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History of Mathematics — Peano on definition of surface area, by Gabriele

H. Greco, Sonia Mazzucchi and Enrico M. Pagani, communicated on
15 January 2016.1

On the occasion of the 150th anniversary of the birth of Giuseppe Peano.

Abstract. — In this paper we investigate the evolution of the concept of surface area in Peano’s

mathematical research, taking into account the main role played by Grassmann’s geometric-vector
calculus and Peano’s theory on derivative of measures. Geometric (in Applicazioni geometriche,

1887) and bi-vector (in Calcolo geometrico, 1888) Peano’s approaches to surface area, culminating
into the celebrated Peano’s paper Sulla definizione dell’area d’una superficie, presented by Casorati

for publication on Rendiconti dell’Accademia dei Lincei in 1890 and re-proposed in Peano’s textbook
Lezioni di analisi infinitesimale (1893), mark the development of this topic during the first half of

the last century. Moreover we will present some remarkable contributions on surface area that are
inspired and/or closely related to Peano’s definition.
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1. Introduction

In 1882 Peano at the age of 24 discovers that the definition of area of a sur-
face presented by Serret in his Course d’Analyse [73, (1868) vol. 2, p. 296] was
not correct. According to Serret’s proposal, the area of a surface should be
given by the limit of the area of the inscribed polyhedral surfaces, but this def-
inition cannot be applied even to a cylindrical surface. In fact Peano observes
that in this case it is possible to choose a suitable sequence of inscribed poly-
hedral surfaces whose areas converge to infinity (see [62, (1890)], [64, (1902)
pp. 300–301]).

Genocchi, Peano’s teacher, dampens the enthusiasm of the young mathema-
tician, by communicating him that a similar counterexample was already been
discovered by Schwarz. In fact, in a letter of May 26, 1882, Genocchi writes
Schwarz [71, (1890) vol. 2, p. 369]:

1Presented by G. Letta.



C’est précisément Mr. Peano, qui m’amène à vous parler d’un autre sujet.
Devant aborder la quadrature des surfaces courbes, il s’est aperçu que la
définition d’une aire courbe donnée par Serret n’était pas bonne, et m’a
expliqué les raisons qui ne lui permettaient pas de l’adopter. Alors je l’ai
informé du jugement que vous en aviez porté dans plusieurs de vos lettres
(20 et 26 décembre 1880, 8 janvier 1881), ce qui l’a beaucoup intéressé.

Genocchi and Schwarz2 were conscious of the problem and of the lack of a
‘‘correct’’ definition of surface area, suitable to handle at least the area of elemen-
tary figures. In 1882 Genocchi [20, p. 323] writes another letter to Schwarz and
invites him to propose an alternative definition, but Schwarz declines and stresses
the di‰culties:

Vous avez voulu que je donne la rectification de la définition incomplète;
mais ce n’est pas facile. On peut rectifier cette définition de plusieures
manières et il me semble qu’il su‰t de donner expressément une seule
possibilité qui convient avec la définition donnée par Sturm.

Sturm’s definition [79, (1877) vol. 1, p. 427] is the following:

On appelle aire d’une surface courbe, terminée à un contour quelconque, la
limite vers laquelle tend l’aire d’une surface polyédrique composée de faces
planes, qui en diminuant toutes indéfiniment, tendent à devenir tangentes à
la surface considérée. On suppose d’ailleurs que le contour qui termine
la surface polyédrique se rapproche indéfiniment de celui qui termine la
surface courbe.

We can think that the drawbacks communicated by Schwarz to Genocchi
were also due to the lack of a choice criterion between the several possible defini-
tions of surface area. In any case a ‘‘good’’ definition of surface area should at
least be compatible with the Lagrange formula of area of a Cartesian surface3:
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for C1 functions f : D ! R (D being any rectangular subset of R2).
Peano’s geometrical definition of surface area, given in Applicazioni geome-

triche del calcolo infinitesimale [60, (1887) p. 164], overcomes the drawbacks
of Serret’s approach, yielding the Lagrange formula (1.1). Peano’s bi-vectorial
proposal, introduced in Calcolo geometrico secondo l’Ausdehnugslehre di H.
Grassmann [61, (1888)], is deeply influenced by Grassmann’s geometric-vector
calculus in a‰ne spaces, that gives a mathematical formalization of geometrical

2Schwarz communicates his counterexample also to Hermite (see [43, (1883) p. 35]), to Casorati

and to Beltrami (1880); see the correspondence between Casorati and Peano in Gabba [32, (1957)].
3Nowadays we know that the Lagrange formula is su‰cient to define the area of a C 1-

submanifold, but the extension of the formula (1.1) from a rectangle D to a more general
2-dimensional set is not trivial and hides some pitfalls.
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and physical concepts (vectors, mechanical couple of vectors and their related
moments, and so on) and allows also to take into account properties related
to orientation, without using drawings or tricky and intuitive constructions. A
final definition of surface area is given by Peano in the celebrated paper Sulla
definizione dell’area d’una superficie [62, (1890)], presented by Casorati for publi-
cation on Rendiconti dell’Accademia dei Lincei. It is not surprising that Peano’s
definition via Grassmann’s calculus is suitable to handle oriented integrals and,
consequently, to prove main results (such as Stokes theorem and Green formula),
and to develop formulae leading Cartan to the theory of integration of 2-forms4.
Peano’s bi-vectorial approach to surface area is re-proposed in his textbook
Lezioni di analisi infinitesimale [63, (1893)].

Besides Peano’s proposal, in the literature several definitions of surface area
have been given5: nowadays the most famous and commonly accepted as defini-
tive are grounded on Hausdor¤ measures.

The aim of the present paper is the investigation of the evolution and use of
the concept of surface area in Peano’s works, taking into account the main role
played by Grassmann’s geometric-vector calculus and Peano’s theory on deriva-
tive of measures. Peano’s approach to surface area marks the development of this
topic during the first half of the last century. In the sequel we will also present
contributions concerning surface area that are inspired and/or closely related to
Peano’s definition.

Peano’s definition of measure of surfaces is grounded on elementary formu-
lae of area of planar polygons (see Theorems 3.1, 3.3 and their proofs). The
surprising absence of results concerning area of planar polygons in several
modern encyclopedic books (see for example Alexandrov [1, (2005)] and Berger
[9, (1977)]) motivates us to try to trace the history of such formulae that, as we
shall see, are deeply connected with mechanics (statics, in particular) and can be
found in their final form in the works by Möbius and Bellavitis. The generaliza-
tion of the formula of area from planar to non-planar polygons and, finally, to
non-planar closed curves allowed Peano to specify and to evaluate area of surface
at an infinitesimal level (see Section 5).

The paper is organized as follows. In Section 2 the main definitions and results
on Grassmann’s geometric-vector calculus are presented in a modern fashion, ac-
cording to Greco, Pagani [40, (2010)]. In Section 3 we recall Peano’s bi-vectorial
integral formula and other ways of associating a number to a given oriented

4 In 1899 Cartan [17, p. 242] introduces the calculus of di¤erential forms:

Ce calcul présente aussi de nombreuses analogies avec le calcul de Grassmann; il est

d’ailleures identique au calcul géométrique dont se sert M. Burali-Forti dans un Livre récent
(Introduction à la Géométrie di¤érentielle, suivant la méthode de Grassmann, Gauthier-Villars,

1898).

Burali-Forti was one of the prominent scholars of Peano. Together with Marcolongo he developed
and applied Grassmann’s vector calculus to geometry, mechanics and physics [12, (1909)].

5For a detailed presentation of the several possible definitions of surface area, see Cesari
[28, (1954)] and Federer [29, (1969)].
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closed curve. In addition we outline some theorems and their proofs in order to
clarify the role played by graded exterior algebra in the construction of a defini-
tion of surface area. In Section 4 the historical development of the formulae of
area of polygons and volume of polyhedra is investigated. Section 5 is devoted
to the various descriptions of Peano’s definition of surface area (i.e., geometrical
and bi-vectorial ). In Section 6 we will list main propositions and theorems
about area given by Peano in his works. In Section 7 we recall some significant
mathematical contributions inspired and/or closely related to Peano’s definition.
In particular we present the re-formulations of Peano’s and Geöcze’s surface
area (due to several mathematicians) in order to make them coincident with
Lebesgue’s surface area.

This article concerns some historical aspects. From a methodological point of
view, we are focussed on primary sources, that is on mathematical facts and not
on historical accounts or interpretations of these facts by other scholars of history
of mathematics.

2. Grassmann–Peano geometric-vector calculus on three

dimensional spaces

We present here the Grassmann–Peano geometric-vector calculus6. The aim of
this section is to understand the mathematical basis used by Peano in the con-
struction of his notion of surface area. Such a formalism will be useful not only
to clarify the genesis of the vectorial formulae for area of polygons and volume of
polyhedra, but also to understand the deep connection between some concepts of
statics (points, applied forces, momenta, Poinsot couple and so on) and of geom-
etry (geometric forms of first, second, third and fourth-degree, namely, points,
vectors, bi-points, bi-vectors, tri-points, tri-vectors, quadri-points).

Peano is one of the first mathematicians who presents Grassmann’s work
[37, (1844)], [38, (1862)], [36] to the mathematical community. Actually he re-
builds Grassmann’s calculus using an original ‘‘functional’’ approach that relies
only on the assignment of a volume form on a given a‰ne space (see Greco,
Pagani [40] for a detailed presentation of this subject).

For convenience of the reader we choose to rebuild here Grassmann graded
exterior algebra on the ordinary 3-dimensional space (Grassmann algebra, for
short), using an approach based on the usual notion of graded exterior algebra
on a 4-dimensional Möbius vector space. A 4-dimensional Möbius vector space
is a couple ðW;oÞ, where W is 4-dimensional vector space and o : W ! R is a
non-vanishing linear form, called mass. Given a Möbius vector space ðW;oÞ, let
us consider the subspace of W:

V3 :¼ fw a W : oðwÞ ¼ 0gð2:1Þ

6Concerning the aspects of the theory based on the a‰ne structure of the space, we follow Greco,
Pagani [40, (2010)].
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and the a‰ne subspace of W:

P3 :¼ fw a W : oðwÞ ¼ 1g:ð2:2Þ

Elements of V3 and P3 will be called o-vectors and o-points of ðW;oÞ, respec-
tively. The elements of W with oðxÞA 0 are called weighted o-points. Therefore,
the linear form o allows a non ambiguous selection of the o-vectors and the
o-points from the elements of the Möbius vector space W. A linear function
f : W ! W will be called barycentric, if o � f ¼ o. Clearly, a barycentric linear
function maps o-points (resp. o-vectors) into o-points (resp. o-vectors).

The a‰ne space

ðP3;V3;�Þð2:3Þ

where ‘‘�’’ stands for the di¤erence between elements of W, is a 3-dimensional
a‰ne space. A‰ne maps from P3 to P3 are the restrictions to P3 of the barycen-
tric linear maps from Möbius vector space W into itself. By endowing V3 with a
positive definite symmetric bilinear form 3� ; �4, the a‰ne space (2.3) becomes a
3-dimensional Euclidean space; in the sequel with ‘‘k � k’’ we denote its associated
norm.

Let us consider the graded exterior algebras GðWÞ and GðV3Þ on the vector
spaces W and V3 respectively. The product in GðWÞ and in GðV3Þ will be de-
noted as juxtaposition of symbols7. We have explicitly

GðWÞ ¼ L0ðWÞaL1ðWÞaL2ðWÞaL3ðWÞaL4ðWÞ

where L0ðWÞ :¼ R and LkðWÞ, k ¼ 1; . . . ; 4, is the vector space generated by the
products of k elements of W. The elements of LkðWÞ are called geometric forms
of degree k. Since W is generated by o-points, it is worth observing that LkðWÞ is
generated by the products of k o-points. In a similar way we have

GðV3Þ ¼ L0ðV3ÞaL1ðV3ÞaL2ðV3ÞaL3ðV3Þ

where L0ðV3Þ :¼ R and LkðV3Þ, k ¼ 1; 2; 3, are linear combinations of products
of k elements of V3. The elements of LkðV3Þ are called geometric vector forms
of degree k. Exterior powers Lkf : LkðWÞ ! LkðWÞ of a barycentric linear func-
tion f from W to itself, maps LkðV3Þ into LkðV3Þ.

The inner product 3� ; �4 is extended to GðV3Þ by the following positions:

3u1u2; v1v24 :¼ det
3u1; v14 3u1; v24

3u2; v14 3u2; v24

� �
ð2:4Þ

7Recall that the algebras GðWÞ and GðV3Þ are anticommutative, i.e. xy ¼ ð�1Þ rsyx, for

any x a LrðWÞ, y a LsðWÞ. Clearly, GðV3Þ is a sub-algebra of GðWÞ; moreover, due to anti-
commutativity of the product and to the dimension of the spaces W and V3 we have that

LkðWÞ ¼ 0 (for k > 4) and LkðV3Þ ¼ 0 (for k > 3). Recall that dimLkðWÞ ¼ 4
k

� �
(for 0a ka 4),

and that dimLkðV3Þ ¼ 3
k

� �
(for 0a ka 3).
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3u1u2u3; v1v2v34 :¼ det

3u1; v14 3u1; v24 3u1; v34

3u2; v14 3u2; v24 3u2; v34

3u3; v14 3u3; v24 3u3; v34

0
B@

1
CAð2:5Þ

for every u1; u2; u3; v1; v2; v3 a V3. Hence, with respect to the associated norm we
have

ku1u2k ¼ usual area of the parallelogram with edges u1 and u2;ð2:6Þ
ku1u2u3k ¼ usual volume of the parallelepiped with edges u1; u2; u3:ð2:7Þ

Consequently, for every A;B;C;D a P3 we have

kðB� AÞðC � AÞk ¼ 2ðarea of the triangle ABCÞ;ð2:8Þ
kðB� AÞðC � AÞðD� AÞk ¼ 6ðvolume of the tetrahedron ABCDÞ:ð2:9Þ

Thus, if the vectors e1; e2; e3 form an orthonormal basis of V3, then the
bi-vectors e1e2, e2e3 and e1e3 form an orthonormal basis for L2ðV3Þ. On the
other hand, for every vector x a V3 and for distinct i; j a f1; 2; 3g let xij denote
the orthogonal projection of x on the coordinate-plane generated by the vectors
ei; ej . Then for every vectors x; y a V3

xy ¼ x12y12 þ x23y23 þ x13y13ð2:10Þ

and, with respect to the norm associated with the inner product (2.4), from
Pythagorean theorem it follows that

kxyk2 ¼ kx12y12k2 þ kx23y23k2 þ kx13y13k2;ð2:11Þ

because the bi-vectors x12y12, x23y23 and x13y13 are the orthogonal projections
of the bi-vector xy on e1e2, e2e3 and e1e3, respectively. The norm kxyk2 can also
be expressed in terms of coordinates of x and y; in fact, if x ¼ a1e1 þ a2e2 þ a3e3
and y ¼ b1e1 þ b2e2 þ b3e3 for ai; bi a R, then

kxyk2 ¼ a1 a2

b1 b2

����
����
2

þ a1 a3

b1 b3

����
����
2

þ a2 a3

b2 b3

����
����
2

;ð2:12Þ

since xy ¼ ða1b2 � a2b1Þe1e2 þ ða1b3 � a3b1Þe1e3 þ ða2b3 � a3b2Þe2e3.8
The linear form o : W ! R can be extended to a linear map from the whole

GðWÞ to GðV3Þ by means of the following relations

oð1Þ ¼ 0;

oðP0Þ ¼ 1;

8 It is worth noticing that, due to fact that dimðV3Þ ¼ 3, there is an orthogonal isomorphism from

L2ðV3Þ onto V3 which maps the bi-products xy into the usual cross products xby, for every
x; y a V3. In particular, kxyk ¼ kxbyk.
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oðP0P1Þ ¼ P1 � P0;

oðP0P1P2Þ ¼ ðP1 � P0ÞðP2 � P0Þ;
oðP0P1P2P3Þ ¼ ðP1 � P0ÞðP2 � P0ÞðP3 � P0Þ

for every P0;P1;P2;P3 a P39. Actually LkðV3Þ is a vector subspace of LkðWÞ
and the linear map o connects the graded algebras GðWÞ and GðV3Þ in the fol-
lowing way:

oðLkðWÞÞ ¼ Lk�1ðV3Þ ¼ KerðojLk�1ðWÞÞ for k ¼ 1; . . . ; 4:ð2:13Þ

Restrictions of o to LkðWÞ, denoted by ok, are called ðk � 1Þ-vector-masses
because, by the first equality of formula (2.13), o transforms a k-degree geomet-
ric form into geometric vector forms of ðk � 1Þ-degree. The second equality says
that

o is null only on the geometric vector forms:ð2:14Þ

In particular, o � o ¼ 0 and the following reduction formula holds:

x ¼ PoðxÞ þ oðPxÞ; for every P a P3; x a LkðWÞ; k ¼ 0; 1; 2; 3; 4:ð2:15Þ

In the sequel, concerning the possibility of associating a bi-vector to a closed
curve, a remarkable fact, due to dimV3 ¼ 3, is the property that

L2ðV3Þ ¼ fvw : v;w a V3g;ð2:16Þ

namely that any linear combination of bi-vectors is still a bi-vector.
A quadri-point ABCD (with A;B;C;D a P3 regarded as the four vertices of a

tetrahedron) suggests the construction of particular bases of the spaces LkðWÞ
and LkðV3Þ, whenever they are not co-planar (i.e. the vectors B� A, C � A,
D� A are linearly independent). In fact, with respect to this tetrahedron ABCD

• the four vertices A;B;C;D are a basis of L1ðWÞ,
• the six edges AB;AC;AD;BC;BD;CD are a basis of L2ðWÞ,
• the four faces ABC;ACD;ABD;BCD are a basis of L3ðWÞ, and
• the tetrahedron ABCD is a basis of L4ðWÞ;
• the vectors B� A;C � A;D� A form a basis for L1ðV3Þ,
• the bi-vectors ðB� AÞðC � AÞ, ðB� AÞðD� AÞ, ðC � AÞðD� AÞ form a basis
for L2ðV3Þ, and

• the tri-vector ðB� AÞðC � AÞðD� AÞ forms a basis for L3ðV3Þ.

9The extension of the linear form o on the whole graded algebra GðWÞ can be uniquely deter-

mined by the following two conditions:

• o : GðWÞ ! GðV3Þ is linear and oðPÞ ¼ 1 for every P a P3,

• oðxyÞ ¼ oðxÞyþ ð�1ÞdegðxÞxoðyÞ (graded Leibnitz rule).
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If A 0;B 0;C 0;D 0 are the four vertices of another tetrahedron, then

A 0B 0C 0D 0 ¼ detðB 0 � A 0;C 0 � A 0;D 0 � A 0Þ
detðB� A;C � A;D� AÞ ABCD;ð2:17Þ

where ðB 0 � A 0;C 0 � A 0;D 0 � A 0Þ is the 3� 3 matrix whose columns are the
coordinates of the o-vectors B 0 � A 0;C 0 � A 0;D 0 � A 0 along the basis B� A,
C � A;D� A. Equality (2.17) enlightens the geometrical interpretation of a
quadri-point in terms of an oriented volume. The equality between two elements
x; y a LkðWÞ can be expressed by means the following condition:

x ¼ y , xz ¼ yz for every z a L4�kðWÞ:ð2:18Þ

Concerning the volume of a tetrahedron or, in general, of an oriented polyhe-
dron (i.e., a region delimited by a closed oriented polyhedral surface), Peano10
proves the following property, referred later in Section 4.

ð2:19Þ Formula for the volume of oriented polyhedra. Let us consider an ori-
ented closed polyhedral surface S made of triangular faces AiBiCi with
Ai;Bi;Ci a P3 and i ¼ 1; . . . ; n. Then the sum of the oriented volumes

Xn

i¼1

PAiBiCið�Þ

of the tetrahedra PAiBiCi does not depend on the choice of the vertex
P a P311.

Let ABCD be a tetrahedron of unitary volume. By (2.17) there are real numbers
ai depending on P such that PAiBiCi ¼ aiABCD. If in addition the polyhedral
surface S of (2.19) is the boundary of a convex polyhedron S, then the sum

10See Applicazioni geometriche del calcolo infinitesimale [60, (1887) pp. 26–27], Calcolo geome-

trico [61, (1888) p. 66], Lezioni di analisi infinitesimale [63, (1893) vol. 2, p. 35].
11Proof of 2.19. The closedness of the oriented polyhedral surface made of triangular faces

AiBiCi amount to the condition oð
Pn

i¼1 AiBiCiÞ ¼ 0; hence, by (2.14) the element
Pn

i¼1 AiBiCi

is a tri-vector. This implies that there exist four points O;X ;Y ;Z, such that
Pn

i¼1 AiBiCi ¼
ðX �OÞðY �OÞðZ �OÞ. From the reduction formula (2.15) the required independence ofPn

i¼1 PAiBiCi from the point P a P3 follows; indeed OXYZ ¼ PoðOXYZÞ þ oðPOXYZÞ ¼
PoðOXYZÞ ¼ PðX �OÞðY �OÞðZ �OÞ ¼

Pn
i¼1 PAiBiCi for every P a P3. (Remark: the indepen-

dence of
Pn

i¼1 PAiBiCi from P a P3 has been proved starting from the equality oð
Pn

i¼1 AiBiCiÞ ¼ 0.

It is worth noting that the converse is still valid; hence, the equality oð
Pn

i¼1 AiBiCiÞ ¼ 0 holds if
and only if ‘‘v

Pn
i¼1 AiBiCi ¼ 0 for every v a V3’’. In other words, a system of triangular surfaces

fAiBiCign
i¼1 forms an oriented closed polyhedral surface if and only if the sum

Pn
i¼1 PAiBiCi does

not depend on the point P a P3).
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a :¼
Pn

i¼1 ai is the signed volume of S. In fact, each ai is the signed volume of the
tetrahedron PAiBiCi with respect to the unit ABCD; therefore, chosen a point
P a S, the tetrahedra fPAiBiCign

i¼1 are equi-oriented and form a decomposition

of S; consequently, the sum a ¼
Pn

i¼1 ai (which is independent from P) is the
signed volume of S.

Several elements of the graded exterior algebras GðWÞ and GðV3Þ admit in-
teresting geometrical and mechanical interpretation. Let A;B;C;D a P3. Then

• a bi-point AB can be seen as the ‘‘vector’’ B� A ‘‘applied in the point’’ A12;

• a tri-point ABC can be seen as the ‘‘bi-vector’’ ðB� AÞðC � AÞ ‘‘applied in the
point’’ A13;

• a quadri-point ABCD can be seen as the ‘‘tri-vector’’ ðB� AÞðC � AÞðD� AÞ
‘‘applied in the point’’ A14;

• a bi-vector can be seen as a Poinsot couple15 or as the oriented boundary of a
triangle16;

• a tri-vector can be seen as the oriented surface of a tetrahedron17.

Besides mechanical interpretations, a force applied in a point can be repre-
sented by a bi-point and, hence, a system of applied forces can be represented
by an element of L2ðWÞ, more precisely as a sum of bi-points. The equiva-
lence (by the point of view of mechanical equilibrium) between two systems of
applied forces fAiBigi¼1;...;n and fCjDjgj¼1;...;m becomes the equality between the

corresponding elements
P

i AiBi and
P

j CjDj of L2ðWÞ. Indeed by means of
equality (2.17), given a bi-point PQ, the product AiBiPQ can be recognized as
the axial moment of the force AiBi with respect to the axis passing through P
and Q. As a consequence the equality (2.18) between elements of L2ðWÞ reduces
the equivalence between two systems of applied forces to the equality of their
axial moments with respect to every axis.

Pursuing the analogy with statics, the image of the operator o acting on
L2ðWÞ represents the resultant of a system of forces (a special case of the
1-vector-mass introduced above). The reduction formula (2.15) can be directly
translated into the reduction formula for a system of forces: given an arbitrary
point P, a system of forces x is (statically) equivalent to a system formed by the
resultant oðxÞ applied in P, and by the Poinsot couple oðPxÞ. As a particular
case, a system of forces with vanishing resultant, can be represented by an
element of L2ðV3Þ. It is interesting to note that Poinsot’s theorem ‘‘the sum of
Poinsot couples is a Poinsot couple’’ emerges naturally from the structure of
vector space of L2ðV3Þ, as expressed by (2.16).

12Since AB ¼ AðB� AÞ.
13Since ABC ¼ AðB� AÞðC � AÞ.
14Since ABCD ¼ AðB� AÞðC � AÞðD� AÞ.
15Since ðB� AÞðC � AÞ ¼ BðC � AÞ � AðC � AÞ.
16Since ðB� AÞðC � AÞ ¼ ABþ BC þ CA.
17Since ðB� AÞðC � AÞðD� AÞ ¼ BCD� ACDþ ABD� ABC.
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3. Bi-vectors associated with oriented closed curves

Peano’s program toward a definition of area of a surface is determining, for a
given oriented closed (not necessarily planar) curve P, the maximum value of
the area delimited by its parallel projections on arbitrary planes.

For this purpose Peano introduces the definition that two oriented closed
curves are said to be equipollent whenever the area delimited by their parallel
projections on any plane are equal.

Peano realizes his program by considering the following decisive step: ‘‘given
an oriented closed (not necessarily planar) curve P, determining in magnitude
and in position a triangle T equipollent to P’’. Clearly, in this case, the maxi-
mum value of the area is obtained by orthogonally projecting P on a plane
parallel to the triangle T: it is equal to the area of T.

3.1. Closed poligonal lines. Let P be an oriented closed polygonal line with con-
secutive vertices A1; . . . ;An belonging to P3. With the polygonal line P Peano
associates a bi-vector bðPÞ defined by

bðPÞ :¼ A1A2 þ A2A3 þ � � � þ An�1An þ AnA1:ð3:1Þ

In view of (2.14) and (2.16), bðPÞ is a bi-vector since
Pn

i¼1 AiAiþ1 is a geometric
form of degree two such that oð

Pn
i¼1 AiAiþ1Þ ¼

Pn
i¼1ðAi � Aiþ1Þ ¼ 018.

Oriented triangular contours (that is, oriented closed polygonal lines with
n ¼ 3) are the simplest oriented closed curves. If T is the oriented contour of a
triangle with consecutive vertices X , Y and Z, then its associated bi-vector is

bðTÞ ¼ XY þ YZ þ ZX :ð3:2Þ

It is worth observing that any bi-vector is the associated bi-vector with an ori-
ented triangular contour. Indeed, for every u; v a V3, choose an arbitrary point
X a P3 and define the points Y :¼ X þ u and Z :¼ X þ v; then the bi-vector
uv is the associated bi-vector with the oriented contour T of the triangle with
consecutive vertices X , Y and Z, since u ¼ Y � X , v ¼ Z � X and

bðTÞ ¼ XY þ YZ þ ZX ¼ ðY � XÞðZ � XÞ:ð3:3Þ

Hence, for any oriented closed polygonal line P, there exists an oriented triangu-
lar contour T such that

bðTÞ ¼ bðPÞ:ð3:4Þ

This T is the triangle required by the Peano’s program introduced above (see
Theorem 3.3).

With an oriented closed planar polygonal line P (i.e., its vertices A1; . . . ;An

belong to a given a‰ne oriented plane p) Peano associates a real number,

18Anþ1 :¼ A1
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denoted here by ‘areaðPÞ’ and defined in the following way. Let the orientation
of p be given by a tri-point RST of unitary area. The vector space of linear com-
binations of tri-points of p that is 1-dimensional, is generated by the element
RST. Then, fixed an arbitrary point P a p, we define

areaðPÞ :¼ ‘‘the real number a such that
Xn

i¼1

PAiAiþ1 ¼ aRST ’’:ð3:5Þ

The reals numbers ai such that

PAiAiþ1 ¼ aiRST ;ð3:6Þ

are said to be the oriented areas of the tri-points (or, triangles) PAiAiþ1 with re-
spect to unit RST19. Therefore, by definition (3.5), one has areaðPÞ ¼

Pn
i¼1 ai.

The quantity ‘areaðPÞ’ is termed by Peano [signed] area bounded by the ori-
ented closed planar polygonal line P. As observed by Peano, this area coincides
with the usual area if the polygonal line (with consecutive distinct vertices) is
convex or, more generally, is not self-intersecting20.

The definition (3.5) of ‘areaðPÞ’ is correlated to the bi-vector bðPÞ and,
moreover, is independent of the choice of the point P a p. Indeed the following
theorem holds.

Theorem 3.1 (Planar polygons, bi-vectors and area21). Let P be an oriented
closed polygonal line with consecutive vertices A1; . . . ;An belonging to an a‰ne
plane p of P3. Then the bivector bðPÞ is parallel to p and the following equalities
hold:

XbðPÞ ¼
Xn

i¼1

PAiAiþ1 for every point X ;P a pð3:7Þ

and, equivalently,

bðPÞ ¼
Xn

i¼1

ðAi � PÞðAiþ1 � PÞ for every point P a p:ð3:8Þ

19 In other words, jaij are the areas of the triangles PAiAiþ1; the sign of ai are positive (negative)

if such triangles have the same (opposite) orientation with respect to the unit RST .
20We wish to call attention of the reader that a given set may be bounded by several closed

polygonal lines having di¤erent (signed) areas. For instance, a triangle of unitary area, with vertices
X ;Y ;Z, may be bounded by the closed polygonal lines P1;P2;P3, where P1 has ordered vertices

X ;Y ;Z, P2 has ordered vertices X ;Y ;Z;X ;Y ;Z and P3 has ordered vertices X ;Z;Y . Their
corresponding (signed) areas are equal to 1; 2;�1, respectively.

21See Peano’s Applicazioni geometriche del calcolo infinitesimale [60, (1887) p. 21], Calcolo

geometrico [61, (1888) p. 59], Lezioni di analisi infinitesimale [63, (1893) vol. 2, p. 32].
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Let RST be a tri-point of p of unitary area as above. By the definition (3.5)
and the equality (3.7) it is clear that

XbðPÞ ¼ areaðPÞRST :ð3:9Þ

Consequently, by (2.8) one has

bðPÞ ¼ 2 areaðPÞuvð3:10Þ

for every vectors u; v a V3 parallels to p such that kuvk ¼ 1 and the bi-vector uv
induces on p the same orientation of RST , and

jareaðPÞj ¼ 1

2
kbðPÞk;ð3:11Þ

that is, the absolute value of the area bounded by an oriented closed planar
polygonal line P is one half of the norm of the associated bi-vector bðPÞ.

Formula (3.5) allows the evaluation of the signed area of a planar polygon P
in terms of the coordinates of its vertices A1; . . . ;An. Let Ai :¼ Oþ xie1 þ yie2
where O a P3, xi; yi a R for i ¼ 1; . . . ; n. Since the points Ai belong to an a‰ne
plane p, generated by the point O and by the orthonormal vectors e1 and e2, by
formula (3.5) with P :¼ O the signed area areaðPÞ of the polygon P with respect
to the orientation of p given by the unitary bi-vector e1e2, one has the well known
expression (see Gauss in [16, (1810) pp. 362–363] and Jacobi [45, (1866)]).

areaðPÞ ¼ 1

2

Xn

i¼1

xi xiþ1

yi yiþ1

����
����:ð3:12Þ

Corollary 3.2. The areas bounded by two oriented closed coplanar polygonal
lines are equal if and only if their associated bi-vectors are equal.

Theorem 3.3 (Non-planar polygons, bi-vectors and equipollence22). For every
oriented closed polygonal line P (not necessarily planar) there exists an oriented
triangular contour T, given by the bi-vector associated with P, equipollent to P.

Corollary 3.4. Two oriented closed polygonal lines (not necessarily planar) are
equipollent if and only if their associated bi-vectors are equal.

For convenience of the reader, we give the proofs of the previous theorems
accordingly to Grassmann–Peano geometric-vector calculus.

Proof of theorem 3.1. Since bðPÞ ¼
Pn

i¼1 AiAiþ1 is a linear combination of
bi-points of the plane p, the bi-vector bðPÞ is parallel to p. Therefore, there exist
three points X ;Y ;Z a P3 in the plane p such that bðPÞ ¼ ðY � XÞðZ � XÞ.
Given a generic point P a P3 in the plane p, we have o4ðPXYZÞ ¼

22See Peano’s Calcolo geometrico [61, (1888) p. 137].

262 g. h. greco, s. mazzucchi and e. m. pagani



ðX � PÞðY � PÞðZ � PÞ ¼ 0 (these three vectors ðX � PÞ; ðY � PÞ; ðZ � PÞ are
linearly dependent!); therefore, by the reduction formula (2.15), we have

XYZ ¼ Po3ðXYZÞ þ o4ðPXYZÞ ¼ Po3ðXYZÞ ¼ PbðPÞ ¼
Xn

i¼1

PAiAiþ1

and the conclusion follows. r

Proof of theorem 3.3. Let A1; . . . ;An be the consecutive vertices of the
closed polygonal line P and let Anþ1 :¼ A1. By (3.3) and (3.4) there exist three
points X ;Y ;Z such that bðPÞ ¼ ðY � X ÞðZ � X Þ. Now, let T be the oriented
contour of the triangle with consecutive vertices X , Y and Z. Given a generic
plane p, let us consider a vector u a V3 non-parallel to the plane p. The relation
(3.1) implies that

ðY � XÞðZ � XÞu ¼
Xn

i¼1

AiAiþ1u:ð3:13Þ

Now, let us consider the projections ~AAi, ~XX , ~YY , ~ZZ on p along the vector u of the
points Ai, X , Y , Z, respectively. Then

ð ~YY � ~XX Þð ~ZZ � ~XX Þu ¼
Xn

i¼1

~AAi
~AAiþ1u:23ð3:14Þ

Observe that F :¼ ð ~YY � ~XXÞð ~ZZ � ~XXÞ �
Pn

i¼1
~AAi
~AAiþ1 is a bi-vector parallel to the

plane p, and, on the other hand, by (3.14) we have that Fu ¼ 0; therefore F ¼ 0,
because u is not parallel to plane p. Hence

ð ~YY � ~XX Þð ~ZZ � ~XX Þ ¼
Xn

i¼1

~AAi
~AAiþ1;ð3:15Þ

that is, the bi-vectors associated with the projection on p of P and T are equal.
In other words, by previous Theorem 3.1 the area bounded by the projection on p
of the polygonal line P is equal to the area of the projection on p of the oriented
triangular contour T. r

3.2. Closed C1 curves. After considering polygonal lines, in Calcolo geometrico
[61, (1888) pp. 136–137] Peano (see also [63, (1893) pp. 233–234]) defines the
bi-vector associated with a C1 oriented closed curve in the following way. Let

23The equality (3.14) follows from (3.13), because for every points B1;B2 a P3 and for every
l1; l2 a R we have B1B2u ¼ ðB1 þ l1uÞðB2 þ l2uÞu.
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A : ½t0; t1� ! P3 be a piecewise C1 closed curve. The bi-vector bðAÞ associated
with A is given by24

bðAÞ :¼
Z t1

t0

AðtÞA 0ðtÞ dt:ð3:16Þ

As in the case of closed planar polygonal lines, Peano defines the [signed] area
delimited by a C1 closed planar curve A, here denoted by ‘areaðAÞ’. Let p be the
a‰ne plane of A, oriented by a tri-point RST of p of unitary area. Given an
arbitrary point P a p, he defines

areaðAÞ :¼ ‘‘the real number a such that

Z t1

t0

PAðtÞA 0ðtÞ dt ¼ aRST ’’:ð3:17Þ

As before, the vector space of linear combinations of tri-points of p is
1-dimensional and is generated by the element RST. Hence the notion (3.17) of

area is well defined since the integral

Z t1

t0

PAðtÞA 0ðtÞ dt is a tri-point of the plane

p, and is independent of P a p. In fact, as in Theorem 3.1, we have

XbðPÞ ¼
Z t1

t0

PAðtÞA 0ðtÞ dt for every point X ;P a p:ð3:18Þ

Being PAðtÞA 0ðtÞ a tri-point of p, there exists aðtÞ a R such that PAðtÞA 0ðtÞ ¼
aðtÞRST . Consequently, by (3.17),

areaðAÞ ¼
Z t1

t0

aðtÞ dtð3:19Þ

regarded by Peano as the area that has swept by the segment PAðtÞ when t varies.
Moreover, by the definition (3.17) and the equality (3.18) it is clear that

XbðAÞ ¼ areaðAÞRST and jareaðAÞj ¼ 1

2
kbðAÞk;ð3:20Þ

24A 0ðtÞ denotes the derivative of A at t. The 2-degree geometric form (3.16) is a bi-vector because
its vector-mass is null:

o
�Z t1

t0

AðtÞA 0ðtÞ dt
�
¼

Z t1

t0

oðAðtÞA 0ðtÞÞ dt ¼
Z t1

t0

A 0ðtÞ dt ¼ Aðt1Þ � Aðt0Þ ¼ 0:

Alternatively, due to the fact that A is a closed curve, the following formula holds:Z t1

t0

AðtÞA 0ðtÞ dt ¼
Z t1

t0

ðAðtÞ �OÞA 0ðtÞ dtð�Þ

for every point O a P3. Consequently it is evident that the integral

Z t1

t0

AðtÞA 0ðtÞ dt is a bi-vector

because the integrand ðAðtÞ �OÞA 0ðtÞ of the right hand side is a bi-vector.
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that is, the absolute value of the area bounded by a C1 oriented closed planar
curve A is one half of the norm of the associated bi-vector bðAÞ. Finally, as
shown for closed planar polygonal lines, by (2.8) one has

bðAÞ ¼ 2 areaðAÞuvð3:21Þ

for every vectors u; v a V3 parallels to p such that kuvk ¼ 1 and the bi-vector uv
induces on p the same orientation of RST .

Analogously to Theorem 3.3 and its Corollary 3.4, for spatial curves we have:

• for every C1 oriented closed curve A (not necessarily planar) there exists an
oriented triangular contour T, given by the bi-vector bðAÞ, equipollent to A;

• two C1 oriented closed curves (not necessarily planar) are equipollent if and only
if their associated bi-vectors are equal.

It is evident that definitions (3.16) and (3.17) extend definitions (3.1) and (3.5)
respectively, whenever closed polygonal lines are regarded as piecewise linearly
parameterized curves.25

Peano observes that for arbitrary C1 closed (non necessarily planar) curve
A the bi-vector bðAÞ associated with A is the limit of the bi-vectors associated
with the polygonal lines inscribed in the curve A; more precisely we have

bðAÞ ¼ lim
ftig

Xm�1

i¼0

AðtiÞAðtiþ1Þð3:22Þ

where the limit is evaluated on the subdivisions 0 ¼ t0 < � � � < ti < tiþ1 < � � � <
tm ¼ 1 of the interval ½0; 1� for maxftiþ1 � ti : i ¼ 0; . . . ;m� 1g ! 0.

The evaluation of the bi-vector bðAÞ in terms of an orthogonal coordinate rep-
resentation of the curve A yields the following well known formulae (3.23) and
(3.24) for planar and spatial curves, respectively.

ð3:23Þ When A is a C1 closed planar curve in a plane p, without loss of general-
ity, we may assume AðtÞ ¼ Oþ xðtÞe1 þ yðtÞe2, where O is a fixed point
of p, and x; y : ½t0; t1� ! R are C1 functions. A straightforward calcula-
tion shows that

bðAÞ ¼
Z t1

t0

AðtÞA 0ðtÞ dt ¼
�Z t1

t0

ðxðtÞy 0ðtÞ � x 0ðtÞyðtÞÞ dt
�
e1e2:

Therefore, by (3.21), areaðAÞ ¼ 1
2

Z t1

t0

ðxðtÞy 0ðtÞ � x 0ðtÞyðtÞÞ dt, accord-
ingly to Green formula.

25 In fact, given a closed polygonal line of vertices A1; . . . ;An, for any linear parameterization

of a segment ½Ai;Aiþ1� of the form A : ½ti; tiþ1� ! P3, with AðtÞ :¼ Ai þ t�ti
tiþ1�ti

ðAiþ1 � AiÞ, we haveZ tiþ1

ti

AðtÞA 0ðtÞ dt ¼ AiAiþ1.
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ð3:24Þ In the case of spatial closed curves, we have that, for every plane p, the
projection along a direction u (non-parallel to p) of the bi-vector (3.16) on
p is equal to the bi-vector associated with the projected curve. Hence,
assuming AðtÞ ¼ Oþ xðtÞe1 þ yðtÞe2 þ zðtÞe3, where O is a fixed point
of P3, and x; y; z : ½t0; t1� ! R are C1 functions, from the equality (3.23)
it follows that

Z t1

t0

AðtÞA 0ðtÞ dt ¼
Z t1

t0

xðtÞ yðtÞ
x 0ðtÞ y 0ðtÞ

����
���� dt

� �
e1e2ð3:25Þ

þ
Z t1

t0

yðtÞ zðtÞ
y 0ðtÞ z 0ðtÞ

����
���� dt

� �
e2e3

þ
Z t1

t0

zðtÞ xðtÞ
z 0ðtÞ x 0ðtÞ

����
���� dt

� �
e3e1;

Finally, from (2.11) we have

Z t1

t0

AðtÞA 0ðtÞ dt
				

				
2

¼
Z t1

t0

xðtÞ yðtÞ
x 0ðtÞ y 0ðtÞ

����
���� dt

� �2
ð3:26Þ

þ
Z t1

t0

yðtÞ zðtÞ
y 0ðtÞ z 0ðtÞ

����
���� dt

� �2

þ
Z t1

t0

zðtÞ xðtÞ
z 0ðtÞ x 0ðtÞ

����
���� dt

� �2
:

3.3. Closed continuous curves. Finally, concerning an oriented closed continuous
curve A, not necessarily C1, Peano [62, (1890)] suggests, for the bi-vector associ-
ated with A, the following definition

bðAÞ :¼ lim
ftig

Xm�1

i¼0

AðtiÞAðtiþ1Þð3:27Þ

where the limit is evaluated on the subdivisions 0 ¼ t0 < � � � < ti < tiþ1 < � � � <
tm ¼ 1 of the interval ½0; 1� for maxftiþ1 � ti : i ¼ 0; . . . ;m� 1g ! 0. Peano does
not specify general properties of A in order for the limit exist. An example of
curve for which the bi-vector (3.27) does not exist will be given in Subsection 3.4.

In view of (3.22), it is evident that definition (3.27) is consistent with (3.16) in
the C1 case. The existence of the limit (3.27) for a given closed curve A guaran-
tees the existence of the analogous limits for any parallel projection of A on a
plane; more clearly, the bi-vector bðA�Þ associated with the curve A�, projection
of the curve A on the plane p along a vector u (non-parallel to p), is equal to the
projection of the bi-vector bðAÞ on p.
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3.4. Some examples. In this Subsection we present three examples, the first is
due to Peano.

Ex. (i) Peano formulation on equipollence of closed spatial is expressed by
equality of their associated bi-vectors also in the case of oriented closed
piecewise C1 curves (see Corollary 3.4). An interesting example of equi-
pollence given by Peano (see [61, (1888) p. 138], [62, (1890)] and [63,
(1893) p. 234]) concerns a non-planar closed curve A equipollent to a
circle. This curve is a piecewise C1 map A with value in P3 formed by
a cylindrical helix of radius r and pitch 2ph and three rectilinear pieces,
two horizontal and one vertical.

Let O be a point of P3; let fe1; e2; e3g be an orthonormal base of
V3 and let A1 :¼ Oþ re1, A2 :¼ Oþ re1 þ 2phe3 and A3 :¼ Oþ 2phe3,
A4 :¼ O. The cylindrical helix, joining A1 to A2 is parameterized by

AðtÞ :¼ Oþ r cos te1 þ r sin te2 þ hte3 for 0a ta 2p;

while the three rectilinear pieces are the segments A2A3, A3A4, A4A1, lin-
early parameterized. By a straightforward calculations of the integral
(3.16) we have that 2pr2e1e2 is the associated bi-vector with the curve
A, that is equal to the bi-vector associated with (hence, equipollent to)
the orthogonal projection (that is a circle) of the curve A on the plane
e1; e2. This is consistent with the observation following Theorem 3.1,
the elementary area of the circle being one half of the norm of bi-vector
above.

Ex. (ii) Uniform convergence of closed polygonal lines does not imply convergence
of their associated bi-vectors. Let e a ð0; 1Þ and n a N. Let P0 :¼ ð0; 0Þ,
P1 :¼ ð1; 0Þ, P2 :¼ ð1; 1Þ, P3 :¼ ð0; 1Þ, Re :¼ ð0; 1� eÞ, Qe :¼ ð1; 1� eÞ
be points of R2. Now we define the oriented closed polygonal lines P
and Pe;n.

The first polygonal line P is given by the ordered sequence of points

P0;P1;P2;P3;P0:

The second polygonal line Pe;n is given by the ordered sequence of
points

P0;P1;P2;P3;Re;Qe;P2;P3

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{n times

;P0:

where the group of points Re;Qe;P2;P3 is repeated n-times. Using
suitable parameterizations of P and Pe;n, the distance of the two
polygonal lines is equal to e. Moreover areaðPÞ ¼ 1 while areaðPe;nÞ ¼
1þ ne. Therefore the sequence fP1

m
;m2gm uniformly converges to P

when m ! l and limm!lkbðP1
m
;m2Þk ¼ 2 limm!l areaðP1

m
;m2Þ ¼ þl.

In conclusion, the sequence fP1
m
;m2gm uniformly converges to P, but the

associated bi-vectors bðP1
m
;m2Þ does not converge.
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Ex. (iii) An example of a closed continuous curve that has not an associated bi-
vector. Let P0 :¼ ð0; 0Þ, Qn :¼

�
1
2n ; 0

�
, Rn :¼

�
1
2n ;

1
2n

�
for every natural

number nb 0. Now consider the continuous curve P, given by joining
with segments the pairs of consecutive points of the following infinite
sequence

P0;Q0;R0;Q1;Q0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{22 times

;R0;Q1; . . . ;Rn;Qnþ1;Qn

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{22nþ2 times

;Rn;Qnþ1; . . . ;P0:

Moreover, for every n, define the polygonal lines Pn, inscribed in P,
given by the following finite sequence of points

P0;Q0;R0;Q1;Q0

zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{22 times

;R0;Q1; . . . ;Rn;Qnþ1;Qn

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{22nþ2 times

;Rn;Qnþ1;P0:

An elementary calculation yields for the area corresponding to the po-
lygonal line Pn the value areaðPnÞ ¼ 1þ nþ

Pn
i¼0

1
22iþ2 . Therefore, since

limn!lkbðPnÞk ¼ 2 limn!l areaðPnÞ ¼ þl, the bi-vector associated
with the closed continuous curve P does not exist.

4. Möbius and bellavitis on the area of polygons

and volume of polyhedra

At the beginning of the 19th century an increasing interest is devoted to the
study of polygons and polyhedra. This interest is paved by the researches by
Legendre and Poinsot, who follow the way traced by Euclid, Kepler, Descartes
and Euler. Legendre in 1794 gives a proof of the famous Euler’s formula (1750)
for polyhedra:

V � E þ F ¼ 2;ð4:1Þ

where V , E and F denote the number of vertices, edges and faces, respectively.
On the other hand, Poinsot [66], according to the ‘‘Géométrie de situation’’ of
Leibnitz [51], in 1810 started the classification of polygons and polyhedra, discov-
ering some new ‘‘star polyhedra’’. In 1813 Cauchy [24] gave a new proof of
Euler’s formula (4.1) showing that there are no star polyhedra di¤erent from
those described by Poinsot. Moreover, urged by Legendre, Cauchy gave the
famous rigidity theorem for convex polyhedra, as he said in Sur les polygones et
les polyèdres [25, p. 87]:

[. . .] chercher la démonstration du théorème renfermé dans la définition 9,
placée à la tète du onzième Livres Elements d’Euclide, savoir que deux pol-
yèdres convexes sont égaux lorsqu’ils sont compris sous un même nombre
de faces égales chacune à chacune.

One of the first book devoted to polyhedra was written by Descartes [30], but
many other authors devote their e¤orts to the study of this topic.
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An evidence of the importance which was given to polygons and polyhedra
in the 19th century is the Gran Prix ‘‘Perfectionner dans quelque point important
la théorie géométrique des polyèdres’’ organized in 1858 by the Accademy of
Sciences of Paris. Indeed the Accademy decided to assign a prize only in presence
of a significative and revolutionary contribution to the theory of polyhedra.
Several important scientists participate, including Möbius. As other participants,
Möbius’s goal was to provide a complete classification of polyhedra, but very
soon he discovered that this is really an arduous task and decided to change
his aim, proposing an innovative work concerning the concept of orientation.
Despite of this, the Accademy does not judge any contribution su‰ciently impor-
tant and does not assign the prize to any participant.

Among several results present in the mathematical literature, we restrict
ourselves to analyze in details the works of Möbius and Bellavitis, due to their
influence on Peano. Formula (3.5) for evaluating area of polygons can be found
for the first time in Möbius’s Barycentrische Calcul [57, (1827) p. 201], where it
appears in a remark, as an application of the analogous formula for triangles
and as a direct geometrical consequence of the notion of barycentric coordinates.
Bellavitis presents the formula (3.5) for evaluating area of polygons in Teoremi
generali per determinare le aree dei poligoni e i volumi di poliedri [6, (1834)] as
a ‘‘trivial consequence’’ of a well known property due to Poinsot [67, (1811)
pp. 53–54]. Bellavitis says indeed:

[In the formula of area] one can see the property satisfied by a system of
applied forces with vanishing resultant to be equivalent to a couple, inde-
pendently of the common point in which the forces are translated.

Later Möbius himself deduced formula (3.5) for evaluating area of polygons, as
an application of statics, in his book Der Statik [55, (1837) pp. 61–64]. In our
opinion this correlation with statics, where the couples of consecutive vertices
(¼ bi-points) of a closed polygonal line are interpreted as forces with vanishing
resultant, is important from a historical point of view and may be emphasized
into the following:

Theorem 4.1 (Metatheorem). The following two propositions are equivalent:

ð4:2Þ Formula of area (3.5) for planar polygons holds.
ð4:3Þ Any system of planar forces with vanishing resultant is equivalent to a

couple.

According to Bellavitis also the formula of volume of polyhedra (2.19) can be
seen as a consequence of the static theorem of Poinsot: ‘‘the sum of couples is
a couple’’ [67, (1811) p. 56]. Later, references to formula (3.5) for evaluating
area of polygons and formula (2.19) can be found in Bellavitis’s Metodo delle
equipollenze [8, (1838) pp. 95–97] and Sposizione del metodo delle equipollenze
[7, (1854)]. Concerning Möbius, both formulae (3.5) and (2.19) can be found in
his article appeared in 1865 Über die Bestimmung des Inhaltes eines Polyhedres
[56, pp. 486, 494].
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The methods of proof of Bellavitis and Möbius are quite di¤erent. Bellavitis is
one of the first mathematicians developing vector calculus, and he uses it in most
of his proofs; moreover the deep connection between statics and geometry is
strongly emphasized. It is also worthwhile to note that Bellavitis applies the
duality relation between polygons and polyhedra, then it is not surprising that
formula (3.5) for evaluating area of polygons and formula (2.19) appear in the
same article. In the work by Möbius emerges the revolutionary concept of
orientation. Möbius is conscious that orientability of polyhedra is an important
condition for the validity of the formula of volume, and it cannot be ignored, as
well as he was aware of the existence of non oriented polyhedra. In Bellavitis’s
work the necessity of orientability is not transparent, and he handles only with
polyhedra which are dual of polygons that are oriented by construction.

We did not find any trace (but we cannot exclude it) concerning ‘‘area of non-
planar polygons’’ either in Möbius or in Bellavitis even if a statement similar to
Metatheorem 4.1 is still valid for non-planar polygons and non-planar forces:

Theorem 4.2 (Metatheorem). The following two propositions are equivalent:

ð4:4Þ For any closed polygonal line (not necessarily planar) there exists a triangle
such that the area of any projection of the polygonal line on an arbitrary
plane is equal to the area of the projection of the triangle.

ð4:5Þ Any system of forces with vanishing resultant is equivalent to a couple.

5. Peano’s definitions of area

In Peano’s works we recognize two definitions of area of a non-planar surface,
the first one, referred as geometrical, is based on the notion of Jordan-Peano
area of planar sets; the second one, referred in the following as bi-vectorial (and
further split into planar and spatial ), is grounded in the notion of bi-vector asso-
ciated with a closed curve bounding a piece of surface.

In Applicazioni Geometriche del Calcolo Infinitesimale [60, p. 164] Peano intro-
duces his geometrical definition of surface area in the following terms:

Area of non-planar surfaces. Let us consider an arbitrary surface.
Performing an orthogonal projection on a plane, we get a plane figure; we
assume that this figure has an ‘‘area propria’’ [i.e., it is Peano-Jordan mea-
surable] and that the given surface can be decomposed into parts having
the same property.

Let us decompose the given surface into pieces and, after carrying these
pieces arbitrarily in the space, let us project all these pieces on the same
plane. The sum of the areas of these projections is an area of a planar set,
depending on the decomposition of the surface and on the way its pieces
are located. The supremum of the values of these planar areas will be
defined as the area of the surface.

It follows immediately from this definition that the area of an arbitrary
surface is greater than its orthogonal projection on an arbitrary plane.
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Paraphrasing the content of the Peano’s paper Sulla definizione dell’area d’una
superficie [62, (1890), p. 56], we may have the following planar bi-vectorial defini-
tion of area26, that may help the reader in comparing the two definitions of
surface area given by Peano:

[Let us consider an arbitrary surface delimited by a closed oriented curve.
Performing an orthogonal projection on a plane, we get a plane figure
delimited by a closed oriented curve; we assume that to the latter there
corresponds a bi-vector which magnitude27 gives the planar area of the
figure, and that the given surface can be decomposed into pieces having
the same property. Let us decompose the given surface into pieces and,
after carrying these pieces arbitrarily in the space, let us project all these
pieces on a same plane. The sum of areas delimited by the closed oriented
curves of these projections depends on the decomposition of the surface
and on the way its pieces are located. The supremum of these sums will
be defined as the (planar) bi-vectorial area of the surface.]

In the same paper [62, (1890)] Peano examines, also by a historical viewpoint,
various definitions of surface area and restates his definition. He starts by present-
ing the definitions of length of a convex planar arc and the area of a convex sur-
face, given by Archimedes, as the limit of inscribed and circumscribed polygons
and, respectively, as the limit of inscribed and circumscribed convex polyhedral
surfaces. Peano, aware of the fact that Archimede’s proposal is suitable enough
to define the area of a cylindrical surface, tries to propose a definition of surface
area preserving the analogy between length of arcs and area of surfaces present in
Archimede’s work. In the case of non-planar curves a good definition of length
can be obtained by considering only the inscribed polygons, but in the case of
surfaces, Peano observes that Archimede’s definition cannot be applied to the
non convex ones. Peano’s aim is to extend Archimede’s definition in order to
handle more general surfaces, such as the concave ones.

Later, Peano [62, (1890)] criticizes the definitions of surface area present in the
literature, including Serret’s definition, and explaining that

The main mistake of Serret is his belief that the plane passing through three
points of a surface tends to its tangent plane.

He criticizes also Lagrange’s definition [49, (1813) Chap. 14, p. 300] saying that
‘‘the result has been obtained by Lagrange by means of a not exact statement’’.
He also criticizes Harnach’s [41, (1885) Vol. II, p. 195] modification of Serret’s
definition, saying that, even if the faces of the polyhedron considered by Harnach
tend to the tangent planes, Harnach’s definition fails even in the case of a

26The word planar is related to the fact that this definition relies on the evaluation of bi-vectors

associated with planar closed curves.
27 In Peano [62, (1890)] the term ‘‘magnitude of a bi-vector uv’’ (grandezza in italian) means area

delimited by the triangle X ;Y ;Z such that uv ¼ ðY � XÞðZ � XÞ ¼ XY þ YZ þ ZX . Therefore this
magnitude is one half of the norm of the bi-vector, the norm of bi-vectors being defined in Section 2.
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cartesian surface of equation z ¼ f ðx; yÞ. Peano also recalls that the non cor-
rectness of Serret’s definition has already been noted by Schwarz. The definition
proposed by Hermite [44, (1887) p. 36] as a consequence of Schwarz’s remark,
even if considered su‰ciently ‘‘rigorous’’ by Peano, is not completely satisfactory,
because depends on the choice of the coordinate system.

Finally, Peano [62, (1890)] observes that any di‰culty can be overcome by us-
ing the concept of oriented area, attributed by him to Chelini, Möbius, Bellavitis,
Grassmann and Hamilton28. The bi-vectorial definition of non-planar surface
area of Peano is based on the concept of Grassmann’s bi-vector: Peano extends
the equipollence between closed polygonal lines and triangles (see Theorem 3.3)
to arbitrary oriented closed curves. Thus oriented closed lines can be represented
by bi-vectors:

Given a closed (not planar) line l, it is always possible to determine a
closed planar line or bi-vector l 0 in such a way that by projecting both lines
on an arbitrary plane, with parallel rays along an arbitrary direction, the
[signed] areas defined by their projections coincide.

The logical evidence of this proposition is not trivial for a modern reader29.
We observe that Peano [62, (1890)], by presenting the mathematical instruments
for the proof, emphasizes the role of bi-vectors:

This proposition is a direct consequence of the sum, or composition, of bi-
vectors [since such a sum is a bi-vector,] when the line l is polygonal. The
usual limiting procedure allows one to prove this fact when l is described
by a point having finite derivative, and also in other cases.

The trivialness of the first part of this quotation, in the case of polygonal
curves, is a consequence of Theorem 3.3 of Section 3. Concerning the second
part, the approximation of a line by means of polygons provides the direct way
to transfer properties of oriented closed polygonal lines to oriented closed con-
tinuous curves (see (3.27)). It is worthwhile to note that limits of polygons and
triangles are included in the topological concepts introduced by Peano concerning

28 It is interesting to note that Chelini, Möbius, Bellavitis and Grassmann in their work refer

directly to Poinsot.
29 In a letter [32, (1957) p. 867] written by Peano to Casorati (October 26, 1889) to submit his

paper [62, (1890)] to Rendiconti dell’Accademia dei Lincei, we find:

These closed contours are analogous, by duality, to segments or vectors; they can be identified

with the couples of mechanics. According to Grassmann they are products of two vectors and
can be called bi-vectors. Let us call the magnitude of a bi-vector C the area, in absolute value,

of the triangle T described in the previous Theorem. If, by projecting C on a tern of orthogo-

nal planes, one obtains the areas a; b; c, then the size of C is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c2

p
. The

bi-vectors can be added, or composed, in an analogous way as the vectors, and more precisely

as the couples of forces. If a part of a surface is decomposed into pieces, the bi-vector (or
contour) of that surface is the sum of the bi-vectors of its pieces, as in the case of an arc of

a line is decomposed into pieces, the vector (cord) of the arc is the sum (resultant) of the
vectors of its pieces.
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geometric forms (see Section 2). The condition of finite derivative, besides guar-
anteeing the continuity of the curve, assures that any projection of the closed line
is the boundary of a set which is measurable in the sense of Jordan–Peano.

Moreover, Peano [62, (1890)] underlines that area must be thought as
‘‘oriented’’:

Areas must be considered by taking their signs into account.

This part underlines the fact that the orientation of closed lines has always to
be taken into account and this aspect becomes fundamental in the case of self-
intersecting lines.

Thanks to the notion of equipollence between closed lines, Peano observes
that:

If one projects orthogonally a (not planar) closed line l on a variable plane,
the maximum of the area delimited by the projection of l is equal to the
magnitude of the bi-vector l. This maximum is achieved by projecting on
a plane on which l lies.

In 1890 Peano [62] presents a new and more clear formulation of its definition
of surface area, in the following referred as spatial bi-vector definition of area30:

The area of a portion of surface is the upper limit of the sum of the magni-
tudes of bi-vectors corresponding to its parts.

More pragmatically, we may re-state this quotation in the following way:

[Given an arbitrary non-planar surface, we consider a decomposition into
pieces. For each of these pieces we consider its oriented boundary and the
magnitude of the corresponding bi-vector. The supremum, with respect
to all decompositions of the surface, of the sums of the magnitudes of
the bi-vectors of the pieces of the decomposition, will be defined as the
(spatial) bi-vectorial area of the surface.]

With this formulation Peano provides the fundamental property leading to the
formula of area (1.1):

The bi-vector corresponding to an infinitesimal part of the surface lies on
the tangent plane; the ratio between its size and the area of that part is
equal to 1.

In this way Peano shows the complete analogy between length of arcs and
area of surfaces: in fact Peano observes that the direction of the vector with
endpoints on an infinitesimal arc coincides with the tangent, and the rate be-
tween their lengths is equal to one31. Commenting on this fact, we may say

30The word spatial is related to the fact that this definition relies on a direct evaluation of
bi-vectors associated with spatial, non necessarily planar, closed curves.

31Besides these properties of areas, Peano gives an estimate of the di¤erence between the lengths
of an arc and its cord and between the area of a surface and its bi-vector.
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that Peano’s definition grasps the essence of the measure of area at infinitesi-
mal level.32

This fact may be summarized into the following theorem, relevant in
obtaining the integral formula (6.2) for area of a C1 non planar surface. Let
P : ½0; 1� � ½0; 1� ! P3 be a C1 surface. For any x; y a ð0; 1Þ let’s consider the
infinitesimal square Qa;b; e :¼ ½a; aþ e� � ½b; bþ e� with a; b a ð0; 1Þ, its counter-
clockwise oriented boundary qþQa;b; e and the infinitesimal element of surface
PðQa;b; eÞ.

Theorem 5.1. The ratio between the magnitude of the bi-vector bðPðqþQa;b; eÞÞ,
associated with the closed curve PðqþQa;b; eÞ (image of qþQa;b; e under P), and the
Peano’s area of the piece of surface PðQa;b; eÞ tends to 1 when ða; bÞ tends ðx; yÞ and
e tends to 0þ.

The idea of projection on planes and the selection of the projection which
maximizes the area is present also in Carathèodory’s work of 1914 [15], and fur-
ther developed by Hausdor¤, who extends Carathèodory’s results in the case of
Hausdor¤ measures with integer exponent [42]. Nowadays the most famous mea-
sure is the Hausdor¤ measure, which allows one to define the measure of rather
general sets by including also the concept of dimension. One of the first results
proved by Hausdor¤ is the Lagrange formula of area (1.1).

6. Use of the concept of area by Peano

By analyzing the complete Peano’s production, we found the following works
containing applications of the notion of surface area: Applicazioni geometriche
[60, (1887)], Calcolo geometrico [61, (1888)], Lezioni di analisi infinitesimale [63,
(1893)] and Formulario mathematico (1895–1908).

Peano, by means of the notions of inner and outer measures on Euclidean
spaces of dimension 1; 2; 3, that have been introduced by him in Sull’integrabilità
delle funzioni [59, (1883)], refounds in Applicazioni geometriche [60, (1887)] the
notion of Riemann integral and extends it to abstract measures. The development
of the theory of measure is based on a solid topological and logical ground and
on a deep knowledge of set theory.

Peano in Applicazioni geometriche and later Jordan in Cours d’Analyse [46,
(1893)] develop the well known concepts of classical measure theory: measur-
ability, change of variables, fundamental theorems of calculus. These classical

32An elementary example is the following. Let S be a spherical surface of radius R and C an
oriented circle obtained by intersecting S with a plane having distance h < R from the center of the

spherical surface. Denoting by r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � h2

p
the radius of C, we have that

lim
h!R�

Area of the spherical cup delimited by C
1
2 kbðCÞk

¼ lim
h!R�

2pr2

1þh=R

pr2
¼ 1
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concepts of measure theory are developed by Peano also in Lezioni di analisi
infinitesimale [63, (1893)] and in Formulario mathematico (1895–1908), where
areas of planar sets delimited by several classical curves are evaluated [65, (1908)
pp. 390–407] and, chiefly, alternative definitions of integral are given [65, (1908)
p. 442].

The mathematical tools employed by Peano were really innovative both on
geometrical and topological level. Peano used extensively the geometric vector
calculus introduced by Grassmann (see Sections 2 and 3). A revolutionary tool
is also the notion of di¤erentiation of distributive set functions, that suggests to
regard area of a non-planar surface as a distributive (or, finitely additive) set
function and to compare it, at infinitesimal level, with the area of a planar set.
In this context the evaluation of the area of a non-planar surface is reduced to
the integration of a numerical function obtained by di¤erentiation of the area of
a non-planar surface with respect to the area of planar sets33.

In this rich mathematical context Peano gives his first definition of area of
non-planar surfaces (see first quotation of Section 5) and derives general formulae
for planar and non-planar surfaces.

ð6:1Þ Formula for planar area (see [60, (1887, Th. 47, p. 237)], [63, (1893, Vol. 2,
§394 pp. 224–226)]). Let A;B : ½t0; t1� ! R2 be two C1 functions, such
that the segments AðtÞBðtÞ and Aðt 0ÞBðt 0Þ have empty intersection for
any t; t 0 a ½t0; t1�, tA t 0. The set spanned by the segment AðtÞBðtÞ, with
t a ½t0; t1�, namely the set

S
t A ½t0; t1� AðtÞBðtÞ has an area s given by the

formula

s ¼ 1

2

Z t1

t0

ðBðtÞ � AðtÞÞ �
� dAðtÞ

dt
þ dBðtÞ

dt

�
dt

where, following Peano’s terminology, ðBðtÞ � AðtÞÞ �
� dAðtÞ

dt
þ dBðtÞ

dt

�
denotes

the norm of the bi-vector given by the product of the vectors ðBðtÞ � AðtÞÞ
and

� dAðtÞ
dt

þ dBðtÞ
dt

�
.34

ð6:2Þ Formula for non-planar area (see [60, (1887, Th. 49, p. 243)], [63, (1893,
Vol. 2, §396 pp. 229–232)]). Let P : D ! R3 be a C1 function over D :¼
fðu; vÞ a R2 : a < u < b; y0ðuÞ < v < y1ðuÞg where y0 and y1 are contin-

33As observed in our paper Peano on derivative of measures: strict derivative of distributive set

functions [39, (2010)], di¤erentiation of distributive set functions gives a mathematical implementa-
tion of the massa-density paradigm (mass and volume are distributive set functions and the density is

obtained by di¤erentiating mass with respect to volume).
34 In modern language, the norm of this bi-vector is the norm of the cross product ðBðtÞ�AðtÞÞb� dAðtÞ
dt

þ dBðtÞ
dt

�
. Therefore the formula (6.1) becomes

s ¼ 1

2

Z t1

t0

ðBðtÞ � AðtÞÞb
� dAðtÞ

dt
þ dBðtÞ

dt

�				
				 dt:
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uous functions defined on the interval ½a; b�. The surface formed by points
Pðu; vÞ, with ðu; vÞ a D, has an area s given by the formula

s ¼
Z b

a

du

Z y1ðuÞ

y0ðuÞ
nðu; vÞ dv

where nðu; vÞ is the norm of the bi-vector, product of the vectors qP
qu

and
qP
qv
.35

Formula (6.2), already obtained by Peano from his geometrical definition of
area of surfaces, is proved by him also using his bi-vectorial definition. This
coincidence is valid in the case of C1 surfaces, but it does not hold for arbitrary
surfaces.

Peano uses formulae (6.1) and (6.2) to obtain classical formulae for elemen-
tary surfaces (planar and non-planar). Moreover from (6.1) he derives in ([60,
(1887), p. 242]) and in ([63, (1893, Vol. 2, §394 pp. 225–226)]) formulae that
have been recovered one century later by Mamikon A. Mnatsakanian in his paper
On the area of the region on a developable surface [54, (1981)].

Particular instances of formula (6.1), considered by Peano, are the following:

ð6:3Þ The point A moves along a straight line and the angle of the segment AB
with that line is constant;

ð6:4Þ The point A is fixed;
ð6:5Þ The segment AB is tangent at the point A to the curve described by A;
ð6:6Þ The segment AB is of constant length and normal to the curve described by

its midpoint.

In the case (6.5), formula (6.1) becomes

s ¼ 1

2

Z t1

t0

det
v1ðtÞ v2ðtÞ
v 01ðtÞ v 02ðtÞ

� �
dt

����
����;

where v1ðtÞ, v2ðtÞ are the components of the vector BðtÞ � AðtÞ and t a ½t0; t1�. It is
clear from this formula, that the area depends only on the di¤erences of the
points BðtÞ � AðtÞ and not on the particular positions of the points AðtÞ, BðtÞ.
As a consequence of this fact, Peano derives the content of what is nowadays
stated as Mamikon’s Theorem: the area of a tangent sweep of a curve is equal to
the area of its corresponding tangent cluster. For instance, the three following
figures (see Figure 1) have the same area, because the first two figures are swept
by equal tangent vectors to the inner ellipsis, while the third one is their corre-
sponding tangent cluster. The areas marked by the same letter have the same
area as well.

35 In modern language, the norm of this bi-vector is the norm of the cross product qP
qu
ðu; vÞb

qP
qv
ðu; vÞ; see footnote 8. Therefore the formula (6.2) becomes

s ¼
Z b

a

du

Z y1ðuÞ

y0ðuÞ

qP

qu
ðu; vÞb qP

qv
ðu; vÞ

				
				 dv:
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Mamikon’s theorem has several applications, as it enables one to obtain area
of complicated planar figures almost without calculation, by reducing the prob-
lem to the calculus of area of simple figures; see, for examples, Mamikon
A. Mnatsakanian and Apostol in [4], [2] and [3].36

Surprisingly, in the five editions of Formulario mathematico, Peano does not
present neither the geometrical nor the bi-vectorial definition of surface area,
but he prefers to adopt another definition. This definition, due to Borchardt
[10, (1854) p. 369]37, is stated in [64, (1902) p. 300] and in [65, (1908) p. 384] by
the following limit (if any):

lim
h!0þ

Volumfx a R3 : distðx;SÞ < hg
2h

ð6:7Þ

for every set S of points in R3 of null volume.
In Formulario mathematico [64, (1902) pp. 300–301] the well-known counter-

example to the definition of Serret on surface area is given. This is based on the
construction of a polyhedral surface Sm;n, with m, n positive integers, inscribed
into a cylinder of height 1 and radius 1, formed by mn triangles with the follow-
ing vertices:

cos
2pr

m

� �
; sin

2pr

m

� �
;
s

n

� �
; cos

2p½rþ 1�
m

� �
; sin

2p½rþ 1�
m

� �
;
s

n

� �
;

cos
p½2rþ 1�

m

� �
; sin

p½2rþ 1�
m

� �
;
sþ 1

n

� �

Figure 1

36 In [5, (2009)] Apostol and Mnatsakanian, using Mamikon’s theorem, prove the property of
Roberval: ‘‘The area of a cycloidal sector is three times the area described by the generating disk

along its motion’’. This property was proved by Peano [63, (1893) Vol. 2, §395 pp. 226–228] using
(6.1).

37Borchardt’s surface area, usually called Minkowski area, was rediscovered and extended to
arbitrary point set surfaces by Minkowski [53, (1901)] 47 years later.
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and by mn triangles with the following vertices:

cos
2pr

m

� �
; sin

2pr

m

� �
;
s

n

� �
; cos

p½2r� 1�
m

� �
; sin

p½2r� 1�
m

� �
;
sþ 1

n

� �
;

cos
p½2rþ 1�

m

� �
; sin

p½2rþ 1�
m

� �
;
sþ 1

n

� �

with r ¼ 0; 1; . . . ;m� 1 and s ¼ 0; 1; . . . ; n� 1.
The pictures of Figure 2 show the positions of vertices of triangles in the

plane development of the cylindrical surface (as appears in Peano [64, (1902)
pp. 300–301], with m ¼ 5, n ¼ 3) and the shapes of the polyhedral surfaces Sm;n

(as appears in Hermite [43, (1883) p. 36] with m ¼ 6, n ¼ 10 and in Schwarz
[71, (1890) vol. 2, p. 311] with m ¼ 6, n ¼ 20).

A straightforward calculations gives the area am;n of the polyhedral surface
Sm;n:

am;n ¼ 2m sin
� p

m

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4n2 sin4 p

2m

r
:ð6:8Þ

Clearly

lim
m!l

am;m ¼ 2p; lim
m!l

am;m2 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p4

4

r
; lim

m!l
am;m3 ¼ þlð6:9Þ

Consequently the limit of the area of the polyhedra Sm;n for m; n ! l does
not exist.

7. On the influence of Peano on definition of surface area

With Lebesgue’s Thesis Intégrale, Longueur, Aire [50, (1902)], Peano’s definition
of surface area acquires notoriety. Lebesgue is acquainted with the bi-vectorial
definition of surface area given by Peano in 1890, but ignores the original defini-
tion of 1887 and any other contribution of this Author (with the exception of the
Peano’s curve). As a consequence of this, it is not surprising that, in almost all
contributions on the definition of surface area, references to the other Peano’s

Figure 2
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works on surface area (in particular, to the books Applicazioni geometriche
[60, (1887)] Calcolo geometrico [61, (1888)] and Lezioni di analisi infinitesimale
[63, (1893)]) are absent.

Lebesgue’s area of a parameterized surface is defined by him as the lower limit
of the area of the polyhedral surfaces that approximate uniformly the surface.

Concerning the notion of surface area, now we recall various contributions
and implementations inspired and/or closely related to Peano’s definition. The
various implementations correspond to the di¤erent ways of defining the ‘‘area
of the orthogonal projection on a plane’’ of a piece of surface.

In the mathematical literature, we find definitions of surface area that imple-
ment Peano’s inequality, namely the ‘‘area of a surface is greater or equal to the
area of its orthogonal projection on an arbitrary plane’’. Other definitions of
surface area implement the Peano’s bi-vectorial inequality, namely that the
‘‘area of a surface bounded by a closed oriented contour is greater or equal to
the magnitude of the bi-vector associated with the contour itself ’’. In this case,
the implementations correspond to the di¤erent ways to associate a number
with a given oriented closed curve.

After Schwarz and Peano, as observed by Radó in [70, (1956) p. 513], ‘‘many
definitions [of surface area] have been proposed, and an enormous amount of
e¤orts have been expended in the study of [. . .] various concepts of surface area’’.
For this reason we are forced to present only some contributions. Interested
readers may find detailed historical account and mathematical facts in Cesari’s
book Surface area [28, (1954)] and Radó’s book Length and area [69, (1948)].

In addition to the ones given by Peano, remarkable definitions are the
Lebesgue’s and Geöcze’s surface area. The original definitions of Peano and
Geöcze provide an evaluation of surface area that is greater than or equal to
Lebesgue’s surface area. Observe that Peano’s and Geöcze’s surface area relies
on the evaluation of the area of the orthogonal projection on planes of pieces
of the given surface. Therefore many authors have proposed di¤erent ways to
define the area of a plane surface, in order to make Peano’s and Geöcze’s areas
coincident with Lebesgue’s area for a wider class of continuous parametric sur-
faces (see Radó [68, (1928)] and Cecconi [26, (1950)], [27, (1951)]).

Cesari [28, (1956)] reformulates the definitions given by Peano and Geöcze
in a suitable way in order ‘‘to preserve’’ usual elementary area of polyhedral sur-
faces and, above all, lower semicontinuity. Cesari states the following theorem:

Theorem 7.1. For every continuous surface S we have LðSÞ ¼ VðSÞ ¼ PðSÞ,
where LðSÞ, VðSÞ and PðSÞ denote Lebesgue area, Geöcze area and Peano area
respectively.

More precisely, Peano’s38 and Geöcze’s definitions are reformulated by Cesari
in terms of topological index of oriented closed planar curves. This index is
denoted with OðP; gÞ by Cesari, where g is an oriented closed planar curve,

38Here we refer to the planar bi-vectorial definition of surface area; see Section 5.
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and P ¼ ðx; yÞ is a point of the plane p of g. It is worth observing that, as for
the bi-vector associated with an oriented closed planar curve, the integralZ
p

jOðP; gÞj dx dy (denoted in the following by vðg; pÞ) is interpreted, as ‘‘area of

the planar surface delimited by g’’ (see Cesari [70, (1956) p. 104]).

Now, let S be a parametric surface in R3, parameterized by a continuous
j : A ! S (i.e., S ¼ jðAÞ), where A is an admissible set39. Given a plane a and
a curve g in A, let us denote with g�a the orthogonal projection on a of the image
g� of g under the parameterization j.

The reformulation of Peano’s area of the surface S, given by Cesari (see [28,
(1956) p. 137]), is the following:

PðSÞ :¼ sup
fgigi

X
i

sup
a

vðg�ai ; aÞð7:1Þ

where fgigi runs over all finite families of simple closed polygonal curves in A
delimiting non-overlapping regions, and a runs over all planes in R3.

Concerning Geöcze’s surface area, let us consider the coordinate planes axy,
ayz and azx in Euclidean space. The reformulation of Geöcze’s area of the surface
S, given by Cesari (see [28, (1956) p. 117]), is the following:

VðSÞ :¼ sup
fgigi

X
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½vðg�axyi ; axyÞ�2 þ ½vðg�ayzi ; ayzÞ�2 þ ½vðg�azxi ; azxÞ�2

q
:ð7:2Þ

A great deal of research has been dedicated to find an axiomatic characteriza-
tion of a notion of surface area, namely to the problem of establishing properties
characterizing univocally the notion of surface area. Cecconi in [27, (1951)] gives
the following properties characterizing Lebesgue surface area (and, consequently,
Peano area (7.1) and Geöcze area (7.2)):

Theorem 7.2. Let F be a functional defined over all continuous parametric sur-
faces S on 2-cells. Then F coincides with Lebesgue surface area if the following
properties are satisfied:

ð7:3Þ F is lower semi-continuous;
ð7:4Þ F coincides with usual elementary area for polyhedral surfaces;
ð7:5Þ F is super-additive40;
ð7:6Þ F satisfies Peano inequality41.

39Among the admissible sets (see Cesari [28, (1956) p. 27]), we mention: planar sets delimited by

a Jordan simple curve or finite union of such sets, and open sets.
40Namely, for every subdivision of the surface S in pieces, the area of S is greater than the sum

of the areas of the various pieces.
41Namely, for every surface S, and for every plane a, one has FðSÞbmisðfP a a : OðP;CaÞ

A 0gÞ, where Ca is the orthogonal projection of the contour of S on a, and OðP;CaÞ is the topolog-
ical index of P with respect to the curve Ca defined above.
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In the proof of this Theorem, given by Cecconi, a crucial step consists in the
inequality PðSÞaFðSÞaLðSÞ that, together with the equality PðSÞ ¼ LðSÞ
(see Theorem 7.1), leads to the expected coincidence FðSÞ ¼ LðSÞ.42

In addition to Lebesgue, Radó, Cesari and Cecconi, many other mathemati-
cians have been influenced by Peano’s definition of surface area; for instance,
Geöcze [34, (1910) p. 68], [35, (1913)], Young [81, (1919)], Burkill [13, (1923)],
Fréchet [31, (1925)], Severi [74, (1927)], Caccioppoli [14, (1930)].

Young in [81, (1919)], [82, (1920)] and [83, (1921)] defines the ‘‘area of a closed
skew curve’’43 following a procedure that is equivalent, in essence, to the spatial
bi-vectorial definition of surface area given by Peano44.

Severi in [74, (1927)] provides integral formulae for surface area, starting from
the spatial bi-vectorial definition of surface area given by Peano. More precisely,
in [74, (1927) p. 475] he uses the integral

Z
ðPðtÞ �OÞbP 0ðtÞ dtð7:7Þ

(bdenoting the usual cross product in R3) to associate a vector with the spatial
closed curve PðtÞ in R3, ‘‘in agreement’’ with formula (3.16) given by Peano45.

Caccioppoli, pioneer of the theory of sets of finite perimeter, develops his
theory of surface area in several papers, written in the period 1927–1952. He is
aware of the various definitions of surface area, due to Lebesgue, Peano, Young,
Burkill, Banach, Schauder, Geöcze and Radó. Among these, in [14, (1930)], he
appreciates mainly the definition given by Peano:

[. . .] the most vital aspect of the idea of Peano is the presence of a vectorial
definition, not merely numerical, of surface area.

42Caccioppoli in [14, (1930)] proposes the problem of axiomatizing the notion of surface area.
Various answers are given by Zwirner [84, (1937–38)], Scorza-Dragoni [72, (1946)], Stampacchia

[78, (1946)] and Pagni [58, (1950)], followed by Cecconi [27, (1951)].
43Fréchet [31, (1925)], with respect to Young’s paper [81, (1919)], observes: M. W. Young [. . .]

obtient d’ailleurs des résultats très remarquables—et [. . .] il croit pouvoir préférer à la définition par

la plus petite limite des surfaces polyédrales voisines [,] une definition basée comme celle de Peano
sur la notion ‘‘d’aire minima d’une courbe fermée’’.

44 In Young [82, (1920) p. 346] a mechanical interpretation of the area of a closed planar polyg-
onal curve is present: ‘‘Join the corresponding points A;P1;P2; . . . ;Pm�1;A, on the curve to form an

inscribed polygon. Imagine forces, represented in magnitude, line of action, and sense, by the sides of
this polygon [. . .]. Denote by F the sum of the moments of these forces about any point in the plane,

i.e. the moment of the resulting couple, counted positive when anti-clockwise sense. Then, if, the
norm e [the maximum length of the segments of the subdivision] tends to zero, so that m ! l, the

number F has a unique limit 2A, the limit A [sic] is called the area of the curve’’. It is worth observing
that this limit, in general, does not exit, as shown in Ex. (iii) in Subsection 3.4.

45The vector (7.7), due to the fact that PðtÞ is closed, is independent of the point O; moreover,
in view of equality (*) of the footnote 24, it is orthogonal to the oriented 2-plane associated with the

bi-vector (3.16), has the same norm and orientation. Notice that formula (7.7) is meaningful only in
three dimensional spaces, whereas formula (3.16) is meaningful in space of any dimension.
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Moreover, comparing Peano’s and Lebesgue’s definitions, Caccioppoli writes:

[A point of view], that appears more simple and rigorous, has been adopted
by Lebesgue: the area of a surface is defined as the lower limit of the areas
of the approximating polyhedral surfaces. The other point of view, more
vague, but more fecund, is the one of Peano: with any piece of surface is
associated an oriented planar area, playing the same role of a vector for a
piece of a curve; in this way, similar to what happens in evaluating the
length of a curve by inscribed polygonal curves, it is possible to obtain a
set of values that approximate the area of the surface; the area is defined
as the upper bound of this set.

[. . .] The sterility of Lebesgue’s definition is related to the absolute
absence of a notion of oriented element of area.

Some members of the School of Peano [47, p. 187] worked on the notion of
surface area, referring to Peano’s works on surface area: Sibirani [75, (1906)],
[76, (1914)], Viglezio [80, (1920–21)], Cassina [18, (1922)], [19, (1937)], [20,
(1950)], [22, 21, (1951)], [23, (1961)].

In addition to the book of Cesari [28, (1956)] we mention some recent review
papers, referring to Peano’s notion of surface area: Borgato [11, (1993)], Gandon
and Perrin [33, (2009)].

It is not rare to find review papers that forget mentioning Peano, whereas they
report contributions of authors that refer to Peano’s definition. For instance, in
a review paper [77, (1931)], Smith does not mention the definition of Peano,
attributing it to de la Vallee-Poussin [48, (1903)] but refers to several papers in
which Peano’s contribution is explicitly evoked (Schwarz [71, (1890)], Lebesgue
[50, (1902)], Mangoldt [52, (1902)], de la Vallee–Poussin [48, (1903)], Geöcze
[34, (1910)] and Young [81, (1919)]).
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Peano et Lebesgue, Arch. Hist. Exact. Sci., 63:665–704, 2009.
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[35] Z. de Geöcze, Sur la quadrature des variétés, C.R.A.Sc. Paris, 157:910–912, 1913.

[36] H. G. Grassmann, Gesammelte Werke, Teubner, Leipzig, 1894–1911.

[37] H. G. Grassmann, A New Branch of Mathematics, The Ausdehnungslehre of 1844 and

Other Works, Open Court Publ. Comp., Chicago, 1995.

[38] H. G. Grassmann, Extension Theory (Translation of Ausdehnungslehre, 2nd edition,

1862), American Mathematical Society, 2000.

[39] G. H. Greco - S. Mazzucchi - E. Pagani, Peano on derivative of measures: strict

derivative of distributive set functions, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl.,
21:305–339, 2010.

[40] G. H. Greco - E. Pagani, Reworking on a‰ne exterior algebra of Grassmann: Peano

and his School, Istituto Lombardo, Rendiconti Classe di Scienze Matematiche e Natu-
rali, 144:17–52, 2010.

[41] A. Harnack, Lehrbuch der Di¤erential- und Integralrechnung (vol. 2), Teubner,
Leipzig, 1885.
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[50] H. Lebesgue, Intégrale, longueur, aire, Annali di Matematica Pura e Applicata, 7:231–
359, 1902.
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[56] A. F. Möbius, Über die Bestimmung des Inhaltes eines Polyedres, Leipziger Sitzungs-
berichte math.-phys. Classe, 17:31–68, 1865.

284 g. h. greco, s. mazzucchi and e. m. pagani
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[68] T. Radó, Sur l’aire des surfaces continues, In Atti del Congresso Internazionale dei
Matematici, Bologna 1928. Vol. VI (t. II), pp. 353–360. Zanichelli, Bologna, 1930.
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