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ABSTRACT. — In this paper we consider the problem
{ ue Hl (Q),
—div(A4(x)Du) = H(x,u, Du) + f(x) + ao(x)u in 2'(Q),

where Q is an open bounded set of RY, N > 3, A(x) is a coercive matrix with coefficients in L* (),
H(x,s,¢) is a Carathéodory function which satisfies for some y > 0

—coA(X)EE < H(x, s, &) sign(s) < pA(x)EE ae. xeQ, Vs e R, V¢ e RY,

f belongs to LY/2(Q) and ap > 0 to L4(Q), ¢ > N /2. For f and ay sufficiently small, we prove the
existence of at least one solution u of this problem which is such that e®" — 1 belongs to H{ (Q) for
some Jy > y. This solution satisfies some a priori estimate.

Key worDs: Quasilinear problems, perturbation with quadratic growth in the gradient, non-
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1. INTRODUCTION

In this paper, we consider the quasilinear problem

(1) {ueHol(Q),
' —div(A4(x)Du) = H(x,u, Du) + f(x) + ao(x)u in 2'(Q),

where Q is a bounded open set of RV, N > 3, where 4 is a coercive matrix with
bounded measurable coefficients, where H(x,s,¢) is a Carathéodory function
which has quadratic growth in &, and more precisely which satisfies for some
y>0andcy >0

(1.2)  —coA(x)EE < H(x,s,&)sign(s) < pA(x)EE, ae. xeQ, Vse R, V¢ e RY,
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where [ € LN/2(Q), f # 0, and where ag € LY(Q), ¢ > ¥, with
(1.3) @ =0, a#0.

When f and g are sufficiently small (and more precisely when f and «y satisfy
the two smallness conditions (2.14) and (2.15), we prove in the present paper that
problem (1.1) has a least one solution, which is moreover such that

(1.4) el — 1 e HY(Q),
with
(solb{‘ _ 1
(1.5) S < Zs,
% i)

where Jdp > y and Zs, are two constants which depend only on the data of the
problem (see (6.13), (6.16), (6.17) and (6.18) for the definitions of dy and Z;,).

The main originality of our result is the fact that we assume that g, satisfies
(1.3), namely that a is a nonnegative function.

Let us begin with some review of the literature.

Problem (1.1) has been studied in many papers in the case where ay < 0.

Among these papers is a series of papers [§8], [9], [10] and [11] by L. Boccardo,
F. Murat and J.-P. Puel (see also the paper [23] by J.-M. Rokotoson), which are
concerned with the case where

(1.6) ao(x) < —0oy <0.

In these papers (which also consider nonlinear monotone operators and not only
the linear operator —div(A4(x)Du)), the authors prove that when q satisfies (1.6)
and when f belongs to L4(Q), ¢ > %, then there exists at least one solution
of (1.1) which moreover belongs to L*(Q) and which satisfies some a priori
estimates. The uniqueness of such a solution has been proved, under some
further structure assumptions, by G. Barles and F. Murat in [4], by G. Barles,
A.-P. Blanc, C. Georgelin and M. Kobylanski in [3] and by G. Barles and
A. Porretta in [5].

The case where

(17) Cl():O

was considered, among others, by A. Alvino, P.-L. Lions and G. Trombetti
in [1], by C. Maderna, C. Pagani and S. Salsa in [21], by V. Ferone and
M.-R. Posteraro in [16], and by N. Grenon-Isselkou and J. Mossino in [17]. In
these papers (which also consider nonlinear monotone operators), the authors
prove that when ay satisfies (1.7) and when f belongs to L4(Q), ¢ > &, with
1/l o) sufficiently small, then there exists at least one solution of (1.1) which
moreover belongs to L*(Q) and which satisfies some a priori estimates.

The case where ay satisfies (1.7) but where / only belongs to L¥/?>(Q) for
N >3 (and no more to L4(Q) with ¢ > ) was considered by V. Ferone and
F. Murat in [13] (and in [14] in the nonlinear monotone case). These authors
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proved that when | f]| LNA(Q) is sufficiently small, then there exists at least one
solution of (1.1) which is moreover such that e"'“‘ 1 € H}(Q) for some & > 7,
and that such a solution satisfies some a priori estimate. Similar results were
obtained in the case where f e LV/?(Q) by A. Dall’Aglio, D. Giachetti and
J.-P. Puel in [12] for possibly unbounded domains when a satisfies (1.6); in this
case no smallness condition is required on f. Finally, in [15], V. Ferone and
F. Murat considered (also in the case of nonlinear monotone operators) the case
where ay satisfies @y < 0 and where f belongs to the Lorentz space LY/%*(Q); in
this case two smallness conditions have to be fulfilled.

To finish with the case where a satisfies ay < 0, let us quote the paper [22] by
A. Porretta, where the author studies the asymptotic behaviour of the solution u
of (1.1) when q is a strictly positive constant which tends to zero, and proves that
an ergodic constant appears at the limit ¢y = 0. Let us also mention the case
where the nonlinearity H(x,s, ¢) has the “good sign property”, namely satisfies

(1.8) —H(x,s,¢)sign(s) > 0;

in this case, when ap < 0 and when f belongs to H~!(Q), L. Boccardo, F. Murat
and J.-P. Puel in [7] and A. Bensoussan, L. Boccardo and F. Murat in [6] proved
the existence of at least one solution of (1.1) which belongs to HJ (Q).

In contrast with the cases (1.6) and (1.7), the present paper is concerned with
the case (1.3) where ap > 0 and a¢ # 0.

In this setting we are only aware of four papers, which are recent®. In [20],
L. Jeanjean and B. Slrakov proved a result s1m11ar to the one of the present paper
when f € L1(Q), ¢ > %, in place of f € L7(Q); they also proved the existence
of at least two solutions of (1.1) (which moreover belong to L*(Q)) when
A(x) = Id, H(x,5,&) = ué]>, u>0, f e LYQ), ¢ >, £ >0 and ay € LI(Q),
ap =0, ag # 0, with || /] 14 and [|ao|| .4, sufficiently small. In [2], D. Arcoya,
C. De Coster, L. Jeanjean and K. Tanaka proved the existence of a continuum
(u, 1) of solutions (with u which moreover belongs to L*(Q)) when A(x) = Id,
H(x,s,&) = u(x)|&%, with g e L7(Q), u(x) > u>0, f € LYQ), ¢ > ¥, [ >0,
S #0and ag(x) = Aaj(x) with aj € LI(Q), aj > 0 and aj # 0; moreover, under
some further conditions on f, these authors proved that this continuum is de-
fined for A € |—o0, 4] with 49 > 0, and that there are at least two nonnegative
solutions of (1.1) when A > 0 is sufficiently small. In [24], in a similar setting,
assuming only that x(x) > 0 but that the supports of x and of aj have a non-
empty intersection and that N <5, P. Souplet proved the existence of a con-
tinuum (u, A) of solutions, and that there are at least two nonnegative solutions
of (1.1) when 4 > 0 is sufficiently small. In [19], L. Jeanjean and H. Ramos
Quoirin proved the existence of two pos1t1ve solutions (which moreover belong
to L*(Q)) when A(x) = Id, H(x,s,&) = U ,u>0 feLiQ),¢g>%, >0,
f #0 and ay € C(Q) which can change sign with a; # 0, When either the first
eigenvalue of the operator —A — uf in H{(Q) is positive and a is sufficiently

!See also the recent preprint by C. De Coster and L. Jeanjean, Multiplicity results in the non-
coercive case for an elliptic problem with critical growth in the gradient.
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small, or when the first eigenvalue of the operator —A — ao f in H{ (Q) is positive
and uf is sufficiently small.

With respect to the results obtained in the four latest papers, we prove in the
present paper, as said above, the existence of (only) one solution of (1.1) in the case
(1.3) (ap = 0) when ag and f satisfy the two smallness conditions (2.14) and (2.15),
but our result is obtained in the general case of a nonlinearity H(x,s, &) which
satisfies only (1.2), with f € LV/?(Q) and with ag € L(Q), ¢ > & . Moreover, the
method which allows us to prove this result continues mutatis mutandis to work in
the nonlinear monotone case where the linear operator —div(A4(x)Du) is replaced
by a Leray-Lions operator —div(a(x,u, Du)) working in Wol’p (Q), for some
1 < p < N, and where the quasilinear term H (x,u, Du) has p-growth in |Dul.

Let us now describe the contents of the present paper.

The precise statement of our result is given in Section 2 (Theorem 2.1), as well
as the precise assumptions under which we are able to prove it. These conditions
in particular include the two smallness conditions (2.14) and (2.15).

Our method for proving Theorem 2.1 is based on an equivalence result (see
Theorem 3.5) that we state in Section 3 once we have introduced the functions
Ks(x,s,{) and g5(s) (see (3.6) and (3.7)) and made some technical remarks on
them. This result is very close to the equivalence result given in the paper [13]
by V. Ferone and F. Murat.

This equivalence result implies that in order to prove the existence of a
solution u of (1.1) which satisfies (1.4) and (1.5), it is equivalent to prove (see
Theorem 3.8) the existence of a function w defined by (3.31), i.e.

(1.9) W= 1 (e%ll — 1) sign(u),
do

which satisfies (3.33), i.e.

we Hl(Q),
(1.10) —div(A4(x)Dw) + Ks,(x, w, Dw) sign(w)
= (1 +do|w|) f(x) + ao(x)w + aop(x)gs, (w) sign(w) in 2'(Q),
and the estimate (3.34), i.e.
(1.11) IWlle @) < Zows

(which is nothing but (1.5)).

Our goal thus becomes to prove Theorem 3.8, namely to prove the existence
of a solution w which satisfies (1.10) and (1.11).

Problem (1.10) is very similar to problem (1.1), since it involves a term
—K5,(x,w, Dw) sign(w) which has quadratic growth in Dw as well as a zeroth
order term Jdo|w| f(x) + ao(x)w + ap(x)gs, (w) sign(w). But this problem is also very
different from (1.1), since the term —Kj, (x, w, Dw) sign(w) with quadratic growth
in |Dw| has now the “good sign property” (see (1.8)), since Kj,(x, s, ) satisfies

Kéo (x7 S, é) = 07
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while the zeroth order term is now no more a linear but a semilinear term with
lw|"™ growth in w (see (6.20)) due to presence of the term o (x)gs, (w) sign(w).

We will prove Theorem 3.8 essentially by applying Schauder’s fixed point
theorem. But there are some difficulties to do it directly, since the term with qua-
dratic growth Kj,(x,w, Dw)sign(w) only belongs to L'(€) in general. We there-
fore begin by defining an approximate problem (see (4.1)) where K;(x,w, Dw) is
remplaced by its truncation at height k, namely T (K5(x, w, Dw)), and we prove
(see Theorem 4.1) that if /" and ay satisfy the two smallness conditions (2.14) and
(2.15), this approximate problem has at least one solution wy which satisfies the a
priori estimate

(1.12) Wil gy ) < Zoo-

This result, which is proved in Section 4, is obtained by applying Schauder’s fixed
point theorem in a classical way.

We then pass to the limit as k tends to infinity and we prove in Section 5 that
(for a subsequence of k) wy tends to some w* in HJ(Q) strongly (see (5.3)) and
that this w* is a solution of (1.10) which also satisfies (1.11) (see End of the proof
of Theorem 3.8).

This completes the proof of Theorem 3.8, and therefore proves Theorem 2.1,
as announced.

This proof follows along the lines of the proof used by V. Ferone and
F. Murat in [13] in the case where ay = 0. As mentionned above, this method
can be applied mutatis mutandis to the nonlinear case where the linear operator
—div(A(x)Du) is replaced by a Leray-Lions operator —div(a(x,u, Du)) working
in W, (Q) for some 1 < p < N, and where the quasilinear term H (x,u, Du) has
p-growth in |Du|, as it was done in [14] by V. Ferone and F. Murat in this non-
linear setting when ay = 0. This will be the goal of our next paper [18].

2. MAIN RESULT

In this paper we consider the quasilinear problem

' —div(A(x)Du) = H(x,u, Du) + ap(x)u + f(x) in 2'(Q),

where the set Q satisfies (note that no regularity is assumed on the boundary
of Q)

(2.2) Q is a bounded open subset of RY, N > 3,

where the matrix 4 is a coercive matrix with bounded measurable coefficients, i.e.

A e (L7(@)™",
(2.3) : 5 N
x>0, Ax)EE=all]” ae.xeQ, VEeR",
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where the function H(x, s, &) is a Carathéodory function with quadratic growth in
¢, and more precisely satisfies

H:Qx RxRY = Ris a Carathéodory function such that
(2.4) —coA(x)EE < H(x,s, &) sign(s) < pA(x)EE,
ae.xeQ, VseR, VéeRY, wherey>0andcy >0,

where sign : R — R denotes the function defined by

+1 if >0,
(2.5) sign(s) =< 0 if s=0,
-1 if s<0,
where the coefficient a satisfies
N
(2.6) ap € L1(Q) for some g > 5 o >0, ay#0,

. . . N
as well as the technical assumption (note that, since — < when3 <N <6

2 6-N
and since Q is bounded, this assumption can be made without loss of generality
once hypothesis (2.6) is assumed)

N
(2.7) 5 <4<¢—w when 3 < N <6,
and finally where
(2.8) feLV*Q), f#0.

Since N > 3, let 2* be the Sobolev’s exponent defined by
11 1

22N
and let Cy be the Sobolev’s constant defined as the best constant such that
(2.9) gl < Cxl|Dglly, Vo € Hy(Q).

We claim that in view of (2.6) and (2.7), one has

2*
(2.10) 0<-2<1,

where ¢’ the Holder’s conjugate of the exponent g, i.e.

1 1
—+-=1
q9 4q
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indeed easy computations show that

0<= -2 =

<q, e 4>,
2% 1 6-—N
N B | s '
. <l & q> N

where the latest inequality is satisfied when N > 6 and is equivalent to ¢ < -
when N < 6 (see (2.7)). -
We now define the number 6 by

2*

(2.11) 6:?—2
In view of (2.10) we have
(2.12) 0<O<1.

Since Q is bounded, we equip the space H|(Q) with the norm

(2.13) ||u||]-101(Q) = ||Du||L2(Q)N'

We finally assume that " and a, are sufficiently small (see Remark 2.2), and
more precisely that

(2.14) o~ Cillaolly )y = 7C IS Ny > O,
0 (20— Clllaolly, = 7C Ay """
(2.15) 1/ 1) < 150 270 1/0 ’
+ ((1+0)GC3|laoll,)

where the constant G is defined by (6.14).
Observe that in place of (2.14) we could as well have assumed that

o — C/%/HaOHN/Z - VC/%/HfHN/z >0,

but that when equality takes places in the latest inequality, inequality (2.15)
implies that /' =0, and then u =0 is a solution of (2.1), so that the result of
Theorem 2.1 becomes trivial.

Our main result is the following Theorem.

THEOREM 2.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant oy with oy = v, and a constant Zs,, which are defined
in Lemma 6.2 (see (6.13), (6.16), (6.17)) and (6.18)), such that there exists at least
one solution u of (2.1) which further satisfies

(2.16) (el — 1) e H}(Q),
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with

< Zgo.

Hy(Q)

) dolul _ 1
() e
(2.17) [ Dul| > 3y v = 4’

0o

Our proof of Theorem 2.1 is based on an equivalence result (Theorem 3.5)
which will be stated and proved in Section 3. This equivalence Theorem will
allows us to replace proving Theorem 2.1 by proving Theorem 3.8 which is
equivalent to Theorem 2.1.

REMARK 2.2. In this Remark, we consider that the open set Q, the matrix 4 and
the function H are fixed (and therefore in particular that the constants « > 0 and
y > 0 are fixed), and we consider the functions ¢y and f" as parameters.

Our first set of assumptions on these parameters (assumptions (2.6) and (2.7))
is that ay belongs to L(Q) with ¢ > % (and that ¢ < 2 when 3 <N < 6; as
said above this assumption can be made without loss of generality). This first set
of assumptions is essential to ensure (see (2.10)) that the exponent ¢ defined by
(2.11) satisfies 0 < 6 < 1 (see (2.12)). We also assume ay > 0 and ag # 0.

Our second set of assumptions on these parameters is made of the two small-
ness conditions (2.14) and (2.15).

Indeed, if, for example, aq is sufficiently small such that it satisfies

2
o — Cyllao|ly /2 > 0,

then the two smallness conditions (2.14) and (2.15) are satisfied if |||/, (and
therefore || /]| -1q)» since LN*(Q) = H~'(Q)) is sufficiently small.
Similarly, if, for example, f is sufficiently small such that it satisfies

5= 7 f Nl > 0,

then the two smallness conditions (2.14) and (2.15) are satisfied if ||aol|,, is suffi-
ciently small (which implies, since L4(Q) = L¥/?(Q), that ||ao||y/, is sufficiently
small), since [lao||, appears in the denominator of the right-hand side of (2.15).

O

REMARK 2.3. The definitions of the two constants dy and Zs, which appear
in Theorem 2.1 are given in (the technical) Appendix 6 (see Lemma 6.2). These
definitions are based on the properties of the family of functions ®s (see (6.13))
which look like convex parabolas (see Figure 2 and Remark 6.3): the constant J
is the unique value of the parameter ¢ for which the function @5, has a double
zero, and Zs, is the value of this double zero. The two smallness conditions
(2.14) and (2.15) ensure that J satisfies dp > 7, a condition which is essential in
our proof.

In Remark 3.9 we try to explain where the two smallness conditions (2.14) and
(2.15) come from.
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In Remark 3.10, we explain why we have chosen to state Theorem 3.8 with
0 = 0y rather than with a fixed J with y <J < dy. O

REMARK 2.4. In assumption (2.2) we have assumed that N > 3, because we
will use the Sobolev’s embedding (2.9). All the proofs of the present paper can
nevertheless be easily adapted to the cases where N =1 and N = 2, providing
similar results, by using the fact that H}(Q) = L*(Q) when N =1 and that
H{(Q) = LP(Q) for every p < +o0 when N =2, and by replacing the assump-
tion ¢ > & made in (2.6) when N >3 by ¢ =1 when N =1 and by ¢ > 1 when
N = 2, and the assumption f € L"/?(Q) made in (2.8) when N > 3 by f € L1(Q)
when N =1 and by f € L"(Q) with m > 1 when N = 2 (and also replacing the
norm || /1|, by the corresponding norm).

In assumptions (2.6) and (2.8) we have assumed that ay # 0 and that f # 0.
Indeed the case where ap = 0 has been treated by V. Ferone and F. Murat in
[13], and in the case where f = 0, then u = 0 is a solution of (2.1) and the results
of the present paper become trivial. O

3. AN EQUIVALENCE RESULT

The main results of this Section are Theorems 3.5 and 3.8. In contrast, Remarks
3.1, 3.2 and 3.4 and Lemma 3.3 can be considered as technical results.

Indeed, as said above, the proof of Theorem 2.1 is based on the equivalence
result of Theorem 3.5 that we state and prove in this Section. This equivalence
Theorem in particular implies that Theorem 3.8, which we state at the end of
this Section, is equivalent to Theorem 2.1. Theorem 3.8 will be proved in Sections
4 and 5.

This Section also includes Remark 3.9 in which we try to explain where the
two smallness conditions (2.14) and (2.15) come from, as well as Remark 3.10
where we explain why we have chosen to state Theorem 3.8 for ¢ = Jy.

In this Section (as well as in the whole of the present paper) we always assume
that

(3.1) 0> 0.

Let us first proceed with a formal computation.
If u is a solution of

(3.2) { —~div(4(x)Du) = H(x,u, Du) + f(x) + ap(x)u in Q,

u=0 ondQ,

and if we formally define the function ws by

(3.3) ws = = (e — 1) sign(u),

SR
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where the function sign is defined by (2.5), we have, at least formally,

1
e = 140lws|,  |u] = 5 log(1 +0]ws]), sign(u) = sign(ws),

34 '
(34) Dws = e’ Du,  A(x)Dws = e’ A(x)Du,

—div(A4(x)Dws) = —0e’ A(x) DuDu sign(u) — e’ (div(A(x)Du)),
and therefore wy is, at least formally, a solution of

—div(A(x)Dws) = —0e’ A (x) DuDu sign(u) + e’ H (x, u, Du)
+ e £ (x) + elag (x)u

(3.5) = —K;(x, ws, Dw;) sign(w;)

+ (1 46lws]).f (x) + ao(x)ws

+ ao(x)gs(ws) sign(w;)  in Q,

ws =0 on 0Q,

whenever the functions K5 : Q x R x RY — R and g5 : R — R are defined by the
formulas

0

Ks(x,1,{) *WA(X)CC

(3.6) 1 . ¢ .
—(1 +5|t|)H(x,5 log(1 +0|¢]) &gn(t),T&M) sign(1),

ae.xeQ, VieR, V(eRY,

and
1

(3.7) gs(t) = —|t| +5(1 +0|t|) log(1 +4|t|), VteR,

which is equivalent to
. 1 .
(3.8) t+ gs5(1) sign(z) = (1 +5|Z|)5 log(1 +J|z|) sign(z), Vie R.

Conversely, if wg is a solution of (3.5), and if we formally define the function u
by

1
(3.9) u=s log(1 + o|ws|) sign(ws),

the same formal computation easily shows that u is a solution of (3.2).

The main goal of this Section is to transform this formal equivalence into a
mathematical result, namely Theorem 3.5. We begin with three remarks on the
functions K and g5, namely Remarks 3.1, 3.2 and 3.4.

REMARK 3.1. Observe that, because of the inequality (2.4) on the function H,
and because of the coercivity (2.3) of the matrix 4, one has



QUASILINEAR PROBLEMS INVOLVING A NONCOERCIVE ZEROTH ORDER TERM

(3.10)

(co +0)A(x)(C >

co+0

WA(X)CC
= U;SWA(X)CH (1 +5|t|)(1+CWA(xm
> Ks(x,1,0)
= (ljw/l(x)a— (1 +5|[|)m/1(xm
- %A(X)CC > —16 — 714X,

ae.xeQ, VieR, Y eRY, V5>0.

When ¢ > y, this computation in particular implies that

(3.11)

+0)A(x){ = K;(x,1,() > 0

(co
{a.e.er, VieR, Y(eRY ifdo>y.

205

d

REMARK 3.2. In this technical Remark we prove that the functions Ks(x, w, Dw)
and Kj(x,w, Dw) sign(w) are correctly defined and are measurable functions when
w e H'(Q), and we prove their continuity with respect to the almost everywhere
convergence of w and Dw (see Lemma 3.3).

Note that the functions Kj(x, 7, {) defined by (3.6) and Ks(x, z,{) sign(¢) are not
Carathéodory functions, because their definitions involve the function sign(7),
which it is not a Carathéodory function since is not continuous at ¢ = 0. This
lack of continuity in # =0 is however the only obstruction for the functions
Ks(x,t,{) and K5(x, t,{) sign(¢) to be Carathéodory functions, and

(3.12) {

for every w €
the functions

H'(Q),
Ks(x,w, Dw) and K;(x,w, Dw) sign(w) are well defined

and are measurable functions,

as it immediately results from the two formulas

(3.13)

K(;(X, Z, C) =

a.e. x € Q,

0

WA(X)CC
1+0|t)H 11 1 4+6|¢|) si . i

= (U4 0l (. 5 Tog(1 + 0l sign(0), 5. ) sign(1)
0

ol A5

1 ¢
+ 20y (O AU H (x, = og(1 401D, 1500 )

= A=y (1)0

1 ¢
= o0y (1 Ol H (x5 og(1 +01), 150 )

Vie R, V(eRY,
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K5(x,1,{) sign(z)

. 0
= Slgn(t)m/l(x)cc
1 . 4
—(1 +5|t|)H(x,5 log(1 +]1]) sign(r).; +6ltl)
0 0
(3.14) = *X{z<0}(f)WA(X)CC+X{1:0}(Z)O + X0y () 5ol A(x)(C
1 ¢
= Zaeoy (1 Al H (x, = og(1 +01e), 1500
_X{z=0}(t)H(x707C)
~ 2y (1 + Ol H (x L log(1 +511) L)
{0} 0 "1+0le] /)
ae.xeQ, VieR, V(eR".
Moreover, in view of (3.10) one has
(3.15) {K(;(x, w,Dw) € L'(Q), Ks(x,w, Dw)sign(w) e L'(Q),
' Ywe HY(Q), V¥>0. |

One also has the following convergence result.

LemMA 3.3. Consider a sequence w, such that

(3.16) {wn eHl(Q),. we H(Q), .
w, — wa.e. in Q, Dw, — Dwa.e.in Q.
Then
(3.17) {K(;(x, Wy, Dwy,) —> Ks(x,w,Dw) a.e.in 9, .
Ks(x, wy, Dwy,) sign(w,) — Ks(x,w, Dw)sign(w) a.e.in Q.

PROOF. On the first hand, we have the following almost everywhere convergences

1+§|WH|A(X)DW,,DW,1 — TMA(X)DWDW a.e. in Q,
(1—1—5\wn|)H<x,—llog(1+5|wn\),7Dw” )
0 1 +0|w,|
1 Dw .
(3.18) = (ol (x,— S log(1 4 o), g5 ) ae in©,
H(x,0,Dw,) — H(x,0,Dw) a..inQ,
(1 +5‘Wn|)H<X,% log(1 +5ywn|),%”|';n|)

(1 +5|w|)H(x%10g(l +olw)), ) ae. in Q.

Dw
1 +6|w|
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On the other hand, for almost every x fixed in the set {y € Q : w(y) > 0}, the
assertion wy(x) — w(x) implies, since w(x) > 0, that one has w,(x) > 0 for n
sufficiently large (depending on x), and therefore that, for some n > n*(x), one
has

for n > n*(x),
for n > n*(x),

Liwn<0y (X)) = 0 =y (W(x))

( )
) for n > n*(x).
3.

)
(3.19) X =0y (Wn () = 0 = yp,—gy (W(x)
X{wn>0}(wn(x)) =1= X{w>0}(w(x)

These convergences and (3.18) imply, in view of (3.13) and (3.14), that

Ks(x,wy, Dw,) — Ks(x,w,Dw) a.e.in{yeQ:w(y) >0},
K5(x, w,, Dw),) sign(w,) — Ks(x,w, Dw)sign(w) a.e.in{y e Q:w(y)>0}.

The same proof gives the similar result in the set {y € Q: w(y) < 0}.
The proof in the set { y € Q : w(y) = 0} is a little bit more delicate. Let us first
observe that for w e H'(Q) one has

(3.20) Dw=0 ae in{yeQ:w(y) =0},

and since inequality (2.4) on the function H implies that

(3.21) H(x,5,0)=0 ae.xeQ,VseR,s#0,

and therefore by continuity in s that

(3.22) H(x,0,0) =0 ae. xeQ.

Then, on the first hand, these results and formulas (3.13) and (3.14) imply that
(3.23)  Ks(x,w,Dw) = Ks(x,w, Dw)sign(w) =0 a.e.in{ye Q:w(y)=0}.

On the other hand, in view of (3.20) and (3.22), the four functions which appear in
the four limits in (3.18) vanish almost everywhere in the set {y € Q : w(y) = 0}.
Even if we do not know anything about the pointwise limits of the functions

X{w,,<0}(wn(x)>7 X{uf'n:O}(Wn(x)) and ){{Wn>0}(Wn(X)) in the set {y €Q: W(y) = O},
this fact and formulas (3.13) and (3.14) prove that

Ks(x,w,,Dw,) — 0 ae.in{yeQ:w(y) =0},

B2 Doyl 0 e by i) 0}

From (3.23) and (3.24) we deduce that

Ks(x,wy,, Dw,) — Ks(x,w,Dw) a.e.in{y € Q:w(y) =0},
(3.25) Ks(x,wy, Dwy,) sign(w,) — Ks(x, w, Dw) sign(w)
a.e.in {yeQ:w(y) =0}

This completes the proof of (3.17). O
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REMARK 3.4. Observe that the function gs(s) sign(s) is a Carathéodory function
since in view of (6.4) this function is continuous at s = 0. This allows one to
define gs5(w) sign(w) as a measurable function for every w e H'(Q). O

The main result of this Section is the following equivalence Theorem.

THEOREM 3.5. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true, and
let 6 > 0 be fixed. Let the functions K5 and gs be defined by (3.6) and (3.7).
If u is any solution of (2.1) which satisfies

(3.26) (e — 1) e HY(Q),

then the function ws defined by (3.3), namely by

ws = — (e — 1) sign(u),

SO

satisfies

ws € Hj (Q),
(3.27) —div(A(x)Dws) + Ks(x, ws, Dws) sign(ws)
= (1 4 J|ws|) f(x) + ao(x)ws + ao(x)gs(ws) sign(ws) in 2'(Q).

Conversely, if ws is any solution of (3.27), then the function u defined by (3.9),
namely by

1
u=s log(1 + o|ws|) sign(ws),

is a solution of (2.1) which satisfies (3.26).

REMARK 3.6. Every term of the equation in (3.27) has a meaning in the sense of
distributions: indeed the first term of the left-hand side of the equation in (3.27)
belongs to H~'(Q); on the other hand, the four other terms of the equation are
measurable functions (see Remarks 3.2 and 3.4); the second term of the left-hand
side of the equation in (3.27) belongs to L!'(Q) in view of (3.10), while the three
terms of the right-hand side of the equation in (3.27) can be proved to belong to
(L*"(Q))’ (see e.g. the proof of (3.40) in Remark 3.9 and the proof of (4.8) in the
proof of Lemma 4.2). O

REMARK 3.7. Observe that the equivalence Theorem 3.5 holds true without
assuming the two smallness conditions (2.14) and (2.15); moreover one could
even have removed in (2.3) the assumption that the matrix A is coercive, and still
obtain the same equivalence result.

Note however that Theorem 3.5 is an equivalence result which does not proves
neither the existence of a solution of (2.1) nor the existence of a solution of (3.27),
but which assumes as an hypothesis either the existence of a solution of (2.1)
which also satisfies (3.26), or the existence of a solution of (3.27). O
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PROOF OF THEOREM 3.5. Define the function f by

(3.28) S () = £ () + ao(x)u(x),
In view of (3.3) and of the definition (3.7) of g5(s), one has (see (3.8) and (3.4))

(14 0|ws|) f(x) 4+ ao(x)ws + ao(x)gs(ws) sign(ws)
(3.29) — (1 +5|w(5|)( () +ao(x)% log(1 + J|ws|) sign(w(;))
= (1 +0]ws]) (f (x) + ao(x)u(x)) = (1 +|wy]) £ ().

Then Theorem 3.5 becomes an immediate application of Proposition 1.8 of
[13], once one observes that

(3.30) feLNQ);

such is the case in the setting of Theorem 3.5: indeed f = f + agu, where f
belongs to LY/?(Q) by assumption (2.8), and where ayu also belongs to LV/?(Q),
since aq is assumed to belong to L4(Q), ¢ >4 (see assumption (2.6)), while
u belongs to L"(Q) for every r < 40, since by (3.26) (¢’ — 1) is assumed to
belong to HJ(Q), hence in particular to L'(Q), which implies that ¢’ belongs
to L'(Q). Theorem 3.5 is therefore proved. 0

From the equivalence Theorem 3.5 one immediately deduces, setting

(3.31) w= ; (e% — 1) sign(u)
0

and equivalently
1

(3.32) u=g

log(1 + do|w|) sign(w),

that Theorem 2.1 is equivalent to the following Theorem.

THEOREM 3.8. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Then there exist a constant &y with 6y >y, and a constant Zs,, which are defined
in Lemma 6.2 (see (6.13), (6.16), (6.17) and (6.18)), such that there exists at least
one solution w of

we Hl (Q),
(3.33) § —div(A(x)Dw) + Ks,(x, w, Dw) sign(w)
= (14 do[w|) f (x) + ao(x)w + ao(x)gs, (w) sign(w) in 7'(Q),

which satisfies

(3.34) 19l @ < Za
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The rest of this paper will therefore be devoted to the proof of Theorem 3.8.
This will be done in two steps: first, in Section 4, we will prove the existence of a
solution satisfying (3.34) for a problem which approximates (3.33), see Theorem
4.1; second, in Section 5, we will pass to the limit in this approximate problem
and prove that for a subsequence the limit satisfies (3.33) and (3.34).

REMARK 3.9. In this Remark we assume that (2.2), (2.3), (2.4), (2.6), (2.7) and
(2.8) hold true. We also assume that the two smallness conditions (2.14) and
(2.15) hold true, and we try to explain how these two conditions come from an
““a priori estimate” that one can obtain on the solutions of (3.27).

If w; is any solution of (3.27), using Ty (ws) € H} (Q) N L*(Q) as test func-
tion, where Ty : R — R is the usual truncation at height & defined by

—k if s < —k,
(3.35) Ti(s) = {s if —k <s<+k,
+k if +k <,

one has
/ A(X)DW5DTk(14/5) dx + / K(s(x, Ws, DW(5)|Tk(W(5)‘ dx
Q Q

(3.36) = /Q () Tie(ws) dx + /Q Of ()| ws| Tie (w5) dx

—l—/gao(x)w(sTk(w(;) dx+/an(x)gg(w(;ﬂTk(w(s)\dx.

In this Remark we will assume that o satisfies
(3.37) y <0 <0y,

where 0, is defined by (6.11) (note that one has y < d;, see (6.12)). Since 6 > y by
(3.37), we deduce from (3.11) that Kj(x,s,{) > 0, and therefore that the second
term of the left-hand side of (3.36) is nonnegative. Using this fact and passing to
the limit as k tends to +oo in the five other terms of (3.36) (since |T%(ws)| < |ws],
this is easy using Lebesgue’s dominated convergence theorem and the Holder’s
inequalities that we will use just below), we obtain

/ A(x)DwsDw; dx
Q

(3.38) < / F(x)wsdx + / Of (x)|ws|* dx
Q Q

+ / ao(x)|ws|* dx + / ao(x)gs(ws)|ws| dx.
Q Q

In (3.38) we use in the left-hand side the fact that the matrix A is coercive (see
(2.3)), in the first term of the right-hand side the fact that 1 € LV/?(Q) (see (2.8)),
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which implies that f € H~'(Q), in the second and in the third terms of the right-
hand side Holder’s inequality with

i+i+l—1
% 2% 2*_ ’

and finally in the fourth term of the right-hand side the second statement of
(6.19), namely

(3.39) 0<gs(t) <G|, VieR, t#0,¥5,0<06<6,
(note that here we use 6 < Jy, see (3.37)) and Holder’s inequality with

Lo1+o, 1
2 2

(which results from the definition (2.11) of #). We obtain

(3.40) o[ Dwsll3 < 1/ 1l -1 1DWslla + 8111l ol ws
' ZH0 i ws #0,

2
2‘)(

2
+ llaolly jollwsll- + Gllaoll,[Iwsl

(note that in view of (3.39), inequality (3.40) is actually a strict inequality). Using
Sobolev’s inequality (2.9) and dividing by || Dws||, this implies that (note that in
view of (2.8), the result remains true even in the case where ws = 0)

(3.41) {ocHDW(SHz </ lz1) +5C12v||f||N/2||DW6||2
. 140
+ Chllao|l o | Dwsll, + GCFlaoll | Dwslly ™.

In view of the definition (6.13) of the function ®; (see also Figure 2), we have
proved that if w; is any solution of (3.27), one has

(3.42) Os(|[Dwsl,) >0 if y <d <0y
But by the definition of dy, one has
Ds(X) >0, VX >0,V ) <0 <0,

and therefore inequality (3.42) does not give any information on || Dwsl|, when &
satisfies dp < & < d;. In contrast, when ¢ < dy, the strict inequality (3.42) implies
that

(3.43) either |[Dws||, < Y5 or |[Dws|, > Y, if 6 < Jy,

where Y5 < Y(;r are the two distinct zeros of the function ®; (see Remarks 6.3
and 6.5 and Figure 2), while when ¢ = dy, the strict inequality (3.42) implies that

(3.44) either ||Dws, ||, < Zs, or | Dws,|l, > Zs, if 6 = .

Inequalities (3.43) and (3.44) are not a priori estimates, since they do not
imply any bound on || Dws||,. Nevertheless these inequalities exclude the closed
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interval [Y;, Y;'] or the point Zs, for | Dws||,, and they give the hope to prove
the existence of a fixed point in the set || Dws|, < Y, , when 6 < dy, or in the set
| Dws, ||, < Zs,, when 6 = .

These inequalities also explain where the two smallness conditions (2.14) and
(2.15) come from. Indeed (see Remark 6.3), these two smallness conditions imply
that the value oy of J for which ®; has a double zero satisfies dp > y, which is the
case where, as said just above, some hope is allowed. |

REMARK 3.10. In the present paper, we have chosen to prove the existence of a
function w which is a solution of (3.33) (or in other terms of a function w = wj,
which is a solution of (3.27) with J =Jy) which satisfies ||w]|| @) = Zo (see
(3.34)). When y < dy, i.e. when the inequality (2.15) is a strict 1nequa11ty, we could
as well have chosen to prove that for every fixed d with y <J < dy, there exists
a function ws; which is a solution of (3.27) which satisfies |Wwsl| m@ < Y5
where Y is the smallest zero of the function ®; (see Remark 6.5 and Flgure 2):
indeed the proofs made in Sections 4 and 5 continue to work in this framework
and allow one to prove this result.

In this framework, if we define, for any fixed 0 with y < 0 < dy, the function #;
by

1 . N
— < log(1 + i) sign(i)

(3.45) 5

(compare with the definition (3.32) of u, where J = dy), the existence of a solu-
tion W of (3.27) which satisfies ||w;]| o) < Y; proves (see the equivalence
Theorem 3.5) that s defined by (3.45) is a solution of (2.1) which satisfies

e’ Dy |, = | D, < Y.

But the function u which is defined by (3.32) from the function w given by
Theorem 3.8 satisfies (2.1) (by the equivalence Theorem 3.5 with ¢ =Jj) and
(see (3.4) again)

le® Dull, = | Dwl, < Zs,.
When 6 < g, we therefore have

| Dully < || Dul, < Zs,, it 6 < o,

and therefore ¢’ — 1 € H}(Q). By the equivalence Theorem 3.5, the function

ws defined from u by
1
(3.46) W5 =5 (e?M — 1) sign(u)

is a solution of (3.27). Moreover, since Div; = ¢’ Du and since Zs;, < Y, for
0 < dy (see (6.25)), one has in particular

||DW5||2 < Y(;L, if 0 < 0y,
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which implies by (3.43) that i, satisfies
(3.47) |Dwsll, < Yy .

Therefore the result of Theorem 3.8 (which is concerned with the case J = dy)
provides us with a function w, and then with a function u defined by (3.32), and
finally with a function Wy defined by (3.46) which is a solution of (3.27) and
which satisfies (3.47). This function s is a solution w;s of (3.27) which satisfies
W] mi@) < Y, . Therefore the result of Theorem 3.8 (where 0 = o) also pro-
vides us for every ¢ with y < < dyp with an alternative proof of the result stated
in the second paragraph of the present Remark. O

4. EXISTENCE OF A SOLUTION FOR AN APPROXIMATE PROBLEM

In this Section we introduce an approximation (see (4.1)) of problem (3.33).
Under the two smallness conditions (2.14) and (2.15), we prove by applying
Schauder’s fixed point theorem that this approximate problem has at least one
solution which satisfies the estimate (3.34).

Let 0y be defined by (6.13), (6.16), (6.17) and (6.18). For every k > 0, we con-
sider the approximate problem of finding a solution wy of (compare with (3.33))

Wi € I‘IO1 (Q),
(4.1) ¢ —div(A4(x)Dwy) + Ty (Ks,(x, Wi, Dwy)) sign, ()
= (1 +o|wk|) f(x) 4+ ao(x)wi + ao(x)gs, (i) sign(wi) in 2'(Q),

where T} is the usual truncation at height k& defined by (3.35) and where
sign, : R — R is the approximation of the function sign which is defined by

ks, if 5| <

(4.2) sign, (s) = ’

= =

sign(s), if |s] >

THEOREM 4.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.
Let 6y and Zs, be defined in Lemma 6.2 by (6.13), (6.16), (6.17) and (6.18), and
let k > 0 be fixed.

Then there exists at least one solution of (4.1) such that

(4.3) Wil gy ) < Zoo-

The proof of Theorem 4.1 consists in applying Schauder’s fixed point theorem.
First we prove the two following lemmas.

LemMmaA 4.2. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true,
and let k > 0 be fixed.
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Then, for every w e HJ(Q), there exists a unique solution W of the following
semilinear problem

W e Hy(Q),
(4.4)  —div(A4(x)DW) + Ti(Ks, (x, w, Dw)) sign, (W)
= (1 4+ Jo|w|) f(x) + ao(x)w + ao(x)gs, (W) sign(w) in 2'(Q).

Moreover W satisfies

45) A DWWy < 1 flli-1() + 00 CRIS My jo[1DWII
: 0
+ C?vIIaoIIN/zIIDWHz + GCFM aoll, Dw], ™

where Cy and G are the constants given by (2.9) and (6.14).

PROOF. Problem (4.4) is of the form

{WeH&(QL

(4.6) —div(4(x)DW) + b(x) sign,(W) = F(x) in 7'(Q),

where b(x) and F(x) are given. Since b(x) = Ty (Ks,(x,w, Dw)) belongs to L~ (Q)
and is nonnegative in view of (3.11) and of dy >y (see (6.16)), since the func-
tion sign, is continuous and nondecreasing, and since F belong to H~'(Q) (see
e.g. the computation which allows one to obtain (4.8) below), this problem has a
unique solution.

Since W e H}(Q), the use of W as a test function in (4.4) is licit. Since the
function T (Ks(x,,{)) is nonnegative, this gives

/A(x)DWDdeS /(1+50|w|)f(x)de
(4.7) @ @

+/an(x)dex+/an(x)ggo(w) sign(w) W dx.

As in the computation made in Remark 3.9 to obtain the inequality (3.40),
we use in (4.7) the coercivity (2.3) of the matrix 4, Holder’s inequality with

1 1 1 1+60 1
~ tor T + = 7= = 1, inequality (6.20) on g;,, Holder’s inequality Wlth p +— 7 + 7

:2 1 (which results from the definition (2.11) of ), and finally Sobolev’s inequality
(2.9). We obtain
ADWIE < 111 L1 IDW lly +Soll Ly all Wl W1
+ llaolln 2 Wl [1W1]5- W
< 1@ I PW, +50C12v||fHN/zHDWHzllDWllz
+ C12\7||a0||N/2||DW|| IDW 5+ GCRlaoll, || DW ]y | DWW,

(4.8)

which immediately implies (4.5). O
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LemMA 4.3. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true. Let
k > 0 be fixed.
Let w, be a sequence such that

(4.9) wy —w in Hy (Q) weakly and a.e. in Q.
Define W, as the unique solution of (4.4) for w = wy, ie.

Wn € Hol (Q)7
(4.10) ¢ —div(A(x)DW,) + Ti(Ks, (x, W, Dwy)) signy (W,,)
= (14 o|wal) S (x) + ao(x)wy + ao(x)gs, (wn) sign(w,) —in 2'(Q).

Assume moreover that for a subsequence, still denoted by n, and for some
W* e HL(Q), W, satisfies

(4.11) W, — W* in Hy(Q) weakly and a.e. in Q.
Then for the same subsequence one has
(4.12) W, — W* in H}(Q) strongly.
PROOF. Since W, — W* e H}(Q), the use of (W, — W*) as test function in

(4.10) is licit. This gives
/ A(X)D(W, — WHD(W, — W*) dx
Q
- —/ A(X)DW*D(W, — W*) dx
Q

(4.13) - /Q (Ko (x, 10, D)) signg (W) (W — W*) dx

+/Q(1—|-5o|wn|)f(x)(Wn—W*)dx—l—/gao(x)w,,(Wn—W*)dx

—l—/an(x)g(;o(wn) sign(wy) (W, — W) dx.

We claim that every term of the right-hand of (4.13) tends to zero as n tends to
infinity.

For the first term, we just use the fact that W, — W* tends to zero in Hj (Q)
weakly.

For the second term, we use the fact T (K5, (x, w,, Dw,)) sign, (W,) is bounded
in L*(Q), since k is fixed, while W, — W* tends to zero in L'(Q) strongly.

For the last three terms we observe that, since w, and W, respectively con-
verge almost everywhere to w and to W* (see (4.9) and (4.11)), we have

(1400 |wal) f (xX)(Wy — W*) — 0 a.e.in Q,

(4.14) ao (X)W (Wy — W*) — 0 a.e. in Q,
ao(x)gs,(wy) sign(w,) (W, — W*) — 0 a.e.in Q.
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We will now prove that each of the three sequences which appear in (4.14) is
equiintegrable. Together with (4.14), this will imply that these sequences converge
to zero in L'(Q) strongly, and this will prove that the three last terms of the right-
hand side of (4.13) tend to zero as n tends to infinity.

In order to prove that the sequence ( + 0o|wn|) f (x) (W, — W*) is equiinte-

1
grable, we use Holder’s inequality w1th 57+ t 57 = 1. For every measurable
5

set E, E = Q, we have 2

Lém+%wmﬂwmavax

2/N
< (10 ax) 1+ Sl 17, =

QUVMWMW,

where ¢ denotes a constant which is independent of 7.
Proving that the sequence ao(x)w,(W, — W*) is equiintegrable is similar,
since for every measurable set E, E < Q, we have

/ Lo (X)wa (W — W) dic
E

2/N 2/N
< (/ |a0(x)|N/2dx) [ . s(:(/ |ao(x)|N/2dx> .
E E

Finally, in order to prove that the sequence ao(x)gs, (W) sign(w, ) (W, — W*)

is equiintegrable we use as in (4.8) inequality (6.20) and Hdlder’s inequality

1 1
wi th + %9 + 7= = 1; for every measurable set £, E < Q, we have
q

w,— W~

2%

/ |ao(x)gs, (Wn) sign(wy,) (W, — W*)| dx
E
< /|a0(x)|G|w,,|1+0|W,,— W*| dx
E

1/q
< (/ |a0(x)|qu) Gl |5 W — W SC(/ lao(x)| dx)
E E

We have proved that the right-hand side of (4.13) tends to zero. Since the
matrix A is coercive (see (2.3)), this proves that W, tends to W* in H}(Q)
strongly. Lemma 4.3 is proved. O

ProOF oF THEOREM 4.1. Recall that in this Theorem k > 0 is fixed.
Consider the ball B of H}(Q) defined by

(4.15) B={weH}(Q):|Dw|, < Zs,},
where Z;, is defined from Jy by (6.18).
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Consider also the mapping S : Hj (Q) — H(}(Q) defined by
(4.16) Sw) = W,

where for every w € HJ (Q), W is the unique solution of (4.4) (see Lemma 4.2).
We will apply Schauder’s fixed point theorem in the Hilbert space H{ (Q) to
the mapping S and to the ball B.

First step. In this step we prove that S maps B into itself.

Indeed by Lemma 4.2, W = S(w) satisfies (4.5); therefore, when || Dw|, < Z;,,
one has, in view of the definition (6.13) the function ®; and of the property (6.17)
of Z(so ,

A DWly < |1/l 10y +00CH 1 f Ly | Dl
+ Chllaolly ol DWll, + GC3llao ||| Dwll3
(4.17) < £l 10 +00CH I /2 Zs,
+ Cillaolly 0Zs, + GCFl|aoll, ZL
= aZs, + Os,(Zs,) = 0 Zs,,

i.e. [[DW], < Z;,, or in other terms W € B, which proves that S(B) < B.

Second step. In this step we prove that S is continuous from H/}(Q) strongly
into H}(Q) strongly.
For this we consider a sequence such that

(4.18) w, € B, w,—w In HO1 (Q) strongly,

and we define W, as W, = S(w,), i.e. as the solution of (4.10).

The functions w, belong to B, and therefore the functions I, belong to B in
view of the first step. We can therefore extract a subsequence, still denoted by n,
such that for some W* € H}(Q),

(4.19) W, — W* in H}(Q) weakly and a.e. in Q.
We can moreover assume that for a further subsequence, still denoted by 7,
(4.20) w, —w ae. inQ and Dw, — Dw a.e.in Q.

Since the assumptions of Lemma 4.3 are satisfied by the subsequences w,, and W,
the subsequence W, converges to W* in H}(Q) strongly.

We now pass to the limit in equation (4.10) as n tends to infinity by using the
fact that sign,(s) and gs,(s)sign(s) are Carathéodory functions, and the first
result of (3.17) as far as Ty (Ks,(x, w,, Dw,)) is concerned (this point is the only
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point of the proof of Theorem 4.1 where the assumption of strong H{ (Q) con-
vergence in (4.18), or more exactly its consequence (4.20), is used). This implies
that W* is a solution of (4.4). Since the solution of (4.4) is unique, one has
W* = S(w).

In view of the fact that W* is uniquely determined, we conclude that it was
not necessary to extract a subsequence in (4.19) and (4.20), and that the whole
sequence W, = S(w,) converges in H}(Q) strongly to W* = S(w). This proves
the continuity of the mapping S.

Third step. In this step we prove that S(B) is precompact in H_} (Q).

For this we consider a sequence w, € B and we define W, as W,, = S(w,); in
other terms W, is the solution of (4.10). Since w, and W, belong to B, they are
bounded in H}(Q), and we can extract a subsequence, still denoted by n, such
that

wy — w in H, (Q) weakly and a.e. in Q,
W, — W* in H}(Q) weakly and a.e. in Q.

Since w,, and W, satisfies the assumptions of Lemma 4.3, we have
W, — W* in H}(Q) strongly.

This proves that S(B) is precompact in H{ (Q) (note that in contrast with the
second step, we do not need here to prove that W* = S(w)).

END OF THE PROOF OF THEOREM 4.1. We have proved that in the Hilbert
space H{ (Q) the mapping S and the ball B satisfy the assumptions of Schauder’s
fixed point theorem. Therefore there exists at least one wy € B such that
S(wk) = wi. This proves Theorem 4.1. O

5. PROOF OF THEOREM 3.8

Theorem 4.1 asserts that for every k > 0 fixed there exists at least a solution wy,
of (4.1) which satisfies (4.3). We can therefore extract a subsequence, still denoted
by k, such that for some w* € Hj(Q)

(5.1) wp — w* in H} (Q) weakly and a.e. in Q,
where w* satisfies
(5.2) W ) < Zoy,

ie. (3.34).
In this Section we will first prove that for this subsequence

(5.3) wp — w* in Hj (Q) strongly,
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and then that w* is a solution of (3.33) (which satisfies (3.34)). This will prove
Theorem 3.8.
To prove (5.3), we use a technique which traces back to [6] (see also [13]).
For n > 0, we define G,, : R — R as the remainder of the truncation at height
n, namely

(5.4) Gu(s) =5 — Tu(s), VseR,

where T, is the truncation at height n defined by (3.35), or in other terms

(5.5) Gu(s) =<0 if —n<s<n,

{s+n if s < —n,
s—n 1if s>n.

First we prove the two following Lemmas.

LEMMA 5.1. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.

Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Let wy be a solution of (4.1). Assume finally that the subsequence wy satisfies (5.1).
Then for this subsequence we have

(5.6) lim sup/ |DG,(wi)|>dx — 0 asn— 4.
k—4o0 Q

PROOF. Since G,(wi) € H}(Q), the use of G, (wy) as test function in (4.1) is licit.
This gives

/A(X)DkaGn(Wk)dx—i—/ Ty (Ks, (x, wi, Dwy)) signy (wi ) G, (wy) dx
Q Q

5.7
(57) :/Q((1+60|wk)f(x)-l—ao(x)wk

+ ao(x)gs, (wi) sign(wk)) G, (wi ) dx.

Using the coercivity (2.3) of the matrix 4, we have for the first term of (5.7)

/A(x)DkaG,,(wk)dx:/A(x)DGn(wk)DG,,(wk)dx
Q

(5.8) o

Zoc/ |DG, (wi|* dx.
Q

On the other hand, since

sign, (s)Gy(s) =0, VseR,
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and since Ty (K3, (x, wi, Dwi)) > 0 in view of (3.11) and of dp > y (see (6.16)), we
have

(5.9) / Ty (Ks, (x, wi, Dwy)) signy (wi ) G, (wy) dx > 0.
Q

Finally, we observe that, by a proof which is similar to the one that we used in the
proof of Lemma 4.3, we have

((1 4 0o|wi|).f (x) 4+ ao(x)wi + ao(x)gs, (Wi ) sign(wi)) G (Wi
(5.10) — ((L4+00|w*|) f(x) + ao(x)w* + ag(x)gs, (w*) sign(w*)) G, (w*)
in L'(Q) strongly,

since the functions in the left-hand side of (5.10) converge almost everywhere in Q
and are equiintegrable.
Together with (5.7), the three results (5.8), (5.9) and (5.10) imply that

lim sup oc/ |DG,(wi|* dx
Q

k—+w0
G11) < /((1 + So|w*|) £ (x) + ao(x)w*
Q

+ ap(x)gs, (w*) sign(w*)) G, (w*) dx.

But since |G,(w*)| < |w*| and since G,(w*) =0 in the set {|w*| <n}, the
right-hand side of (5.11) is bounded from above by

(5.12) /{> }((1 + Golw DI/ ()| + a0 () ™| + ao(x)|ga, (W) ) w] dx,

which tends to zero when n tends to infinity because the integrand belongs to
LY(Q).
This prove (5.6). O

LEmMmA 5.2, Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.

Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.

Let wy. be a solution of (4.1). Assume finally that the subsequence wy, satisfies (5.1).
Then for this subsequence we have for every n > 0 fixed

(5.13) T(wi) — To(w*) in H}(Q) strongly as k — +oo.
PROOE. In this proof # is fixed. We define

(5.14) zr = Tp(wi) — Tu(w™),

and we fix a C! function ¥ : R — R such that

(5.15) Y(0) =0, ¥'(s) = (co+do)Y(s)| =1/2, VseR,
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where ¢y is the constant which appears in the left-hand side of assumption (2.4)
on H; there exist such functions i: indeed an example is

(co +50)2s2>.

W (s) =seXP( 2

First step. Since z; € H} (Q) n L*(Q), and since (0) = 0, the function v (zy)
belongs to Hy () n L™ (). The use of y(z,) as test function in (4.1) is therefore
licit. This gives

/A(x)Dkazktp/(zk)dx—l-/ T (Ks, (x, wi, Dwy)) signy (wi )W (zx) dx
Q

(5.16) ?
= [ (0o ) + ot
+ ao(x)gs, (wi) sign(wi) )W (zx) dx.
Since

(5.17) Dwy = DT, (wi) + DG,(wi) = Dz + DT,,(w*) + DG, (wy),

the first term of the left-hand side of (5.16) reads as

/A(X)DWkDZklp/(Zk) dx—/A(x)Dszzkx//(zk) dx
Q Q

(5.18) +/QA(x)DT,,(w*)Dzklp'(zk) dx

+/A(x)DGn(wk)Dzk¢'(zk) dx.
Q

On the other hand, splitting Q into Q = {|wi| > n} U {|w| < n}, the second
term of the left-hand side of (5.16) reads as

/Q T (K, (x, wie, Dwy)) signy (wi )y (zi) dx

(5.19) _ /{ Tl (5w, D) s (4 1)
Wi |>n

+ /{ oy T (K5, (x, wi, Dwy)) signy, (wi )W (zx) dx.
Wil <n
For what concerns the first term of the right-hand of (5.19), we claim that

(5.20) /{ } T (K, (x, wie, Dwy)) signy (wi )y (zi) dx = 0;
wi|>n
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indeed in {|wi| > n}, the integrand is nonnegative since on the first hand

Ty (Ks, (x, wr, Dwg)) > 0 in view of (3.11) and of dp > y (see (6.16)), and since on
the other hand one has

(5.21) signg (W) (zx) =0 in {|wy| > n};

indeed since sign(s) and sign,(s) have the same sign, it is equivalent either to
prove (5.21) or to prove that

(5.22) sign(wi )Y (zx) >0 in {|wi| > n};

but in {|wx| > n} one has zy = nsign(wi) — T,(w*), and therefore sign(zx) =
sign(wy); this implies that

sign(wi )y (zx) = sign(ze)y(zx) = [Y(zi)|  in {[wie| > n},
which proves (5.22).

For what concerns the second term of the right-hand side of (5.19), we observe
that, in view of (3.11) and of dyp > y (see (6.16)), we have

| Ty (K, (x, Wi, Dwy.)) signy (wie )y (zi)|

(3.23) { < |Ka (x5 wies Dwio)| (22| < (o + 00) [ (z2)| A(x) Doy Doy

Since in view of (5.17) one has
Dwy = Dzj + DT,,(w*) in {|wi| < n},

we obtain
/{| o Ty (Ks, (x, wi, Dwy)) signy (wi )W (zx ) dx
wi|<n
> — /{I ‘ }(Co + 00)|W(zi )| A(x) Dwi Dwy dx
wi|<n

= [ o)
(5.24) A(x)(Dz + DT, (w*))(Dzx 4 DT, (w*)) dx
- /Q (co +60) Y (zx)|4(x)(Dzx + DT, (w*))(Dzy + DT, (w*)) dx

%

- /Q (co +00) Y (20) | A(x) Dz D=y dx

- /Q (c0 +80) ¥ () | (A(X) DT, (w*) Dz + A(x) Dz, DT, (")
+ A(x)DT,(w*)DT,(w*)) dx.
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From (5.16), (5.18), (5.19), (5.20) and (5.24) we deduce that

/QA(X)DZszk (V' (zk) — (co + o)W (zx)|) dx
< —/ A(x)DT,(W*)Dzip' (zx) dx
Q

- / A(X)DGy(wi) Dzt (z) dx
(5.25) Q

+ [ @+ () (AGIDT, () Dz + A(3)D=DT, ()
- A()DT, (W) DT, (w)) dx
(0o () + el
+ ao(x)gs, (W) sign(wy) ) (z) dx.

Second step. We claim that each term of the right-hand side of (5.25) tends to
zero as k tends to infinity. Since y'(zx) — (co +0)W(zx)| = 1/2 by (5.15), and
since the matrix A is coercive (see (2.3)), this will imply that
zr — 0 in HOl (Q) strongly,

or in other terms (see the definition (5.14) of z;) that

To(wp) — To(w*) in H} (Q) strongly as k — 400,
which is nothing but (5.13). Lemma 5.2 will therefore be proved whenever the
claim will be proved.

In order to prove the claim let us recall that in view of (5.1) and of the defini-
tion (5.14) of z; one has

zx — 0 in H) (Q) weakly, L (Q) weakly star and a.e. in Q as k — +oo.

Since /(0) = 0, this implies that (zx) tends to zero almost everywhere in Q
and in L*(Q) weakly star as k tends to infinity, which in turn implies that

Dz’ (zi) = DY(z) — 0 in L*(Q)" weakly as k — +o0.
This implies that the first term of the right-hand side of (5.25) tends to zero as k

tends to infinity.
For the second term of the right-hand side of (5.25) we observe that

A(X)DGy(wi)Dzie = A(x)DGy(wi) (DT, (wi) — DT, (w™))
= —A(x)DG,(wx)DT,(w"),
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and that by Lebesgue’s dominated convergence theorem
DT, (w W' (z) — DT,(w*)y'(0) in L*(Q)" strongly as k — +o0,

while DG, (w;) tends to DG,(w*) weakly in L2(Q)". Since almost everywhere
one has A(x)DG,(w*)DT,(w*) =0, the second term of the right-hand side of
(5.25) tends to zero.

For the third term of the right-hand side of (5.25), we observe that

(co 4 00)|W(z)|[A(X) DT, (w*) — 0 in L*(Q)" strongly as k — +o0

by Lebesgue’s dominated convergence theorem, since /(zj) is bounded in L*(Q)
and since Y(zx) tends almost everywhere to zero because y(0) = 0. Since Dz is
bounded in L?(Q) N this implies that the first part of this third term tends to zero.
A similar proof holds true for the two others parts of this third term.

Finally the fourth term of the right-hand side of (5.25) tends to zero by a proof
which is similar to the one that we used in the proof of Lemma 4.3, since the
integrand converges almost everywhere to zero and is equiintegrable.

The claim made at the beginning of the second step is proved. This completes
the proof of Lemma 5.2. O

END OF THE PROOF OF THEOREM 3.8.
First step.  Since we have
wi —w* = T,(wi) + Gy(wi) — T(w*) — G, (W),
and since by Lemma 5.2 (see (5.13)) we have
| T (wi) — Tn<M/*>HH01(Q) — 0 ask — oo for every n > 0 fixed,
while by Lemma 5.1 (see (5.6)) we have

lim sup lim sup || G, (wk)|| ;11 () = 0,
n—+ow  k—+4owo 0

and while we have

lim sup ||Gn(W*)||H01(Q) =0,

n—-+oo

since w* € Hj (Q), we conclude that
(5.26) wp — w* in H}(Q) strongly as k — +o0,
which is nothing but (5.3).

Second step. Let us now pass to the limit in (4.1) as k tends to infinity. This is
easy for the first term of the left-hand side of (4.1) as well as for the three terms of
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the right-hand side of (4.1), which pass to the limit in (L2"(Q)) strongly by a
proof which is simpler than the one that we used in the proof of Lemma 4.3.

It remains to pass to the limit in the second term of the left-hand side of (4.1),
namely in

T (K, (x, wie, Dwy)) signy (wy).
We first observe that in view of (3.11) and of Jp > y (see (6.16)), we have

{ | Tk (Ks, (x, wie, Dwy.)) signy (wi )|
< |Ks, (x, i, Dwi)| < (co +0)||A]| | Dwi]*  a.e.inQ,

which implies that the functions 7} (Ks, (x, wr, Dwy)) sign, (wx) are equiintegrable
since Dwy converges strongly to Dw* in L2(Q)" by (5.26).
Extracting if necessary a subsequence, still denoted by k&, such that

Dw, — Dw* a.e.in Q,

we claim that
(5.27)  Tr(Ks,(x, wi, Dwy)) signy (wx) — K, (x, w*, Dw*) sign(w*) a.e. in Q.

On the first hand we use the first part of (3.17), which asserts that

Ks,(x, wi, Dwy) — Ks,(x,w*, Dw*) a.e.in Q,
and the fact that for every s € R
Ty(sx) — s if k — 400 when s — s,

to deduce that
(5.28) Tk (K5, (x, Wi, Dwy)) — K, (x, w*, Dw*) a.e. in Q.

On the other hand we use the fact that

sign, (wg) — sign(w”*) a.e.in {y e Q:w*(y) # 0},

which together with (5.28) proves the almost everywhere convergence (5.27) in
the set {y € Q: w*(y) # 0}.

Finally, as far as the set {y € Q : w*(y) = 0} is concerned, convergence (5.28),
the fact that (see (3.23))

Ks,(x,w*,Dw*) =0 ae.in{yeQ:w*(y) =0},
and the fact that |sign,(s)| < 1 for every s € R together prove that

Ty (Ks, (x, wi, Dwy)) signg (wi) — 0 = Ky, (x, w*, Dw*) sign(w*)
a.e.in{yeQ:w(y) =0},

namely the almost everywhere convergence (5.27) in the set {y € Q : w*(y) = 0}.
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This completes the proof of (5.27).
The equiintegrability and the almost everywhere convergence of the functions
T (Ks,(x, wi, Dwy)) signy (wy) then imply that
T (Ks, (x, wi, Dwy)) sign, (wi) — Ks, (x, w*, Dw*) sign(w*) in L'(Q) strongly.

This proves that w* satisfies (3.33). Since w* also satisfies (3.34) (see (5.2)),
Theorem 3.8 is proved. O

6. APPENDIX

In this Appendix, we give an estimate of the function g; defined by (3.7) (see
Lemma 6.1), and the definitions of the constants dy and Zs, which appear in
Theorem 2.1 (see Lemma 6.2).

6.1. An estimate for the function gs

LEmMMA 6.1. Foro >0, let g5 : R — R be the function defined by (3.7), i.e. by
1

(6.1) gs(t) :—|t|+5(1+5|t|)log(1—|—5|t|)7 Vit e R.

Then, for every A and o, with

(6.2) 0<i<l, 0<6,<+o0,

there exists a constant C(A) which depends only on 1., with

21+/1
(6.3) 0<C)< sup{l, ” }
such that
(6.4) 0 < gs(t) <S*C)'™, VieR, ¥, 0<d<4,.
Moreover
(6.5) 0 < gs(t) <O*C)"™, VieR, 1#£0,V5,0<5<,.

PRrROOF. Let g: Rt — R be the function defined by
g(t) = -1+ (1 +17)log(l + 1), Vr=>0.
Since ¢(0) = 0 and ¢'(7) > 0, one has

(6.6) g(tr) =0, Vr>0.
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On the other hand, since log(l +1) <t for t >0, one has g(r) < t*> =

t!=*¢1% for £ > 0, and therefore for 0 < 4 < 1 and for every m > 0

(6.7) g(t) <m' ™" vr 0<t<m

One has also

147
g(7) - (14 17)log(1+7) _ (1 —|—r> 4 log(1 +r)? Ve 0,
THJL -L-1+;l T (1 +_L_)).
and therefore
1+
g(r) <1+m> 4 log(1 + 1) V> m > 0.
T1+/L m (1 +T)A
log(1
But the function L—'—? reaches its maximum for 7, defined by (1 + 79) = e!/%,
hence (I+7)
log(1 1
L_’_? <—, Vr>0.
(1+7) re

This implies that for 0 < /2 < 1 and for every m > 0

Lm\i 1y,
. —) = >
(6.8) g(r)<( ~ ) 7 ez,
which, with (6.6) and (6.7), implies that for 0 < 4 < 1 and for every m > 0
(6.9) 0 < g(1) < sups m'* (H—m>lﬂi T v >0
N — g p ) m ie ) Y

or in other terms that for every 4, 0 < 4 < 1,
(6.10) 0 <g(r) < C(A)T'™, V>0,

for some constant C(1), with (take m = 1)

144
0<C(A) < 1
<ty <swf1.2 7},

which is nothing but (6.3).
Since

1
9s(0) = 59(01)), VieR,
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one deduces from (6.10) that g, satisfies
0 < gs(t) <*CA))"™, VieR, ¥ >0,
0 < gs(t) <*C)|t|'", VieR, 1#0,V5>0,
which proves (6.4) and (6.5) with a constant C(/) which satisfies (6.3). O

6.2. Definition of 6y and Zs,

The goal of this Subsection is to define the constants dyp and Z;, which appear in
Theorem 2.1. We will prove the following result.

LEMMA 6.2. Assume that (2.2), (2.3), (2.4), (2.6), (2.7) and (2.8) hold true.
Assume moreover that the two smallness conditions (2.14) and (2.15) hold true.
Let 0, be the number defined by

o - C/%/”aOHN/Z

(6.11) o] =

C Il Nl
One has
(6.12) o1 > 7.

Ford >0, let ®5: RT — R (see Figure 2) be the function defined by

o {M7 GC3lanl X
— (o= C]%f||a0||N/2 _5C]2v||f||N/2)X + 1/ 1)

where 0 is defined by (2.11) (note that 0 < 0 < 1 in view of (2.12)) and where G is

the constant defined by

o = Cllaolly 2

CRll A2

with Cy the best constant in the Sobolev’s inequality (2.9) and C(0) the constant
which appears in (6.4) (see also (6.3)).

Then, for 0 < J < 6y, the function ®s has a unique minimizer Zs on R, which
is given by

(6.14) G= ( )ch),

& — C12v||a0||N/2 _5C/%/||f“N/2
(1+0)GCF|laoll,

1/0
(6.15) z(;:( ) . for0<o <.

Moreover, there exists a unique number oy such that
(6.16) y <o < i,
and

(617) q)50<250) =0.
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This number is the number oy which appear in Theorem 2.1, and Zs, is then
defined from oy through formula (6.15), namely by

615) o — (SRl B Gl
’ (1+0)GC)jao,
REMARK 6.3. Let us explain the meaning of the results stated in Lemma 6.2.

As we will see in the proof of Lemma 6.2 (see also Figure 2), the function ®;
is the restriction to R™ of a function which looks like a convex parabola. This
function attains its minimum at a unique point Zs, and for ¢ which satisfies
0 < 01 with 0; given by (6.11), one has Zs > 0.

The smallness condition (2.14) is equivalent to the fact that 6; > y, and the
smallness condition (2.15) to the fact (see (6.24)) that the minimum ®,(Z,) of @,
is nonpositive. For 6 = d;, the minimum ®;,(Z;,) of @5, is equal to || f1|-1(q),
which is strictly positive. Therefore it can be proved that there exists some dy
with y < dp < J; (see (6.16)) such that the minimum @5 (Z;,) of s, is equal to
zero (see (6.17)), or in other terms such that the function ®;, has a double zero
in Zs,. Moreover, when y < dy, for every ¢ with y <J < dy, the function ®;s has
two distinct zeros Yy and Y, with Y5~ < Y, which satisfy 0 < Y~ < Z; < Y;°
(see (6.25) in Remark 6.5). O

REMARK 6.4. In the present paper we use Lemma 6.1 with 1 = @ defined by
(2.11) (note that 0 < 0 < 1 in view of (2.12)) and with J, = J; defined by (6.11).
Using the fact that G defined by (6.14) is nothing but G = 6! C(0), inequalities
(6.4) and (6.5) imply that
(6.19) 0 < gs(r) <67CO))) = G1|"™?, VieR, ¥5,0<5<d,

' 0 < gs(r) <6CO)))"™ = G|1|'™", VieR, t+#0,V5,0<0<d.

In particular for 6 = Jy defined by (6.16) and (6.17) one has

(6.20) 0<gs() <Gl VieR O

Figure 1. The graph of the straight line Ls
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d5,(X)

1AM =2 )

Figure 2. The graphs of the functions ®5(X) for d =y, y < < dy, d = dp and d = J;

ProOOF OF LEMMA 6.2. For 0 >0, let Ls; be the constant defined by (see
Figure 1)

(6.21) Ls = o= Cillao|ly /s = 9CK 1 f Ly 2

where Cy is the best constant in the Sobolev’s inequality (2.9). Note that L is
decreasing with respect to J.

Since J; is defined by (6.11), one has Ls = 0. On the other hand, the first
smallness condition (2.14) is nothing but L, > 0. Since L is decreasing in J, one
has d; > y, i.e. (6.12).

Let us now study the family of functions ®s : R™ — R defined by (6.13), i.e.,
in view of the definition (6.21) of L;, by

(6.22) ®y(X) = GCy|aoll X" — LoX + | flyp1p VX 20,

(see Figure 2).

Since ap # 0 (see (2.6)), each function @ looks like the restriction to R* of
a “‘convex parabola”. When 0 <0 <¢J;, one has Ls; >0, and this “convex
parabola” has a unique minimizer Zs on R™ which is also the minimizer of the
function ®4. A simple computation shows that Zs is given by

(6.23) Zy= (

L; )‘/" _ (0‘ — Cillaollyja = 9C I NIz )1/9
(1+0)GC ol (1+0)GCaol, ’

i.e. (6.15), and that the minimum of @4, namely ®;(Z;), is given by
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0 L(l+0)/0

) — _ o)
R E TR Yo YR

_ Hf” 0 (OC — C]%/HQOHN/z _ 5C}%/||f||N/2)(l+())/()
HYQ) —
1+90 ((1 + H)GCI%IJrOHaOHq)l/G

(6.24)

When 0 <6 <9, the function Ls is nonnegative, continuous and decreasing
with respect to 0. Therefore Z; is continuous and decreasing with respect to 9,
while ®s5(Z;5) is continuous and increasing with respect to d.

When 6 =0;, one has Ls, =0, the function ®s attains its minimum in
Z5 =0, and @5 (Z;,) = || f]l;-1q) > 0, while the second smallness condition
(2.15) is nothing but ®,(Z,) <0. Therefore there exists a unique dp with
y <09 < 01 such that @5 (Zs,) = 0. This is the definition of dy given by (6.16)
and (6.17) in Lemma 6.2.

Lemma 6.2 is proved. O

REMARK 6.5. The case where equality takes places in inequality (2.15) corre-
sponds to the case where dp = 7.

On the other hand, when (2.15) is a strict inequality, one has y < dy, and for
0 with y <9J < dy, the function ®s has two distinct zeros Y; and Y(,-+ with
0< Y; < Yj. Since

D5(X) = GCFlaoll X0 = (o = CFllaollja = OIS /)X + 1 N1
= ©(X) +CK | flln X,

the family of functions ®@; is an increasing family of functions on R™, and one
has

(6.25) 0< Yy <Zs, <Yy ify<d<dp. O
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