Rend. Lincei Mat. Appl. 27 (2016), 249–250 DOI 10.4171/RLM/733

Algebraic Geometry — Erratum: Points order 2 on theta divisors, by VALERIA ORNELLA MARCUCCI and GIAN PIETRO PIROLA, communicated on 13 November 2015.¹

KEY WORDS: Abelian variety, theta divisor, torsion points

MATHEMATICS SUBJECT CLASSIFICATION (primary; secondary): 14K25; 14H40

Robert Frederick Auffarth pointed out to us that the proof the main result of [3], Theorem 1.1, is not correct. Here we provide a proof of the basic result, Proposition 1, that implies the principal part of it, that is Theorem 1.1 i) of [3]. This does not allows us to recover the result on the non-symmetric theta divisor (1.1 ii) of [3]. We remark however that in the forthcoming paper [1] a better bound will be given.

Given an abelian variety V we let V[2] be the subgroup of the points of order two of V.

PROPOSITION 1. Let (A, Θ) be a complex principally polarized abelian variety. The divisor Θ cannot contain any translate of a maximal isotropic space of A[2].

PROOF. Let $M \subset A[2]$ be a maximal isotropic subgroup (see [2]). We assume by contradiction that Θ contains the translate $t_a(M) = a + M$, $a \in A$, of M. Consider the isogeny $\pi : A \to B = A/M$ and its dual $\pi' : B \to A$. By construction one has $\pi \circ \pi' = 2_B$ where 2_B is the multiplication by 2 on B. Moreover there is a principally polarized divisor Θ' on B such that $\pi'^* \Theta \equiv 2\Theta'$. Set $\mathscr{L}' = (\pi')^* \mathscr{O}_A(\Theta)$ and $\psi : B \to \mathbb{P}^N$, $N = 2^g - 1$, be the map induced by the global sections of \mathscr{L}' . In particular the divisor $\Sigma = \pi^{-1}\Theta_A$ defines the hyperplane H of $\mathbb{P}^N : \Sigma = \psi^{-1}(H)$. Fix $b \in B$ such that $\pi'(b) = a$. It follows that

$$B[2]_b = \{x \in B : x = b + y : y \in B[2]\}$$

is contained in Σ , and therefore $\psi(B[2]_b) \subset H \subset \mathbb{P}^N$. Let *L* be the linear span of $\psi(B[2]_b)$, by construction we have $L \subset H$. On the other hand since $B[2]_b$ is invariant under the translation action of B[2] it follows that *L* is invariant under the projective action of B[2]. By the irreducibility of the theta group representation

¹This note is the erratum of the paper [3] in the References.

(see for instance [2]) we know that there is no a proper linear subspace of \mathbb{P}^N invariant under the action of B[2]. This gives a contradiction.

References

- [1] R. AUFFARTH G. PIROLA R. SALVATI MANNI, *Torsion points on theta divisor* (preprint) arXiv:1512.09296.
- [2] G. KEMPF, Complex Abelian Varieties and Theta Functions, Universitext, Springer-Verlag, Berlin, 1991.
- [3] V. MARCUCCI G. PIROLA, *Points of order 2 on theta divisors*, Rend. Lincei Mat. Appl. 23 (2012), 319–323.

Received 15 October 2015, and in revised form 18 October 2015.

Valeria Ornella Marcucci Dipartimento di Matematica "F. Casorati" Università di Pavia Via Ferrata 1 27100 Pavia, Italy valeria.marcucci@unipv.it

Gian Pietro Pirola Dipartimento di Matematica "F. Casorati" Università di Pavia Via Ferrata 1 27100 Pavia, Italy gianpietro.pirola@unipv.it