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Abstract. — Under the same bounds on Gq-constants and Ap-constants, the optimal exponents

for sharp inclusions between Gehring Gq-class of weights and Muckenhoupt Ap-class (1 < p; q < l)
are Hölder conjugate, if p and q are conjugate. This is a consequence of a representation theorem

of Al weights in terms of W 1; r-biSobolev maps and a duality result between Gq and Ap classes in
dimension one. We prove also that sharp a priori bounds on constants correspond under the Hölder

conjugate mapping fðtÞ ¼ t
t�1 .
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1. Introduction

For a weight w on Rn, i.e. for a locally integrable function w : Rn ! ½0;þl½
positive on a set of positive measure, we define the Ap-constant of w; p > 1, as

ApðwÞ ¼ sup
Q

Z
Q

w
�Z

Q

w� 1
p�1

�p�1

ð1:1Þ

where the supremum is taken over all cubes QHRn with sides parallel to the
axes. Similarly, for a weight v on Rn we define the Gq-constant of v; q > 1, as

GqðvÞ ¼ sup
Q

�R
Q
vq
�1
qR

Q
v

2
4

3
5

q

q�1

:ð1:2Þ

The class Ap of weights w such that ApðwÞ < l was introduced in 1972 by
B. Muckenhoupt [30] for a characterization of weighted Lp-maximal inequalities
(see also [9]). He proved that, for w a Ap such that ApðwÞaA, there exists r < p
such that w a Ar with r ¼ rðn; p;AÞ and ArðwÞaCðn; r; p;AÞ.

The class Gq of weights v such that GqðvÞ < l was introduced in 1973 by
F. W. Gehring in the study of Lq-integrability of gradient of quasiconformal
mappings. He proved that, for v a Gq with GqðvÞaG, there exists r > q such
that v a Gr with r ¼ rðn; q;GÞ and GrðvÞaCðn; q; r;GÞ.



We call r and r self-improvement exponents. In [37], [8], [22], [34] sharp self
improvement exponents where precisely determined for n ¼ 1.

Notice that the condition GqðvÞ < l corresponds to a reverse Hölder
inequality

�Z
Q

vq
�1

q

aH

Z
Q

v

with the same support Q, for any cube QHRn and for a certain H > 1. Interest-
ing applications of such inequality to the solvability of the Lp-Dirichlet problem
in the plane, in the sense of nontangential convergence and a priori Lp estimates,
are obtained in [11], [12], [21] (see [40] for sharp results). Applications to reg-
ularity of quasiminima of the q-Dirichlet integral in one-dimension are described
in [15] (see [1], [28] for sharp results).

Note that, by Hölder inequality

if 1 < pa r < l; then Ap HAr and 1aArðwÞaApðwÞð1:3Þ

and

if 1 < qa r < l; then Gr HGq and 1aGqðvÞaGrðvÞ:ð1:4Þ

We are interested in the Al-class of weights given by

Al ¼
[
p>1

Apð1:5Þ

and in the G1-class of weights given by

G1 ¼
[
q>1

Gq:ð1:6Þ

A relation between Muckenhoupt and Gehring classes was established by
R. Coifman and C. Fe¤erman in 1974 (see [5]). Namely, they proved that

Al ¼ G1:ð1:7Þ

In [19] the Al-constant of weights was introduced

AlðwÞ ¼ sup
Q

Z
Q

w exp
�Z

Q

log
1

w

�
:ð1:8Þ

and the following result

w a Al i¤ AlðwÞ < l

was proved.
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In [11], [12] R. Fe¤erman proved that a weight v belongs to G1 ¼ Al i¤ there
exists C > 1 such that, for any cube QHRn

Z
Q

v log
v

vQ
aC

Z
Q

v

where vQ ¼
Z
Q

v. This result suggested the introduction in [29] of the G1-constant
of v

G1ðvÞ ¼ sup
Q

exp
�Z

Q

v

vQ
log

v

vQ

�
:ð1:9Þ

As a consequence, we have

v a G1 i¤ G1ðvÞ < l:

An important issue is to establish limit relations for Ap-constants as p ! l and
for Gq-constants as q ! 1.

In [39] the formula

AlðwÞ ¼ lim
p!l

ApðwÞð1:10Þ

was established, while in [29] the formula

G1ðvÞ ¼ lim
q!1

GqðvÞð1:11Þ

was proved. We will give a simple proof of (1.11) relative to one dimensional case
(Section 2). The facts that G1ðvÞ is well related to Gq-constants of v and AlðwÞ is
well related to Ap-constants of w, will be further analyzed also in connection with
recent work of [3], [24].

There are natural questions to find the sharp Ap-class for a weight w a Al,
and the sharp Gq-class for a weight v a G1, under suitable constraints. Let us
quote [10], [26], [27], [41] for recent works on sharp exponents and constants
in case n ¼ 1. The question is: is anything missing in the exact relationships
obtained in the literature?

One of our results is that:

For n ¼ 1, given G > 1, one can find the sharp exponent s1 ¼ s1ðGÞ such that for
all v a G1 satisfying G1ðvÞaG we have

v a As Es < s1:

This was a missing result from literature [3], [24].
Before stating Theorem 1.1, we give some definitions.
For q > 1, G > 1, let us introduce the sharp transition exponents

sq ¼ sqðGÞð1:12Þ
¼ inffs a �1;l½ : AsðvÞ < l; for v a Gq such that GqðvÞaGg
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and for p > 1, A > 1, set

sp ¼ spðAÞð1:13Þ
¼ supfs a �1;l½ : GsðwÞ < l; for w a Ap such that ApðwÞaAg:

Theorem 1.1. For G > 1, the sharp exponent s1 ¼ s1ðGÞ such that for all v a G1

with G1ðvÞaG we have v a As, Es < s1, is given by

s1ðGÞ ¼ lim
q!1

sqðGÞ

and coincides with the positive solution x ¼ s1ðGÞ to the equation

xe
1
x
�1 ¼ G:ð1:14Þ

Moreover, if we set sl ¼ infp>1 spðGÞ, then

1

sl
þ 1

s1
¼ 1:ð1:15Þ

Let us now define the sharp improvement exponents

rq ¼ rqðGÞð1:16Þ
¼ supfr a �1;l½ : GrðvÞ < l; for v a Gq such that GqðvÞaGg

and

rp ¼ rpðAÞð1:17Þ
¼ inffr a �1;l½ : ArðwÞ < l; for w a Ap such that ApðwÞaAg

where A > 1 and G > 1 are fixed.
In the general case pA 2, qA 2 no explicit formula is available for the ex-

ponents in (1.12), (1.13), (1.16), (1.17) which are only characterized as positive
solutions of certain algebraic equations.

We have the following result which states that the exponents correspond under
the Hölder conjugate mapping fðxÞ ¼ x

x�1
.

Theorem 1.2. Let p; q > 1 such that 1
p
þ 1

q
¼ 1 and G ¼ A. Let sq, sp, rq and rp

be defined as in (1.12), (1.13), (1.16), (1.17). Then

1

rq
þ 1

rp
¼ 1ð1:18Þ

and

1

sq
þ 1

sp
¼ 1:ð1:19Þ
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Remark 1.3. By Theorem 1.2 it follows that it is enough to know two of four
exponents rq, sp, rp, sq to obtain all the others.

Let us now consider the following borderline sharp improvement exponents
(A > 1;G > 1)

r1 ¼ r1ðGÞð1:20Þ
¼ supfr a �1;l½ : GrðvÞ < l; for v a G1; such that G1ðvÞaGg

and

rl ¼ rlðAÞð1:21Þ
¼ inffr a �1;l½ : ArðwÞ < l; for w a Al; such that AlðwÞaAg:

and the borderline sharp transition exponents ðA > 1;G > 1Þ

s1 ¼ s1ðGÞð1:22Þ
¼ inffs a �1;l½ : AsðvÞ < l; for v a G1; such that G1ðvÞaGg

and

sl ¼ slðAÞð1:23Þ
¼ supfs a �1;l½ : GsðwÞ < l; for w a Al; such that AlðwÞaAg:

We have the following extension of Theorem 1.1 (see Section 2 for comple-
ments about equations satisfied by the exponents, described in [25], [24], [3]).

Theorem 1.4. For G ¼ A > 1, let r1, s1 and rl, sl be defined by (1.20)–(1.23).
Then we have

r1 ¼ lim
q!1

rq; rl ¼ lim
p!l

rp;ð1:24Þ

s1 ¼ lim
q!1

sq; sl ¼ lim
p!l

sp:ð1:25Þ

Whence

1

r1
þ 1

rl
¼ 1;ð1:26Þ

1

s1
þ 1

sl
¼ 1:ð1:27Þ

Let us emphasize the new conjugate relations (1.18), (1.19), (1.26), (1.27)
which were missing in the quoted papers.

An important case, for which the assumptions of Theorem 1.2 are fulfilled,
arises in connection with increasing homeomorphisms h : R �!onto R which belongs
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to Sobolev class W
1;1
loc ðRÞ together with their inverse h�1. We say that h is a

bi-Sobolev map. For r > 1, we say that h is a W 1; r-biSobolev map if h 0 and
ðh�1Þ0 a Lr

locðRÞ.
For a bi-Sobolev map h a duality formula holds for the weights

v ¼ h 0; w ¼ ðh�1Þ0ð1:28Þ

which guarantees that the regularity of one of the two relies on the other one’s,
namely

ApðwÞ ¼ GqðvÞð1:29Þ

if 1
p
þ 1

q
¼ 1 (see [20] and Section 3 for a simple proof ).

In [35] it is proved that actually the representation of weights in terms of
bi-Sobolev maps h : R ! R expressed by (1.28) is a general fact for Al weights.
In this paper (Section 4) we prove the following

Theorem 1.5. For any weight w a AlðRÞ there exist a weight v a AlðRÞ and
a bi-Sobolev map h : R ! R such that (1.28) holds true. Moreover, h is W

1; t
loc -

biSobolev for a t > 1. Namely,

v ¼ h 0 a Gr w ¼ ðh�1Þ0 a Gs Er < r1; Es < sl

where r1 ¼ r1ðAÞ, sl ¼ slðAÞ are defined as in (1.20), (1.23) with A ¼ G ¼
AlðwÞ.

Finally, in Section 5 we will present the sharp improvement and transition
constants appearing in the previous Theorems.

2. Notations and Preliminaries

A weight w, i.e. a nonnegative measurable function on Rn belongs to the Ap-class
of Muckenhoupt with p > 1, if the ApðwÞ-constant of w, satisfies the condition

ApðwÞ ¼ sup
Q

Z
Q

w
�Z

Q

w
�1
p�1

�p�1

< l

where the supremum is taken over all cubes QHRn, with sides parallel to the
axes.

The classes Ap are decreasing as p increases; actually

r < p ) ApðwÞaArðwÞð2:1Þ

hence Ar HAp.
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A weight v belongs to the Gq-class of Gehring with q > 1, if the GqðvÞ-constant
of v satisfies the condition

GqðvÞ ¼ sup
Q

�R
Q
vq
�1
qR

Q
v

2
4

3
5

q

q�1

< l

The class Gq are increasing as q increases; actually

r < q ) GrðvÞaGqðvÞð2:2Þ

hence Gq HGr.
The Al class is defined as

Al ¼
[
p>1

Ap

and the G1 class as

G1 ¼
[
q>1

Gq:

It is well known (see [5], [16], [7]) that

Al ¼ G1ð2:3Þ

and that a weight w a Al if and only if

sup
Q

Z
Q

w exp

Z
Q

log
1

w
¼ AlðwÞ < l:

Moreover,

AlðwÞ ¼ lim
p!l

ApðwÞð2:4Þ

(see [39]).
It is also well known that for v a G1

sup
Q

exp
�Z

Q

v

vQ
log

v

vQ
dx

�
¼ G1ðvÞ < l:ð2:5Þ

Moreover in [29], it was proved that

G1ðvÞ ¼ lim
q!1þ

GqðvÞð2:6Þ

Let us now give a simple one-dimensional proof of (2.6).
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Proof of (2.6). For any weight w a Al, we know by Theorem 1.5 that there
exist a weight v a Al and a bi-Sobolev map h : R �!onto R, such that

h 0 ¼ v; ðh�1Þ0 ¼ w:

By (2.4) it follows

AlðwÞ ¼ lim
p!l

ApðwÞ:

Moreover (1.29) implies

AlðwÞ ¼ lim
q!1

GqðvÞ

with 1
p
þ 1

q
¼ 1.

The equality (2.6) follows using the other duality identity (see [6], [20])

G1ðvÞ ¼ AlðwÞ: r

A useful characterization of Al-condition, which represents a scale invariant
version of mutual absolute continuity, is the following ([5], [36]).

Proposition 2.1. The weight w : R ! ½0;þl½ belongs to Al if and only if
there exist constants 0 < aa 1aK so that

jEj
jI j aK

� R
E
wðxÞ dxR

I
wðxÞ dx

�a
for each interval I and for each measurable set EH I .

Let us now give the following.

Definition 2.2. We say that a homeomorphism h : R ! R is a bi-Sobolev
map if h and h�1 belong to W

1;1
loc ðRÞ. More specifically, if h a W

1; r
loc ðRÞ and

h�1 a W
1; r
loc ðRÞ, 1a ral then we say that h is W 1; r-biSobolev.

Remark 2.3. It is well known ([17]) that h is bi-Sobolev i¤ h 0 > 0 and
ðh�1Þ0 > 0 a.e.

In the papers [30] and [14] the following self-improving property of a weight
w a Ap and of a weight v a Gq were indipendently discovered:

For A > 1 there exists rp ¼ rpðAÞ < p such thatð2:7Þ
ApðwÞaA ) ArðwÞ < l; Erb rp

For G > 1 there exists rq ¼ rqðGÞ > r such thatð2:8Þ
GqðvÞaG ) GrðvÞ < l; Era rq:
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In the paper [5] the following transition properties of Ap-weights into Gs and
of Gq-weights into As were discovered:

for A > 1 there exists sp ¼ spðAÞ > s such thatð2:9Þ
ApðwÞaA ) GsðwÞ < l; Esa sp

for G > 1 there exists sq ¼ sqðGÞ < s such thatð2:10Þ
GqðvÞaG ) AsðvÞ < l; Esb sq

(see (1.16), (1.17), (1.12), (1.13)).
In the case n ¼ 1, [37] and [8] in the particular case that v is a non-increasing

weight, obtained exact value of self-improving exponent rq > q in (2.8) as a solu-
tion to the equation

� rq

rq � q

� 1
q�1
� rq � 1

rq

� q

q�1 ¼ Gð2:11Þ

(see [22] for the case of an arbitrary weight v : R ! ½0;l½.) In [22] also exact
value for self-improving exponent rp < p in (2.7) was found as a solution to the
equation

1

rp

� p� 1

p� rp

�p�1

¼ A:ð2:12Þ

Later [26], [27] found exact values for transition exponent sq in (2.10) as a solu-
tion to

s
q

q�1
q

½1þ qðsq � 1Þ�
1

q�1

¼ Gð2:13Þ

and for the transition exponent sp in (2.9) as a solution to

sp

sp � 1

� spðp� 1Þ
1þ spðp� 1Þ

�p�1

¼ A:ð2:14Þ

As a matter of calculations one can verify that if 1
p
þ 1

q
¼ 1 and A ¼ G, the

following couples of exponents correspond under the Hölder conjugate mapping
fðxÞ ¼ x

x�1
:

1

rq
þ 1

rp
¼ 1ð2:15Þ

and

1

sq
þ 1

sp
¼ 1:ð2:16Þ
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Recently exact Ar-exponents of weights from Al-condition (1.8) ([25], [24])
and exact Gr exponents of weights from G1-condition (1.9) ([3]) were found
(see (1.20), (1.21)).

Namely if AlðwÞ ¼ A then

ArðwÞ < l for r > rlð2:17Þ

where rl > 1 solves the equation

erl�1

rl
¼ Að2:18Þ

(see Theorem 3 in [24] proved by rearrangements techniques).
If G1ðvÞ ¼ G then

GrðvÞ < l for 1 < r < r1ð2:19Þ

where r1 > 1 solves the equation

ðr1 � 1Þe
1

r1�1

r1
¼ Gð2:20Þ

(see Theorem 1.5 in [3] proved with the Bellman function tecnique).
Both previous results are sharp in the sense that for any constant C > 1, there

exists a weight w a Al with AlðwÞ ¼ C such that w does not belong to Arl
where (2.18) holds for A ¼ C and there exists a weight v a G1 with G1ðvÞ ¼ C
such that v does not belong to Gr1 when (2.20) holds for G ¼ C.

In this paper we justify the fact that the exponents correspond under the
Hölder conjugate mapping fðxÞ ¼ x

x�1

1

r1
þ 1

rl
¼ 1ð2:21Þ

and

1

s1
þ 1

sl
¼ 1:ð2:22Þ

where s1 and sl are defined by (1.22) and (1.23). To this aim, first of all, we
invoke the duality relation

Alððh�1Þ0Þ ¼ G1ðh 0Þð2:23Þ

which holds true whenever h : R ! R is an increasing homeomorphism such that
h a W

1;1
loc ðRÞ and h�1 a W

1;1
loc ðRÞ (i.e. h is a bi-Sobolev map (see [18] and the book

[17]).
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Further, we notice that any weight, w a As, is of the form w ¼ ðh�1Þ0 for a
bi-Sobolev map h which moreover is a W 1; r-biSobolev map for a r > 1.

This result was suggested to us by paper [28] on quasiminima and their in-
verses in dimension one.

The topic of reverse Hölder inequalities plays a central role for the solvability
of the Dirichlet problem for planar elliptic equations Lu ¼ 0 with non-smooth
coe‰cients, when the boundary data f belongs to some Lp-class or to BMO
([12], [40], [22], [42]). It turns out that the Lp a priori estimate on the nontangen-
tial maximal function Nu of the solution u a W

1;2
loc

kNukL pðqWÞ a ck f kL pðqWÞ

is equivalent to the Gq-condition of Gehring on the harmonic measure oL�
1
p
þ 1

q
¼ 1

�
.

3. Weighted Ap and Gq classes

In this Section we present a new proof of a useful theorem due to Johnson and
Neugebauer [20].

For 1 < q < l we define Gq;dm the weighted Gehring class respect to the
measure dm, i.e.

Gq;dmðvÞ ¼ sup
JHR

�R
J
vq dm

�1
q�R

J
v dm

�
" # q

q�1

where the supremum is taken over all intervals JHR.
Our proof is based on the following Lemma (see [37], [16], [33], [23]).

Lemma 3.1. Let 1 < p; q < l with 1
p
þ 1

q
¼ 1 and h be a bi-Sobolev map. Then

h 0 a Ap , ðh�1Þ0 a Gq;h 0 dxð3:1Þ

and

Apðh 0Þ ¼ Gq;h 0 dxððh�1Þ0Þ:ð3:2Þ

Theorem 3.2. Let h be a bi-Sobolev map, then

Apðh 0Þ ¼ Gqððh�1Þ0Þð3:3Þ

if 1
p
þ 1

q
¼ 1.

Proof. By Lemma 3.1, if h 0 a Ap, then

Apðh 0Þ ¼ Gq;h 0 dxððh�1Þ0Þ:ð3:4Þ
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Now it remains to prove that

Gq;h 0 dxððh�1Þ0Þ ¼ Gqððh�1Þ0Þ:ð3:5Þ

Using the change of variable y ¼ hðxÞ we have:

�R
J
ððh�1ðyÞ0Þq dy

� p

q�R
J
ðh�1ðyÞÞ0Þ dy

� p ¼
�

1
jJj
R
I
ððh�1ðhðxÞÞ0Þqh 0ðxÞ dx

� p

q�
1
jJj
R
I
ððh�1ðhðxÞÞ0Þh 0ðxÞ dx

� pð3:6Þ

¼

�
1R

I
h 0ðxÞ dx

R
I
ððh�1ÞðhðxÞÞ0Þqh 0ðxÞ dx

� p

q

�
1R

I
h 0ðxÞ dx

R
I
ððh�1ÞðhðxÞÞ0Þh 0ðxÞ dx

�p

where hðIÞ ¼ J.
Considering the supremum of all intervals JHR we obtain (3.5) and this

completes the proof. r

4. Proof of Theorems

Proof of Theorem 1.2. Let us prove (1.18).

For p; qb 1 conjugate exponents, i.e. 1
p
þ 1

q
¼ 1 and C > 1 let us define

XqðCÞ ¼ fr a ½q;l½ : GqðvÞaC ) GrðvÞ < lgð4:1Þ

and

YpðCÞ ¼ fr a �1; p� : ApðwÞaC ) ArðwÞ < lgð4:2Þ

Let us show that

r a XqðCÞ , r ¼ r

r� 1
a YpðCÞð4:3Þ

Let us first prove that implications ) holds true.
Let r a XqðCÞ, then we know that for any weight v

GqðvÞaC ) GrðvÞ < l:ð4:4Þ

Define r ¼ r
r�1

and let us show that

ApðwÞaC ) ArðwÞ < l:ð4:5Þ

Fix a weight w such that

ApðwÞaCð4:6Þ

then by Theorem 1.5 there exists a biSobolev map h : R ! R such that w ¼ ðh�1Þ0.
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Define v ¼ h 0 so we have by Theorem 3.2 and (4.6)

GqðvÞ ¼ ApðwÞaC:

Hence, by (4.4), GrðvÞ < l. Using again Theorem 3.2 we have

A r
r�1
ðwÞ ¼ ArðwÞ ¼ GrðvÞ < l

and (4.5) is proved. This implies that r a YpðCÞ.
To prove the other implication in (4.3) we follow similar steps.
Since r a �1; p� i¤ r ¼ r

r�1
a ½q;l½ we deduce by (4.3) that for C ¼ A ¼ G

rqðGÞ ¼ supXqðCÞ ¼
rpðAÞ

rpðAÞ � 1

where rpðAÞ ¼ inf YpðAÞ that is (1.18) holds true.
Let us prove (1.19).
Define for C > 1

ZqðCÞ ¼ fs a �1;l½ : GqðvÞaC ) AsðvÞ < lgð4:7Þ

and

TpðCÞ ¼ fs a �1;l½ : ApðwÞaC ) GsðwÞ < lg:ð4:8Þ

We prove that:

s a ZqðCÞ , s ¼ s

s� 1
a TpðCÞ:ð4:9Þ

Let us first prove that left hand side implies right hand side of (4.9).
Let s a ZqðcÞ, then we know that for any weight v

GqðvÞaC ) AsðvÞ < lð4:10Þ

Define s ¼ s
s�1

and let us show that

ApðwÞaC ) GsðwÞ < l:ð4:11Þ

Fix a weight w such that

ApðwÞaC:ð4:12Þ

By Theorem 1.5 we know that w ¼ ðh�1Þ0 for a bi-Sobolev map h : R ! R.
Define v ¼ h 0, so, by [20] and (4.12)

GqðvÞ ¼ ApðwÞaC:

Hence, by (4.10), AsðvÞ < l and also s a TpðCÞ.
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The inverse implication is proved similarly.
By (4.9), with C ¼ A ¼ G

spðGÞ ¼ supTpðCÞ ¼ sqðAÞ
sqðAÞ � 1

where sqðAÞ ¼ inf ZqðAÞ and this completes the proof. r

We have the following

Lemma 4.1. Let rq, rp, sp and sq be as in (1.16), (1.17), (1.12), (1.13) with
A ¼ G ¼ C > 1. Then

q1 < q2 ) rq1 < rq2ð4:13Þ
p1 < p2 ) rp1 < rp2ð4:14Þ
p1 < p2 ) sp1 > sp2ð4:15Þ
q1 < q2 ) sq1 > sq2ð4:16Þ

Proof. Set

XqðCÞ ¼ fr a �1;l½ : GqðvÞaC ) GrðvÞ < lg

and assume q1 < q2. We fix r a Xq1 and show that r a Xq2 . So, assume

Gq1ðvÞaC ) GrðvÞ < lð4:17Þ

and suppose Gq2ðvÞaC. Since Gq1ðvÞaGq2ðvÞ we have also Gq1ðvÞaC.
Hence, by (4.17) GrðvÞ < l.
The others following in the same way. r

Proof of Theorem 1.4. More generally, let us notice that, according to
[26], the exponent sp defined by (1.13), is the unique solution to the algebraic
equation

sp

sp � 1

�
1þ 1

spðp� 1Þ

�1�p

¼ ApðwÞð4:18Þ

and sl is , according to [24], the unique solution to the algebraic equation

sl

sl � 1
e�

1
sl ¼ AlðwÞ:ð4:19Þ

We will use that ApðwÞ ! AlðwÞ to prove

lim
p!l

sp ¼ sl:ð4:20Þ
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To this aim, let pk > 1 be a sequence such that pk ! l and show that spk ! sl.
We may assume spk ! s0 b 1. Define for x > 1 the sequence of functions

gkðxÞ ¼ 1þ 1

xðnk � 1Þ

� �1�nk x

x� 1

which of course satisfies for every x > 1

lim
k!l

gkðxÞ ¼ e�
1
x

x

x� 1
¼ gðxÞ:

Then, in every compact interval ½a; b�H �1;l½, gk converges uniformly to the
continuous function g, since gkðxÞa gkþ1ðxÞ. Hence

gkðspkÞ ! gðs0Þ as k ! l

and so

Apk ! e
� 1

s0
s0

s0 � 1
¼ AlðwÞ

by

ApðwÞ ! AlðwÞ as p ! l:ð4:21Þ

By (4.19) we have s0 ¼ sl and this completes the proof.
Similarly one proves the other limit relations in (1.24), (1.25). r

Proof of Theorem 1.1. The proof of Theorem 1.1 relies on the statement
of Theorem 1.2 and Theorem 1.4, except for (1.14) which derives from the ex-
pression of sq given by (1.12), passing to the limit as q ! 1 which gives the
equation

s1e
1
s1
�1 ¼ G:ð4:22Þ

Notice that (1.15) is equivalent to

sl

sl � 1
e�

1
sl ¼ G:ð4:23Þ r

Proof of Theorem 1.5. Let w : R ! ½0;l½ be a weight in Al and let us
define

hðxÞ ¼
Z x

0

wðtÞ dt:ð4:24Þ
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Then h is a continuous non constant increasing function which is one-to-one.
In fact, since Al ¼

S
q>1 Gq, there exists q > 1 such that h 0 ¼ w a Gq, hence h is

strictly increasing (see [15]). Actually, we have the inequality (see [15])

Z b

a

ðh 0Þq dxaGqðwÞq�1
�Z b

a

h 0
�q

ð4:25Þ

for every interval ½a; b�.
Let us suppose by contradiction that h ¼ 0 for ta 0 and h > 0 for t > 0 and

let a < 0 < b. By (4.25) we have

Z b

a

ðh 0Þq dxaGqðwÞq�1
� b

b� a

Z b

a

h 0
�q

ð4:26Þ

aGqðwÞq�1 bq�1

ðb� aÞq
Z b

0

ðh 0Þq

and then a contradiction, letting b ! 0.
Let us show now that h is onto R, i.e.

lim
x!el

Z x

0

wðtÞ dt ¼el:ð4:27Þ

Since w a Al, the inequality

jEj
jI j aK

� R
E
wR

I
w

�a
ð4:28Þ

holds true for any measurable set EH I and suitable 0 < aa 1aK < l.
Applying this to (see [20])

In ¼ ½0; 2n� and E ¼ ½2n�1; 2n�

we have

wðIn�1ÞawðInÞaK
1
a

� jInj
jEj

�1
a

wðEÞ ¼ ð2KÞ
1
awðEÞ:

Hence,

wðInÞ ¼ wðIn�1Þ þ wðEÞbwðIn�1Þ 1þ 1

ð2KÞ
1
a

" #

for any n.
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Iterating we finally arrive at

wðInÞb 1þ 1

ð2KÞ
1
a

" #n
wðI0Þ

with I0 ¼ ½0; 1�. This implies (4.27).
Let us now prove that

h 0 > 0 and ðh�1Þ0 > 0 a:e::

Notice that

h�1ðyÞ ¼
Z y

0

ds

wðh�1ðsÞÞ ¼
Z y

0

vðsÞ ds

with v a Al.
By (2.3) we know that

AlðwÞ ¼ G1ðvÞ ¼ A ¼ G:

Hence, by (1.20) v a Gr Er < r1 and by (1.23) w a Gs Es < sl. r

5. Sharp constants

In this Section we present another application of duality formula Apððh�1Þ0Þ ¼
Gqðh 0Þ, where 1

p
þ 1

q
¼ 1, in the comparison of constants which appear in the

sharp inequalities. From our results it follows that for improvement and transi-
tion inequalities it is su‰cient to know two of the sharp constants to obtain the
others.

We are especially interested in a-priori bounds for sets of weights of the form
fw a Ap : ApðwÞaAg and fv a Gq : GqðvÞaGg for given A > 1, G > 1.

Given A > 1, G > 1, let us now define the sharp improvement constants for
r > rp

ap;rðAÞ ¼ supfArðwÞ : w a Ap and ApðwÞaAgð5:1Þ

and for r < rq

gq; rðGÞ ¼ supfGrðvÞ : v a Gq and GqðvÞaGgð5:2Þ

where rp and rq are as in (1.17) and (1.16).
In case p ¼ q ¼ 2 the exact values of a2;rðAÞ and g2; rðGÞ were found (see [41],

[10], [38]):

a2;rðAÞ ¼ ð
ffiffiffiffi
A

p
Þr

ffiffiffiffi
A

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
A� 1

p
� ffiffiffiffi

A
p

� 1
r�1

ffiffiffiffiffiffiffiffiffiffiffiffi
A� 1

p �r�1
ð5:3Þ
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for r2 ¼ 1þ
ffiffiffiffiffiffiffi
A�1
A

q
< ra 2; and

g2; rðGÞ ¼ ð
ffiffiffiffi
G

p
Þ

r
r�1

ffiffiffiffi
G

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
G � 1

p

ð
ffiffiffiffi
G

p
� ðr� 1Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G � 1

p
Þ

1
r�1

ð5:4Þ

for 1 < r < r2 ¼ 1þ
ffiffiffiffiffiffiffi
G

G�1

q
.

We have the following

Proposition 5.1. If 1
p
þ 1

q
¼ 1 and A ¼ G then for any r < rq and r > rp we

have

gq; rðGÞ ¼ ap;rðAÞð5:5Þ

provided 1
r
þ 1

r
¼ 1.

Proof. We know that gq; rðGÞbGrðvÞ Er < rq and Ev such that GqðvÞaG.
Now consider the constant ArðwÞ with r > rp and w such that ApðwÞaC. Set

v0 ¼ h 0 where h is given by h�1ðyÞ ¼
Z y

0

w so that, by [20], we have

Gqðv0Þ ¼ ApðwÞaC:

Since, r > rp, by (1.29) and (1.18), we get

ArðwÞ ¼ G r

r�1
ðv0Þ a fGrðvÞ : r < rq;GqðvÞaCg

and so

gq; rðGÞb ap;rðAÞ:ð5:6Þ

Similarly, we can prove the reverse inequality to (5.6). r

Let us define the sharp transition constants for s > sq

~aaq;sðGÞ ¼ supfAsðvÞ : v a Gq and GqðvÞaGgð5:7Þ

and for s < sp

~ggp; sðAÞ ¼ supfGsðwÞ : w a Ap and ApðwÞaAgð5:8Þ

where sq and sp are as in (1.12) and (1.13).
In case p ¼ q ¼ 2 the exact values of ~aa2;sðGÞ and ~gg2; sðAÞ were found (see [41],

[10]):

~aa2;sðGÞ ¼
1ffiffiffiffi
G

p ð
ffiffiffiffi
G

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
G � 1

p
Þ 1

s
s�1

�
ffiffiffi
G

p

s�1
ð

ffiffiffiffi
G

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G � 1

p

" #s�1

ð5:9Þ
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for s > s2 ¼
ffiffiffiffi
G

p
½

ffiffiffiffi
G

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffi
G � 1

p
�; and

~gg2; sðAÞ ¼
1ffiffiffiffi
A

p ð
ffiffiffiffi
A

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
A� 1

p
Þsffiffiffiffi

A
p

� s
ffiffiffiffiffiffiffiffiffiffiffiffi
A� 1

p
" # 1

s�1

ð5:10Þ

for s < s2 ¼
ffiffiffiffiffiffiffi
A

A�1

q
.

We have the following result whose proof is similar to the proof of Proposi-
tion 5.1.

Proposition 5.2. If 1
p
þ 1

q
¼ 1 and A ¼ G then for 1 < sp and s > sq we have

~aaq;sðGÞ ¼ ~ggp; sðAÞð5:11Þ

provided 1
s
þ 1

s
¼ 1.

In [41] the following Theorem was proved. Here the exponents sp, rp are
defined as in (1.13), (1.17).

Theorem 5.3. Let w a Ap ðp > 1Þ. Then

i) for pb r > rp we have the sharp inequality

ArðwÞa
1

rp

� r� 1

r� rp

�r�1

ð5:12Þ

ii) for s < sp we have the sharp inequality

GsðwÞa
sp � 1

sp

� sp � 1

sp � s

� 1
s�1
:ð5:13Þ

Notice that for p ¼ r the left hand side in (5.12) equals ApðwÞ (see (2.12)).
In [10] the following Theorem was proved in which the exponents rq, sq are

defined as in (1.16), (1.12).

Theorem 5.4. Let v a Gq ðq > 1Þ. Then

j) for qa r < rq we have the sharp inequality

GrðvÞa
rq � 1

rq

� rq � 1

rq � r

� 1
r�1ð5:14Þ

jj) for s > sq we have the sharp inequality

AsðvÞa
1

sq

� s� 1

s� sq

�s�1

ð5:15Þ

Notice that for r ¼ q the left hand side in (5.14) equals GqðvÞ (see (2.11)).
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Remark 5.5. We notice that, provided A ¼ G, 1
p
þ 1

q
¼ 1, using (2.15) the

bound (5.12) for w ¼ ðh�1Þ0 reduces to the bound (5.14) for v ¼ h 0 and con-
versely. Moreover, using (2.16), the bound (5.13) for w ¼ k 0 reduces to the bound
(5.15) for v ¼ ðk�1Þ0.

In conclusion, Theorem 5.3 can be easily deduced by Theorem 5.4 and con-
versely.
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