 0 fixed there exists at least a solution wk

of (4.1) which satisfies (4.3). We can therefore extract a subsequence, still denoted
by k, such that for some w? a H 1

0 ðWÞ

wk * w? in H 1
0 ðWÞ weakly and a:e: in W;ð5:1Þ

where w? satisfies

kw?kH 1
0
ðWÞ aZd0 ;ð5:2Þ

i.e. (3.34).
In this Section we will first prove that for this subsequence

wk ! w? in H 1
0 ðWÞ strongly;ð5:3Þ
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and then that w? is a solution of (3.33) (which satisfies (3.34)). This will prove
Theorem 3.8.

To prove (5.3), we use a technique which traces back to [6] (see also [13]).
For n > 0, we define Gn : R ! R as the remainder of the truncation at height

n, namely

GnðsÞ ¼ s� TnðsÞ; Es a R;ð5:4Þ

where Tn is the truncation at height n defined by (3.35), or in other terms

GnðsÞ ¼
sþ n if sa�n;

0 if �na sa n;

s� n if sb n:

8<
:ð5:5Þ

First we prove the two following Lemmas.

Lemma 5.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.
Let wk be a solution of (4.1). Assume finally that the subsequence wk satisfies (5.1).

Then for this subsequence we have

lim sup
k!þl

Z
W

jDGnðwkÞj2 dx ! 0 as n ! þl:ð5:6Þ

Proof. Since GnðwkÞ a H 1
0 ðWÞ, the use of GnðwkÞ as test function in (4.1) is licit.

This gives

Z
W

AðxÞDwkDGnðwkÞ dxþ
Z
W

TkðKd0ðx;wk;DwkÞÞ signkðwkÞGnðwkÞ dx

¼
Z
W

ðð1þ d0jwkjÞ f ðxÞþ a0ðxÞwk

þ a0ðxÞgd0ðwkÞ signðwkÞÞGnðwkÞ dx:

8>>>>><
>>>>>:

ð5:7Þ

Using the coercivity (2.3) of the matrix A, we have for the first term of (5.7)

Z
W

AðxÞDwkDGnðwkÞ dx ¼
Z
W

AðxÞDGnðwkÞDGnðwkÞ dx

b a

Z
W

jDGnðwkj2 dx:

8>>><
>>>:

ð5:8Þ

On the other hand, since

signkðsÞGnðsÞb 0; Es a R;
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and since TkðKd0ðx;wk;DwkÞÞb 0 in view of (3.11) and of d0 b g (see (6.16)), we
have Z

W

TkðKd0ðx;wk;DwkÞÞ signkðwkÞGnðwkÞ dxb 0:ð5:9Þ

Finally, we observe that, by a proof which is similar to the one that we used in the
proof of Lemma 4.3, we have

ðð1þ d0jwkjÞ f ðxÞ þ a0ðxÞwk þ a0ðxÞgd0ðwkÞ signðwkÞÞGnðwkÞ
! ðð1þ d0jw?jÞ f ðxÞ þ a0ðxÞw? þ a0ðxÞgd0ðw?Þ signðw?ÞÞGnðw?Þ

in L1ðWÞ strongly;

8><
>:ð5:10Þ

since the functions in the left-hand side of (5.10) converge almost everywhere in W
and are equiintegrable.

Together with (5.7), the three results (5.8), (5.9) and (5.10) imply that

lim sup
k!þl

a

Z
W

jDGnðwkj2 dx

a

Z
W

ðð1þ d0jw?jÞ f ðxÞ þ a0ðxÞw?

þ a0ðxÞgd0ðw?Þ signðw?ÞÞGnðw?Þ dx:

8>>>>><
>>>>>:

ð5:11Þ

But since jGnðw?Þja jw?j and since Gnðw?Þ ¼ 0 in the set fjw?ja ng, the
right-hand side of (5.11) is bounded from above byZ

fjw?jbng
ðð1þ d0jw?jÞj f ðxÞj þ a0ðxÞjw?j þ a0ðxÞjgd0ðw?ÞjÞjw?j dx;ð5:12Þ

which tends to zero when n tends to infinity because the integrand belongs to
L1ðWÞ.

This prove (5.6). r

Lemma 5.2. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.
Let wk be a solution of (4.1). Assume finally that the subsequence wk satisfies (5.1).

Then for this subsequence we have for every n > 0 fixed

TnðwkÞ ! Tnðw?Þ in H 1
0 ðWÞ strongly as k ! þl:ð5:13Þ

Proof. In this proof n is fixed. We define

zk ¼ TnðwkÞ � Tnðw?Þ;ð5:14Þ

and we fix a C1 function c : R ! R such that

cð0Þ ¼ 0; c 0ðsÞ � ðc0 þ d0ÞjcðsÞjb 1=2; Es a R;ð5:15Þ
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where c0 is the constant which appears in the left-hand side of assumption (2.4)
on H; there exist such functions c: indeed an example is

cðsÞ ¼ s exp
� ðc0 þ d0Þ2

4
s2
�
:

First step. Since zk a H 1
0 ðWÞBLlðWÞ, and since cð0Þ ¼ 0, the function cðzkÞ

belongs to H 1
0 ðWÞBLlðWÞ. The use of cðzkÞ as test function in (4.1) is therefore

licit. This gives

Z
W

AðxÞDwkDzkc
0ðzkÞ dxþ

Z
W

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dx

¼
Z
W

ðð1þ d0jwkjÞ f ðxÞ þ a0ðxÞwk

þ a0ðxÞgd0ðwkÞ signðwkÞÞcðzkÞ dx:

8>>>>><
>>>>>:

ð5:16Þ

Since

Dwk ¼ DTnðwkÞ þDGnðwkÞ ¼ Dzk þDTnðw?Þ þDGnðwkÞ;ð5:17Þ

the first term of the left-hand side of (5.16) reads as

Z
W

AðxÞDwkDzkc
0ðzkÞ dx ¼

Z
W

AðxÞDzkDzkc
0ðzkÞ dx

þ
Z
W

AðxÞDTnðw?ÞDzkc
0ðzkÞ dx

þ
Z
W

AðxÞDGnðwkÞDzkc
0ðzkÞ dx:

8>>>>>>><
>>>>>>>:

ð5:18Þ

On the other hand, splitting W into W ¼ fjwkj > ngA fjwkja ng, the second
term of the left-hand side of (5.16) reads asZ

W

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dx

¼
Z
fjwk j>ng

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dx

þ
Z
fjwk jang

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dx:

8>>>>>>>><
>>>>>>>>:

ð5:19Þ

For what concerns the first term of the right-hand of (5.19), we claim that

Z
fjwk j>ng

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dxb 0;ð5:20Þ
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indeed in fjwkj > ng, the integrand is nonnegative since on the first hand
TkðKd0ðx;wk;DwkÞÞb 0 in view of (3.11) and of d0 b g (see (6.16)), and since on
the other hand one has

signkðwkÞcðzkÞb 0 in fjwkj > ng;ð5:21Þ

indeed since signðsÞ and signkðsÞ have the same sign, it is equivalent either to
prove (5.21) or to prove that

signðwkÞcðzkÞb 0 in fjwkj > ng;ð5:22Þ

but in fjwkj > ng one has zk ¼ n signðwkÞ � Tnðw?Þ, and therefore signðzkÞ ¼
signðwkÞ; this implies that

signðwkÞcðzkÞ ¼ signðzkÞcðzkÞ ¼ jcðzkÞj in fjwkj > ng;

which proves (5.22).
For what concerns the second term of the right-hand side of (5.19), we observe

that, in view of (3.11) and of d0 b g (see (6.16)), we have

jTkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞj
a jKd0ðx;wk;DwkÞj jcðzkÞja ðc0 þ d0ÞjcðzkÞjAðxÞDwkDwk:

�
ð5:23Þ

Since in view of (5.17) one has

Dwk ¼ Dzk þDTnðw?Þ in fjwkja ng;

we obtain Z
fjwk jang

TkðKd0ðx;wk;DwkÞÞ signkðwkÞcðzkÞ dx

b�
Z
fjwk jang

ðc0 þ d0ÞjcðzkÞjAðxÞDwkDwk dx

¼ �
Z
fjwk jang

ðc0 þ d0ÞjcðzkÞj

AðxÞðDzk þDTnðw?ÞÞðDzk þDTnðw?ÞÞ dx

b�
Z
W

ðc0 þ d0ÞjcðzkÞjAðxÞðDzk þDTnðw?ÞÞðDzk þDTnðw?ÞÞ dx

¼ �
Z
W

ðc0 þ d0ÞjcðzkÞjAðxÞDzkDzk dx

�
Z
W

ðc0 þ d0ÞjcðzkÞjðAðxÞDTnðw?ÞDzk þ AðxÞDzkDTnðw?Þ

þ AðxÞDTnðw?ÞDTnðw?ÞÞ dx:

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð5:24Þ
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From (5.16), (5.18), (5.19), (5.20) and (5.24) we deduce that

Z
W

AðxÞDzkDzk
�
c 0ðzkÞ � ðc0 þ d0ÞjcðzkÞj

�
dx

a�
Z
W

AðxÞDTnðw?ÞDzkc
0ðzkÞ dx

�
Z
W

AðxÞDGnðwkÞDzkc
0ðzkÞ dx

þ
Z
W

ðc0 þ d0ÞjcðzkÞjðAðxÞDTnðw?ÞDzk þ AðxÞDzkDTnðw?Þ

þ AðxÞDTnðw?ÞDTnðw?ÞÞ dx

þ
Z
W

ðð1þ d0jwkjÞ f ðxÞ þ a0ðxÞwk

þ a0ðxÞgd0ðwkÞ signðwkÞÞcðzkÞ dx:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð5:25Þ

Second step. We claim that each term of the right-hand side of (5.25) tends to
zero as k tends to infinity. Since c 0ðzkÞ � ðc0 þ dÞjcðzkÞjb 1=2 by (5.15), and
since the matrix A is coercive (see (2.3)), this will imply that

zk ! 0 in H 1
0 ðWÞ strongly;

or in other terms (see the definition (5.14) of zk) that

TnðwkÞ ! Tnðw?Þ in H 1
0 ðWÞ strongly as k ! þl;

which is nothing but (5.13). Lemma 5.2 will therefore be proved whenever the
claim will be proved.

In order to prove the claim let us recall that in view of (5.1) and of the defini-
tion (5.14) of zk one has

zk * 0 in H 1
0 ðWÞ weakly; LlðWÞ weakly star and a:e: in W as k ! þl:

Since cð0Þ ¼ 0, this implies that cðzkÞ tends to zero almost everywhere in W
and in LlðWÞ weakly star as k tends to infinity, which in turn implies that

Dzkc
0ðzkÞ ¼ DcðzkÞ * 0 in L2ðWÞN weakly as k ! þl:

This implies that the first term of the right-hand side of (5.25) tends to zero as k
tends to infinity.

For the second term of the right-hand side of (5.25) we observe that

AðxÞDGnðwkÞDzk ¼ AðxÞDGnðwkÞðDTnðwkÞ �DTnðw?ÞÞ
¼ �AðxÞDGnðwkÞDTnðw?Þ;

(
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and that by Lebesgue’s dominated convergence theorem

DTnðw?Þc 0ðzkÞ ! DTnðw?Þc 0ð0Þ in L2ðWÞN strongly as k ! þl;

while DGnðwkÞ tends to DGnðw?Þ weakly in L2ðWÞN . Since almost everywhere
one has AðxÞDGnðw?ÞDTnðw?Þ ¼ 0, the second term of the right-hand side of
(5.25) tends to zero.

For the third term of the right-hand side of (5.25), we observe that

ðc0 þ d0ÞjcðzkÞjAðxÞDTnðw?Þ ! 0 in L2ðWÞN strongly as k ! þl

by Lebesgue’s dominated convergence theorem, since cðzkÞ is bounded in LlðWÞ
and since cðzkÞ tends almost everywhere to zero because cð0Þ ¼ 0. Since Dzk is
bounded in L2ðWÞN , this implies that the first part of this third term tends to zero.
A similar proof holds true for the two others parts of this third term.

Finally the fourth term of the right-hand side of (5.25) tends to zero by a proof
which is similar to the one that we used in the proof of Lemma 4.3, since the
integrand converges almost everywhere to zero and is equiintegrable.

The claim made at the beginning of the second step is proved. This completes
the proof of Lemma 5.2. r

End of the proof of Theorem 3.8.

First step. Since we have

wk � w? ¼ TnðwkÞ þ GnðwkÞ � Tnðw?Þ � Gnðw?Þ;

and since by Lemma 5.2 (see (5.13)) we have

kTnðwkÞ � Tnðw?ÞkH 1
0
ðWÞ ! 0 as k ! þl for every n > 0 fixed;

while by Lemma 5.1 (see (5.6)) we have

lim sup
n!þl

lim sup
k!þl

kGnðwkÞkH 1
0
ðWÞ ¼ 0;

and while we have

lim sup
n!þl

kGnðw?ÞkH 1
0
ðWÞ ¼ 0;

since w? a H 1
0 ðWÞ, we conclude that

wk ! w? in H 1
0 ðWÞ strongly as k ! þl;ð5:26Þ

which is nothing but (5.3).

Second step. Let us now pass to the limit in (4.1) as k tends to infinity. This is
easy for the first term of the left-hand side of (4.1) as well as for the three terms of
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the right-hand side of (4.1), which pass to the limit in ðL2?ðWÞÞ0 strongly by a
proof which is simpler than the one that we used in the proof of Lemma 4.3.

It remains to pass to the limit in the second term of the left-hand side of (4.1),
namely in

TkðKd0ðx;wk;DwkÞÞ signkðwkÞ:

We first observe that in view of (3.11) and of d0 b g (see (6.16)), we have

jTkðKd0ðx;wk;DwkÞÞ signkðwkÞj
a jKd0ðx;wk;DwkÞja ðc0 þ d0ÞkAkljDwkj2 a:e: in W;

�

which implies that the functions TkðKd0ðx;wk;DwkÞÞ signkðwkÞ are equiintegrable
since Dwk converges strongly to Dw? in L2ðWÞN by (5.26).

Extracting if necessary a subsequence, still denoted by k, such that

Dwk ! Dw? a:e: in W;

we claim that

TkðKd0ðx;wk;DwkÞÞ signkðwkÞ ! Kd0ðx;w?;Dw?Þ signðw?Þ a:e: in W:ð5:27Þ

On the first hand we use the first part of (3.17), which asserts that

Kd0ðx;wk;DwkÞ ! Kd0ðx;w?;Dw?Þ a:e: in W;

and the fact that for every s a R

TkðskÞ ! s if k ! þl when sk ! s;

to deduce that

TkðKd0ðx;wk;DwkÞÞ ! Kd0ðx;w?;Dw?Þ a:e: in W:ð5:28Þ

On the other hand we use the fact that

signkðwkÞ ! signðw?Þ a:e: in fy a W : w?ðyÞA 0g;

which together with (5.28) proves the almost everywhere convergence (5.27) in
the set fy a W : w?ðyÞA 0g.

Finally, as far as the set fy a W : w?ðyÞ ¼ 0g is concerned, convergence (5.28),
the fact that (see (3.23))

Kd0ðx;w?;Dw?Þ ¼ 0 a:e: in fy a W : w?ðyÞ ¼ 0g;

and the fact that jsignkðsÞja 1 for every s a R together prove that

TkðKd0ðx;wk;DwkÞÞ signkðwkÞ ! 0 ¼ Kd0ðx;w?;Dw?Þ signðw?Þ
a:e: in fy a W : w?ðyÞ ¼ 0g;

�

namely the almost everywhere convergence (5.27) in the set fy a W : w?ðyÞ ¼ 0g.
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This completes the proof of (5.27).
The equiintegrability and the almost everywhere convergence of the functions

TkðKd0ðx;wk;DwkÞÞ signkðwkÞ then imply that

TkðKd0ðx;wk;DwkÞÞ signkðwkÞ ! Kd0ðx;w?;Dw?Þ signðw?Þ in L1ðWÞ strongly:

This proves that w? satisfies (3.33). Since w? also satisfies (3.34) (see (5.2)),
Theorem 3.8 is proved. r

6. Appendix

In this Appendix, we give an estimate of the function gd defined by (3.7) (see
Lemma 6.1), and the definitions of the constants d0 and Zd0 which appear in
Theorem 2.1 (see Lemma 6.2).

6.1. An estimate for the function gd

Lemma 6.1. For d > 0, let gd : R ! R be the function defined by (3.7), i.e. by

gdðtÞ ¼ �jtj þ 1

d
ð1þ djtjÞ logð1þ djtjÞ; Et a R:ð6:1Þ

Then, for every l and d? with

0 < l < 1; 0 < d? < þl;ð6:2Þ

there exists a constant CðlÞ which depends only on l, with

0 < CðlÞa sup 1;
21þl

le

� �
;ð6:3Þ

such that

0a gdðtÞa dl?CðlÞjtj1þl; Et a R; Ed; 0 < da d?:ð6:4Þ

Moreover

0a gdðtÞ < dl?CðlÞjtj1þl; Et a R; tA 0; Ed; 0 < da d?:ð6:5Þ

Proof. Let g : Rþ ! R be the function defined by

gðtÞ ¼ �tþ ð1þ tÞ logð1þ tÞ; Etb 0:

Since gð0Þ ¼ 0 and g 0ðtÞb 0, one has

gðtÞb 0; Etb 0:ð6:6Þ
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On the other hand, since logð1þ tÞ < t for t > 0, one has gðtÞ < t2 ¼
t1�lt1þl for t > 0, and therefore for 0 < l < 1 and for every m > 0

gðtÞ < m1�lt1þl; Et; 0 < tam:ð6:7Þ

One has also

gðtÞ
t1þl

<
ð1þ tÞ logð1þ tÞ

t1þl
¼
� 1þ t

t

�1þl logð1þ tÞ
ð1þ tÞl

; Et > 0;

and therefore

gðtÞ
t1þl

<
� 1þm

m

�1þl logð1þ tÞ
ð1þ tÞl

Etbm > 0:

But the function
logð1þ tÞ
ð1þ tÞl

reaches its maximum for t0 defined by ð1þ t0Þ ¼ e1=l,
hence

logð1þ tÞ
ð1þ tÞl

a
1

le
; Etb 0:

This implies that for 0 < l < 1 and for every m > 0

gðtÞ <
� 1þm

m

�1þl 1

le
t1þl; Etbm;ð6:8Þ

which, with (6.6) and (6.7), implies that for 0 < l < 1 and for every m > 0

0a gðtÞ < sup m1�l;
� 1þm

m

�1þl 1

le

� �
t1þl; Et > 0;ð6:9Þ

or in other terms that for every l, 0 < l < 1,

0a gðtÞ < CðlÞt1þl; Et > 0;ð6:10Þ

for some constant CðlÞ, with (take m ¼ 1)

0 < CðlÞa sup 1;
21þl

le

� �
;

which is nothing but (6.3).
Since

gdðtÞ ¼
1

d
gðdjtjÞ; Et a R;
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one deduces from (6.10) that gd satisfies

0a gdðtÞa dlCðlÞjtj1þl; Et a R; Ed > 0;

0a gdðtÞ < dlCðlÞjtj1þl; Et a R; tA 0; Ed > 0;

(

which proves (6.4) and (6.5) with a constant CðlÞ which satisfies (6.3). r

6.2. Definition of d0 and Zd0

The goal of this Subsection is to define the constants d0 and Zd0 which appear in
Theorem 2.1. We will prove the following result.

Lemma 6.2. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Let d1 be the number defined by

d1 ¼
a� C2

Nka0kN=2

C2
Nk f kN=2

:ð6:11Þ

One has

d1 > g:ð6:12Þ

For db 0, let Fd : R
þ ! R (see Figure 2) be the function defined by

FdðXÞ ¼ GC2þy
N ka0kqX 1þy

� ða� C2
Nka0kN=2 � dC2

Nk f kN=2ÞX þ k f kH�1ðWÞ;

(
ð6:13Þ

where y is defined by (2.11) (note that 0 < y < 1 in view of (2.12)) and where G is
the constant defined by

G ¼
� a� C2

Nka0kN=2

C2
Nk f kN=2

�y
CðyÞ;ð6:14Þ

with CN the best constant in the Sobolev’s inequality (2.9) and CðyÞ the constant
which appears in (6.4) (see also (6.3)).

Then, for 0a da d1, the function Fd has a unique minimizer Zd on Rþ, which
is given by

Zd ¼
� a� C2

Nka0kN=2 � dC2
Nk f kN=2

ð1þ yÞGC2þy
N ka0kq

�1=y
; for 0a da d1:ð6:15Þ

Moreover, there exists a unique number d0 such that

ga d0 < d1;ð6:16Þ

and

Fd0ðZd0Þ ¼ 0:ð6:17Þ
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This number is the number d0 which appear in Theorem 2.1, and Zd0 is then
defined from d0 through formula (6.15), namely by

Zd0 ¼
� a� C2

Nka0kN=2 � d0C
2
Nk f kN=2

ð1þ yÞGC2þy
N ka0kq

�1=y
:ð6:18Þ

Remark 6.3. Let us explain the meaning of the results stated in Lemma 6.2.
As we will see in the proof of Lemma 6.2 (see also Figure 2), the function Fd

is the restriction to Rþ of a function which looks like a convex parabola. This
function attains its minimum at a unique point Zd, and for d which satisfies
d < d1 with d1 given by (6.11), one has Zd > 0.

The smallness condition (2.14) is equivalent to the fact that d1 > g, and the
smallness condition (2.15) to the fact (see (6.24)) that the minimum FgðZgÞ of Fg

is nonpositive. For d ¼ d1, the minimum Fd1ðZd1Þ of Fd1 is equal to k f kH�1ðWÞ,
which is strictly positive. Therefore it can be proved that there exists some d0
with ga d0 < d1 (see (6.16)) such that the minimum Fd0ðZd0Þ of Fd0 is equal to
zero (see (6.17)), or in other terms such that the function Fd0 has a double zero
in Zd0 . Moreover, when g < d0, for every d with ga d < d0, the function Fd has
two distinct zeros Y�

d and Yþ
d with Y�

d < Yþ
d which satisfy 0 < Y�

d < Zd0 < Y þ
d

(see (6.25) in Remark 6.5). r

Remark 6.4. In the present paper we use Lemma 6.1 with l ¼ y defined by
(2.11) (note that 0 < y < 1 in view of (2.12)) and with d? ¼ d1 defined by (6.11).
Using the fact that G defined by (6.14) is nothing but G ¼ dy1CðyÞ, inequalities
(6.4) and (6.5) imply that

0a gdðtÞa dy1CðyÞjtj1þy ¼ Gjtj1þy; Et a R; Ed; 0 < da d1;

0a gdðtÞ < dy1CðyÞjtj1þy ¼ Gjtj1þy; Et a R; tA 0; Ed; 0 < da d1:

(
ð6:19Þ

In particular for d ¼ d0 defined by (6.16) and (6.17) one has

0a gd0ðtÞaGjtj1þy; Et a R:ð6:20Þ r

Figure 1. The graph of the straight line Ld
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Proof of Lemma 6.2. For db 0, let Ld be the constant defined by (see
Figure 1)

Ld ¼ a� C2
Nka0kN=2 � dC2

Nk f kN=2;ð6:21Þ

where CN is the best constant in the Sobolev’s inequality (2.9). Note that Ld is
decreasing with respect to d.

Since d1 is defined by (6.11), one has Ld1 ¼ 0: On the other hand, the first
smallness condition (2.14) is nothing but Lg > 0. Since Ld is decreasing in d, one
has d1 > g, i.e. (6.12).

Let us now study the family of functions Fd : R
þ ! R defined by (6.13), i.e.,

in view of the definition (6.21) of Ld, by

FdðX Þ ¼ GC2þy
N ka0kqX 1þy � LdX þ k f kH�1ðWÞ; EX b 0;ð6:22Þ

(see Figure 2).
Since a0A 0 (see (2.6)), each function Fd looks like the restriction to Rþ of

a ‘‘convex parabola’’. When 0a da d1, one has Ld b 0, and this ‘‘convex
parabola’’ has a unique minimizer Zd on Rþ which is also the minimizer of the
function Fd. A simple computation shows that Zd is given by

Zd ¼
� Ld

ð1þ yÞGC2þy
N ka0kq

�1=y
¼
� a� C2

Nka0kN=2 � dC2
Nk f kN=2

ð1þ yÞGC2þy
N ka0kq

�1=y
;ð6:23Þ

i.e. (6.15), and that the minimum of Fd, namely FdðZdÞ, is given by

Figure 2. The graphs of the functions FdðXÞ for d ¼ g, g < d < d0, d ¼ d0 and d ¼ d1
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FdðZdÞ ¼ k f kH�1ðWÞ �
y

1þ y

L
ð1þyÞ=y
d

ðð1þ yÞGC2þy
N ka0kqÞ

1=y

¼ k f kH�1ðWÞ �
y

1þ y

ða� C2
Nka0kN=2 � dC2

Nk f kN=2Þ
ð1þyÞ=y

ðð1þ yÞGC2þy
N ka0kqÞ

1=y
:

8>>>>>><
>>>>>>:

ð6:24Þ

When 0a da d1, the function Ld is nonnegative, continuous and decreasing
with respect to d. Therefore Zd is continuous and decreasing with respect to d,
while FdðZdÞ is continuous and increasing with respect to d.

When d ¼ d1, one has Ld1 ¼ 0, the function Fd1 attains its minimum in
Zd1 ¼ 0, and Fd1ðZd1Þ ¼ k f kH�1ðWÞ > 0, while the second smallness condition

(2.15) is nothing but FgðZgÞa 0. Therefore there exists a unique d0 with
ga d0 < d1 such that Fd0ðZd0Þ ¼ 0. This is the definition of d0 given by (6.16)
and (6.17) in Lemma 6.2.

Lemma 6.2 is proved. r

Remark 6.5. The case where equality takes places in inequality (2.15) corre-
sponds to the case where d0 ¼ g.

On the other hand, when (2.15) is a strict inequality, one has g < d0, and for
d with ga d < d0, the function Fd has two distinct zeros Y�

d and Yþ
d with

0 < Y �
d < Yþ

d . Since

FdðX Þ ¼ GC2þy
N ka0kqX 1þy � ða� C2

Nka0kN=2 � dC2
Nk f kN=2ÞX þ k f kH�1ðWÞ

¼ F0ðX Þ þ dC2
Nk f kN=2X ;

(

the family of functions Fd is an increasing family of functions on Rþ, and one
has

0 < Y�
d < Zd0 < Y þ

d if ga d < d0:ð6:25Þ r
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elliptiques quasi-linéaires, Ann. Sc. Norm. Sup. Pisa 11 (1984), 213–235.

[10] L. Boccardo - F. Murat - J.-P. Puel, Existence of bounded solutions for nonlinear

elliptic unilateral problems, Ann. Mat. Pura App. 152 (1988), 183–196.

[11] L. Boccardo - F. Murat - J.-P. Puel, Ll estimate for some nonlinear elliptic

partial di¤erential equations and application to an existence result, SIAM J. Math.
Anal. 23 (1992), 326–333.

[12] A. Dall’Aglio - D. Giachetti - J.-P. Puel, Nonlinear elliptic equations with

natural growth in general domains, Ann. Mat. Pura Appl. 181 (2002), 407–426.

[13] V. Ferone - F. Murat, Quasilinear problems having quadratic growth in the gradient:

an existence result when the source term is small, in Equations aux dérivées partielles et
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